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4Clinical microbiology, Sahlgrenska University Hospital,

Gothenburg, SE-41345, Västra Götaland, Sweden.
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Abstract

Rapid and accurate diagnostics of bacterial infections are necessary
for efficient treatment of antibiotic-resistant pathogens. Cultivation-
based methods, such as antibiotic susceptibility testing (AST), are slow,
resource-demanding, and can fail to produce results before the treatment
needs to start. This increases patient risks and antibiotic overprescrip-
tion. Here, we present a deep-learning method that uses transformers to
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2 Confidence-based Prediction of Antibiotic Resistance

merge patient data with available AST results to predict antibiotic sus-
ceptibilities that have not been measured. The method is combined with
conformal prediction (CP) to enable the estimation of uncertainty at
the patient-level. After training on three million AST results from thirty
European countries, the method made accurate predictions for most
antibiotics while controlling the error rates, even when limited diagnostic
information was available. We conclude that transformers and CP enables
confidence-based decision support for bacterial infections and, thereby,
offer new means to meet the growing burden of antibiotic resistance.

The global rise of antibiotic-resistant bacterial infections threatens human
health globally [1]. Today, almost five million yearly deaths are accounted
to antibiotic-resistant bacteria [2], a number that is expected to continue to
grow in the coming decades [3]. Reduced efficiency of antibiotic treatment
increases the risk of performing vital healthcare procedures – including surgery,
chemotherapy, and organ transplantation [4] – and, thereby, jeopardizes
modern medicine as a whole.

Accurate and fast diagnostics are necessary for efficient treatment of
antibiotic-resistant bacteria. A central method is antibiotic susceptibility test-
ing (AST), a laboratory test in which a bacterium isolated from a patient
sample is cultivated and its resistance phenotype assessed in the presence
of antibiotics [5]. However, AST can be time-consuming due to the often
low growth rate of bacteria and the large number of antibiotics that may
need to be tested for highly multi-drug resistant isolates. For life-threatening
infections, treatment needs to start as early as possible, often before all test
results are available [6]. Under these circumstances, the choice of treatment
is reduced to an educated guess based on limited diagnostics information [7].
This form of “empirical” treatment is associated with increased patient risks
and overprescription of antibiotics [8–10].

Antibiotic resistance is commonly caused by resistance genes encoding var-
ious defense mechanisms and these genes are often co-localized on mobile
genetic elements, in particular, plasmids and/or transposons [11, 12]. Multi-
ple resistance genes can, thus, be transferred simultaneously between bacterial
cells, which gives rise to strong correlations between the susceptibility to dif-
ferent antibiotics. Furthermore, the type of infecting bacterium and, thus, its
susceptibility profile, is dependent on patient characteristics, including age,
sex, and the geographical region where the infection was acquired [13–15].
Indeed, patient data has previously been shown to contain valuable informa-
tion for the selection of suitable antibiotic therapy for bacterial urinary tract
infections [15–17]. There are, however, no methods that can also incorpo-
rate AST results and, thus, make use of all available diagnostic information.
Indeed, combining patient data with the available AST results could enable
more accurate prediction of the susceptibilities that have not been tested and,
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thereby, provide physicians with more comprehensive diagnostic information
at an earlier point in time.

Artificial intelligence (AI) and deep learning have been successfully applied
to diagnostics [18, 19], but the focus has primarily been on image-based data
commonly used in radiology and pathology [20]. In contrast, methods for non-
image multimodal data – which is dominating in the diagnostics of infectious
diseases – have received less attention [21]. There are, in fact, yet no AI-based
decision support systems for the selection of antibiotic treatment approved
by the Food and Drug Administration (https://medicalfuturist.com/fda-
approved-ai-based-algorithms/) [22]. A major culprit in the development of
such methods is the complexity of the diagnostic data, which is typically
categorical (stratified test results and patient information), incomplete, and
contains dependencies and redundancies. Furthermore, since the model accu-
racy depends on the degree of available information, any prediction needs to
be associated with estimates of its uncertainty. Indeed, the possibility of disre-
garding insufficiently confident predictions is vital in critical decision-making
and, thus, essential for the adoption of AI-based methodology in healthcare
settings [23]. However, today, most AI-based methods for diagnostics are pri-
marily evaluated on populations and do not provide information about the
uncertainty for predictions at patient-level [24].

In recent years, transformer-based models, such as BERT (bidirectional
encoder representations from transformers) [25] and GPT (generative pre-
trained transformer) [26], have transformed natural language processing. These
models operate on categorical input data, often structured into sentences
of words, and subject them to multi-head self-attention [27]. This makes
it possible to infer complex dependencies between words directly from data
and, thereby, predict parts that are missing. Therefore, we hypothesized that
transformers may be suitable for the prediction of antibiotic susceptibility
results from a combination of incomplete diagnostic information and patient
data. In particular, multimodal self-attention would enable the identification
of the complex dependencies between the diagnostic data types and facili-
tate extrapolation to susceptibilities that have not been tested. Transformers
have previously been shown to be highly useful outside natural language
processing [28, 29], but are rarely used for diagnostics of infectious diseases.

In this study, we present a novel transformer-based method that can accu-
rately predict antibiotic susceptibilities based on patient data and incomplete
diagnostic information. We combine the model with conditional inductive con-
formal prediction (CICP) [30] to estimate the uncertainty of each prediction
at the patient-level and, hence, abstain from presenting predictions with too
low certainty. The model was trained and evaluated on a large heterogeneous
dataset containing AST results from blood infections caused by Escherichia
coli collected from routine care in thirty European countries. Our results
showed that the model could make accurate predictions of susceptibility to a
wide range of antibiotics, often when only a few AST results were included in
the input. We also show that the model handles increasing information well,
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providing more accurate predictions as more AST results become available.
Finally, we show that predictions can be done within pre-defined confidence
levels for the majority of the bacterial isolates and antibiotics, which allows
control of both the major and very major error rates. We conclude that the
combination of transformers and CICP constitutes an appealing class of models
for the integration and prediction of heterogeneous diagnostic information.

Results

A transformer-based model for antibiotic susceptibility
prediction

We developed a transformer-based model to predict unavailable diagnos-
tic information using multiple classification. The input to the model is a
sequence of words containing the available (incomplete) diagnostic information
(AST results) and patient data (Figure 1, [27]). The transformer estimates a
sentence-specific classification (CLS) vector, which is used as input for multiple
antibiotic-specific neural networks, each predicting the probability of suscep-
tibility to the corresponding antibiotic. The uncertainty is estimated through
inductive conformal prediction, conditioned on the susceptibility; hence, con-
trolling the false positive and false negative error rates for each antibiotic
[30, 31]. The full details of the architecture of the model and the uncertainty
estimator are provided in Methods.

The model was trained and evaluated on data from The European
Surveillance System (TESSy) (https://www.ecdc.europa.eu/en/publications-
data/european-surveillance-system-tessy), which contains antibiotic suscepti-
bility testing (AST) results from 413,593 Escherichia coli isolates collected
from blood infections of patients in thirty European countries. The train-
ing and evaluation were done on sixteen commonly used antibiotics that
belonged to four large and clinically relevant antibiotic classes: aminogly-
cosides, cephalosporins, penicillins, and quinolones (Table 1). A bacterial
isolate was, on average, tested for susceptibility to 7.5 antibiotics (SD 1.96,
Figure 2A-2B). The most commonly tested antibiotics were ampicillin (AMP),
ceftazidime (CAZ), cefotaxime (CTX), ciprofloxacin (CIP), and gentamicin
(GEN), for which at least 79% of the isolates were tested, regardless of the
country of origin or gender of the patient. In contrast, less than 5% of the bac-
terial isolates were tested for piperacillin (PIP), moxifloxacin (MFX), nalidixic
acid (NAL), and ofloxacin (OFX); and more than ten countries did not report
any test results for those antibiotics (Figure 2C). The rate of susceptibility
for each isolate and country was lowest for the penicillins amoxicillin (AMX),
AMP, and PIP (37%-50%). For other antibiotics, the susceptibility rates were
more unbalanced: cephalosporins and aminoglycosides had 89%-93% suscepti-
ble bacterial isolates. A slightly higher rate of susceptibility was observed for
isolates collected from female patients (Figure 2D).
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Fig. 1: A) The architecture of the proposed model. The input sequence starts
with a classification token, CLS, followed by the patient information (coun-
try, gender, age, date) and then available antibiotic susceptibility data. The
input is fixed to a length L through padding using the PAD word. We use lin-
ear embedding to represent the input words numerically, which are fed into a
transformer encoder. The CLS vector from the output of the encoder is then
fed to M independent neural networks, each representing one antibiotic. The
outputs of the neural networks are two-dimensional vectors, indicating sus-
ceptibility and resistance, respectively, that undergo a softmax rescaling. B)
Uncertainty control. A calibration dataset is used to build empirical distribu-
tions of non-conformity of resistant and susceptible predictions. The prediction
regions for the test data are then created based on the deviations from the
empirical distributions, i.e. have a confidence score above a predefined cut-off.
See Methods for full details.
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Fig. 2: Description of the dataset used for training. A) The number of suscepti-
ble (opaque) and resistant (transparent) bacterial isolates tested per antibiotic.
B) The distribution of the number of antibiotics tested per bacterial isolate.
C) The proportion of bacterial isolates tested against each antibiotic for female
(opaque) and male (transparent) patients. D) The proportion of bacterial iso-
lates susceptible to each antibiotic for female (opaque) and male (transparent)
patients.

Predictions of antibiotic susceptibility have high
performance

To test how well the model predicts the susceptibility of antibiotics that were
not included as input to the model, we trained the model on 80% of the
bacterial isolates, with 10% reserved exclusively for calibration and 10% for
testing. During training, calibration, and testing, we selected a random num-
ber of antibiotics as input to the model (distribution available in Figure 3A,
mean 6.03, SD=1.42; see Methods for details) together with all the patient
information. The susceptibility of the remaining antibiotics was assumed to
be unknown and, therefore, removed from the input data. The predictions
produced by the model were then compared to the removed antibiotics to eval-
uate the model performance. In this setting, the model had an overall high
performance that did not differ substantially between training and test data
(Figure 3B). There were, however, clear differences in performance between
antibiotics. The F1-scores (the harmonic mean of precision and recall) were
highest for cephalosporins (83%-89%, average 86%) and quinolones (73%-
89%, average 83%), while the performance was lower for penicillins (63%-92%,
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average 78%) when excluding the combination treatment of piperacillin/ta-
zobactam (TZP). The aminoglycosides had the lowest F1-scores: 47% for GEN
and 61% for tobramycin (TOB).

Next, we evaluated the model based on the major error (ME) and very
major error (VME) rates, defined as the proportion of the susceptible and
resistant bacterial isolates being erroneously predicted, respectively. The ME
and VME rates are common performance measures in antimicrobial suscep-
tibility testing and are frequently used to evaluate and compare diagnostics
methods [32]. Based on the test dataset, cephalosporins had, on average, an
ME rate of 1.7% (0.9%–2.0%) while the VME rate was, on average, 12.0%
(6.8%–18.8%) (Figure 3C-D). For quinolones, the average ME rate was 3.5%
(2.1%–5.6%), and the VME rate for levofloxacin (LVX), MFX, and OFX, was,
on average, 11.5% (9.9%–12.4%), while it was considerably higher for CIP and
nalidixic acid (NAL) (31.1% and 32.2%, respectively). The penicillins had an
overall higher average ME rate of 13.5% (5.3%-19.4%). Here, PIP and AMX
had the lowest VME rates (9.7%, and 17.6%, respectively) while the rest of the
penicillins had an average VME rate of 32.8% (30.9%–34.6%). To investigate
the effect of the patient data, we compare our results with a model based only
on AST results with the patient data removed (Figure 3E). The full model
had an overall lower VME, especially for cephalosporins (average reduction of
45%), aminoglycosides (20%), and quinolones (20%).

The performance of the model was heavily influenced by the number of AST
results that were included in the input sentence. When the AST results used
as input to the model increased from four to eight antibiotics, large reductions
in the ME rate were seen for penicillins, where AMX and AMP dropped from
41% and 21% to 5% and 7%, respectively (Figure 3D). Interestingly, the drop
for amoxicillin/clavulanic acid (AMC) was more modest (from 17% to 14%),
while the ME rate for TZP did not decrease at all. A substantial reduction
could also be seen in the VME rate for all antibiotics except AMX (Figure 3D).
This included, for example, the penicillin AMP (from an MVE of 42% to 25%),
the cephalosporin ceftriaxone (CRO; 31% to 5%) the quinolone CIP (41% to
13%), and the aminoglycoside GEN (24% to 12%).

When eight AST results were included in the input – which corresponds
to half of the complete diagnostic information in this study – thirteen of the
sixteen antibiotics had an ME rate less than 10%, and for ten antibiotics it
was even lower than 5%. The VME rate for nine of the sixteen antibiotics was
less than 10% and lower than 5% for four antibiotics. This was also reflected
in the F1-scores which increased from 68% to 77% on average, from four to
eight input AST results. The overall high performance of the model in terms
of F1-score, ME, and VME rates, suggested that it can be used to accurately
predict complete susceptibility patterns for bacterial isolates.

Control of the major and very major error rates

In clinical practice, antibiotic treatment is typically founded on the diagnos-
tic tests of a single bacterial isolate. For predictions of diagnostic tests, the
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Fig. 3: A) Histogram of the number of antibiotic susceptibility testing (AST)
results used as input for the model during training at each epoch. B-C) Results
from the training dataset (transparent) and testing dataset (opaque): F1-score,
major error (ME) rate, and very major error (VME) rate for the transformer
model. D) The predictive performance of the model as a function of the number
of AST results included in the input (from transparent to opaque: 4 to 8
AST results). E) ME and VME rates for the testing dataset including patient
information, the testing dataset excluding patient information, and the naive
classifier.
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certainty of the predictions should be addressed as it could vary substantially.
Indeed, if the uncertainty is too high, the prediction may need to be consid-
ered with care or completely disregarded. Therefore, we implemented a CICP
algorithm that provides each prediction with a quantitative measure of uncer-
tainty [30]. The certainty of each prediction was derived from a conformity
measure, which in our case, was defined as the softmax score from the out-
put of each neural network. The empirical distributions of softmax scores for
both susceptible and resistant bacterial isolates were calculated for each of the
antibiotics using a dedicated calibration dataset. These distributions were used
to decide whether a new prediction was conformal to the susceptible and/or
resistant isolates in the calibration dataset and, based on a pre-defined confi-
dence level, sufficiently certain. The output of a prediction for one antibiotic
can be a single label if there is enough conformity to only one of the softmax
distributions, either susceptible or resistant; multiple labels, i.e. both suscepti-
ble and resistant, if there is enough conformity for both softmax distributions;
or no label if there is no conformity to either group. The proportion of bacte-
rial isolates that will, on average, be conformal to the correct label is governed
by the confidence level 1 − ϵ. Note that in this setting, ϵ corresponds to the
average ME and the VME rates for susceptible and resistant bacterial isolates,
respectively (see Methods for full details).

The empirically derived ME and VME rates were close to the pre-specified
values of ϵ for all antibiotics (Figure 4A-4D). For example, at a confidence level
of 1 − 0.1 = 0.90, the observed ME and VME rates were, on average, 9.8%
(SD=0.2%) and 10.4% (SD=1.5%), respectively. The concordance between
pre-specified and observed error rates was sustained at higher confidence lev-
els where, for 95% confidence, the average ME and VME rates were 4.9%
(SD=0.2%) and 5.3% (SD=0.9%) and for 97.5% confidence, the average ME
and VME rates were 2.47% (SD=0.19%) and 2.54% (SD=0.5%), respectively.
The F1-score improved, as expected, with increasing confidence level, from an
average value of 74% at 90% confidence to 85% and 92% for 95% and 97.5%
confidence, respectively (Figure 4E). Thus, the results showed that the speci-
fied confidence levels calculated from empirical distributions were sufficiently
stable between datasets.

The model could confidently predict the phenotype for a
large majority of bacterial isolates and antibiotics

At a confidence level of 90%, 78% of the predictions were unambiguous and
correct (only the correct label was predicted), but this number varied between
antibiotics (Figure 5A). Cephalosporins, the quinolones LVX and OFX, and
the aminoglycoside TOB all had a high proportion of correct unambiguous
predictions (89.8% to 90.5%), however, the performance was lower for peni-
cillins, the quinolones CIP and NAL, and the aminoglycoside GEN, reflecting a
higher degree of uncertainty. The proportion of unambiguous predictions was,
as expected, reduced when the confidence level was increased, from, 78.4% for
90% to 70.3% for 95% and, finally, to 59.8%, for 97.5%.
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Fig. 4: Empirical and expected error rates for each antibiotic by class for
A) penicillins, B) cephalosporins, C) quinolones, and D) aminoglycosides. E)
Performance (F1 score, ME, and VME rates) as functions of the number of
input AST results (from light to dark: 4 to 8 AST results) at a confidence level
1 − ϵ = 0.90

The unambiguous predictions increased as more diagnostics information
was provided to the model. At a 90% confidence level, the proportion of correct
predictions with one single label increased from, on average, 72% when four
AST results were included in the input, to 76%, 78%, 82%, and 84% when
five, six, seven, and eight AST results were used, respectively (Figure 5B).
The increase was especially large for the prediction of susceptibility to the
penicillins AMP and AMX and for the prediction of both susceptibility and
resistance to the quinolone CIP. With eight input AST results, the model was
able to make correct and unambiguous predictions for the vast majority of
the remaining unknown antibiotics (84%) while maintaining both the major
and very major error rates at 10%. This was also true, but to a lesser extent,
for higher confidence levels where the proportion of unambiguous and correct

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is the2023. 

this version posted May 10,; https://doi.org/10.1101/2023.05.09.539832doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.09.539832


Confidence-based Prediction of Antibiotic Resistance 11

R
S

97
.5

%
A

M
C

   
  9

5% 90
%

97
.5

%
A

M
P

   
  9

5% 90
%

97
.5

%
A

M
X

   
  9

5% 90
%

97
.5

%
P

IP
   

  9
5% 90

%

97
.5

%
T

Z
P

   
  9

5% 90
%

97
.5

%
C

A
Z

   
  9

5% 90
%

97
.5

%
C

R
O

   
  9

5% 90
%

97
.5

%
C

T
X

   
  9

5% 90
%

97
.5

%
F

E
P

   
  9

5% 90
%

97
.5

%
C

IP
   

  9
5% 90

%

97
.5

%
LV

X
   

  9
5% 90

%

97
.5

%
M

F
X

   
  9

5% 90
%

97
.5

%
N

A
L 

   
 9

5% 90
%

97
.5

%
O

F
X

   
  9

5% 90
%

97
.5

%
G

E
N

   
  9

5% 90
%

97
.5

%
TO

B
   

  9
5% 90

%

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n

A
R

S

4 5
A

M
C

   
6 7 8 4 5

A
M

P
   

6 7 8 4 5
A

M
X

   
6 7 8 4 5

P
IP

   
6 7 8 4 5

T
Z

P
   

6 7 8 4 5
C

A
Z

   
6 7 8 4 5

C
R

O
   

6 7 8 4 5
C

T
X

   
6 7 8 4 5

F
E

P
   

6 7 8 4 5
C

IP
   

6 7 8 4 5
LV

X
   

6 7 8 4 5
M

F
X

   
6 7 8 4 5

N
A

L 
  6 7 8 4 5

O
F

X
   

6 7 8 4 5
G

E
N

   
6 7 8 4 5

TO
B

   
6 7 8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n

B

VME − empty
VME − single label

ME − empty
ME − single label

Correct − multiple labels
Correct − single label

Fig. 5: The proportion of correct predictions with a single label (opaque)
and multiple labels (transparent), major errors (MEs), and very major errors
(VMEs) with a single label (opaque) and empty set (transparent) predictions
for resistant (R) and susceptible (S). A) The proportions are shown for each
antibiotic using three different confidence levels: 90%, 95%, and 97.5%. B) The
proportions are shown as a function of the number of input AST results (90%
confidence level).

predictions with eight input AST results were 78% and 68% for 95% and 97.5%,
respectively.

Discussion

In this study, we present a method that uses a transformer model to predict
unavailable diagnostic information. When combined with conditional inductive
conformal prediction to estimate the predictive uncertainty at the patient-
level, the method can abstain from making decisions unless the confidence is
deemed sufficiently high. The model was applied to the diagnostics of infectious
bacteria, a field that sees rapidly growing societal and economic costs due to
the increasing challenges related to antibiotic resistance [33, 34]. The training
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was done using a large and heterogeneous dataset, consisting of almost half a
million bacterial isolates and more than three million antibiotic susceptibility
testing (AST) results collected from thirty European countries. Even though
this dataset was collected for surveillance, it consists of AST results produced
in routine diagnostics. Validation on the testing dataset, where AST results
were randomly excluded, showed that the model had generally high accu-
racy for the prediction of antibiotic susceptibility. The performance improved
further as results from more tests were included in the input data, demon-
strating that the model could efficiently incorporate diagnostic information as
it becomes available to produce more certain predictions. Indeed, when eight
of the sixteen antibiotics were used in the input, the model could predict most
susceptibilities with a VME rate (false negative rate) as low as 5%. This shows
that AI prediction can constitute a viable alternative to laboratory diagnostics
tests and could, potentially, be used to save time, reduce suffering, and lower
economic costs.

Providing information about the uncertainty is essential in diagnostics
where the knowledge at the population level is used to make predictions
about individual patients. We addressed this challenge by implementing an
algorithm based on conditional inductive conformal prediction [30, 35, 36] in
order to provide each prediction with an accompanied confidence score. In our
application, the pre-defined confidence corresponded to ME and VME rates,
providing predictions that restrict the false positive and false negative rates to
the desired levels. During the model testing, we found consistent error rates
between datasets, and the confidence sets mainly contained a single label for
cephalosporins and quinolones. However, a higher variation was observed for
penicillins resulting in a larger proportion of ambiguous predictions (multiple
labels). Furthermore, our implementation separates the uncertainty for suscep-
tible and resistant predictions. This is valuable in the diagnostics of bacterial
infections where a VME, i.e. the incorrect identification of a resistant isolate,
may lead to non-effective antibiotic treatment. Therefore, VMEs are often con-
sidered to be the most serious errors, especially for life-threatening infections.
The ability to set the confidence scores for susceptible and resistant predictions
individually makes it, thus, possible to adjust the model to different clinical
scenarios.

The model showed a clear difference in predictive performance
between antibiotics, notoriously lower for penicillins, especially compared to
cephalosporins. Historically, penicillins were one of the earliest classes of antibi-
otics and the first type of beta-lactam antibiotics to be introduced. Resistance
against beta-lactam antibiotics is typically caused by enzymes that can break
down the antibiotic using hydrolysis [37]. Penicillins have been widely used for
over 80 years and there is, consequentially, a wide diversity of resistance genes
that can be acquired by bacteria [38]. In contrast, resistance to cephalosporins
– a later generation of beta-lactam antibiotics – is, to a larger extent, depen-
dent on additional genetic events, such as mutations in chromosomal genes or
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the acquisition of broader spectrum resistance mechanisms [37]. These pat-
terns were reflected in the data where resistance to penicillins was common
and as many as 89.8% of the bacterial isolates that were resistant to a single
antibiotic were resistant to a penicillin. Furthermore, it is plausible that the
order of the evolution of multidrug-resistant bacteria has an impact on the per-
formance of our model. Resistance phenotypes that are acquired initially will
be harder to predict than those that commonly appear in later stages, simply
due to the lack of other correlating susceptibilities. Results from additional
diagnostic assays, such as targeted molecular tests detecting the presence of
beta-lactamases, could, thus, be a way to improve the performance further.
Indeed, the flexibility of the transformers makes it possible to incorporate
other types of diagnostic information, including genotypic information, as new
words in the input sentence.

Finally, the AI methodology presented here has the potential to improve the
diagnostics of infections caused by antibiotic-resistant bacteria. We argue that
data-driven methods have the potential to replace selected diagnostics assays
and thereby provide physicians with more comprehensive decision support at
an earlier stage. This has the potential to improve the treatment of bacterial
infections and thereby decrease patient morbidity and mortality, reduce costs,
and limit the overprescription of antibiotics.

Methods

Data description

This study is based on data from The European Surveillance System (TESSy),
which was collected as a part of the surveillance done by the European Cen-
tre for Disease Prevention and Control. The total dataset contains the results
for more than 9 million antibiotic susceptibility testing (AST) results done on
bacteria isolated from blood and cerebrospinal fluid from hospitalized patients
in 30 different European countries. For each bacterial isolate, we retrieved
the AST results together with the gender, sex, and age of the patient from
which the bacterium was isolated, as well as the date of isolation. The analysis
was limited to the susceptibility of Escherichia coli, which was the most com-
mon species, from blood infections collected between 2013 to 2017. Tests that
resulted in either resistant (R) or susceptible (S) were included, while tests
with an intermediate (I) result were excluded. Only antibiotics with at least 8%
resistance rate were considered. This resulted in data covering sixteen antibi-
otics from four clinically relevant classes: aminoglycosides, cephalosporins,
penicillins, and quinolones (Table 1). Furthermore, isolates with less than five
tested antibiotics were removed. Also, if an antibiotic was tested multiple times
for the same bacterial isolate, only the most recent test was included. The final
dataset contained n = 413, 593 bacterial isolates with 3,105,294 AST results,
resulting in an average of 7.5 tests (SD=1.96) per isolate. After randomiza-
tion, the bacterial isolates were divided into three datasets: 1) training data
(80% of the isolates), 2) calibration data (10%), and 3) testing data (10%).
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To increase the number of combinations of AST results, each dataset was
expanded. For each bacterial isolate j, multiple data points were generated
by randomly splitting the susceptibility test results into two groups. The first
group, xk, together with patent information, were considered known and, thus,
used as input to the model. The second group, yk, was hidden from the model
and used to evaluate the predictive performance. The full details of the data
expansion are provided in Supplementary Information — Table S1. A made-
up example of the information available for a bacterial isolate are presented
below:

Example 1 Available information for bacterial isolate j: “SV 30 M 2013 01 LVX R
AMC S AMP S TZP R CTX S GEN S”, represents a bacterium isolated at a
Swedish hospital (SV) from a 30-year-old (30) male (M) patient in January 2013
(2013 01) where the isolated bacterium was tested against six antibiotics. The AST
results indicated resistance to the antibiotics levofloxacin (LVX) and piperacillin/ta-
zobactam (TZP) and susceptibility to amoxicillin/clavulanic acid (AMC), ampicillin
(AMP), cefotaxime (CTX), and gentamicin (GEN). Two example data points
(xk, yk) and (xk′ , yk′) that could, potentially, be created from this isolate:

(xk, yk) = (“SV 30 M 2013 01 LVX R AMC S AMP S TZP R”, “CTX S
GEN S”)

(xk′ , yk′) = “SV 30 M 2013 01 LVX R AMC S AMP S CTX S GEN S”,
“TZP R”).

Model description

Given a data point (xk, yk), the model takes the input xk and make predictions
ŷk of the susceptibilities yk. The input sentence is first complemented at the
start with the classification word CLS and padded to a length L = 19 (the
maximum length of a sentence) with PAD words if needed. Each word is then
converted into a linear embedding representation in the form of a d-dimensional
vector that provides semantic meaning to the model (d = 64). These word
embeddings are passed through e transformer encoder layers, each with one
attention head followed by an add-and-normalize layer, a position-wise feed-
forward layer (using 128 nodes), and, finally, another add-and-normalize layer.
The first vector of the output from the encoder – representing the CLS word
and containing information at the sentence level – is used as the input to
M = 16 independent antibiotic-specific feed-forward networks, each of depth 2.
The intermediate layer of the networks has 64 nodes and a rectified linear unit
(ReLU) activation function followed by a normalization step, while the output
vector of the final layers is a linear transformation to vectors of length 2 which
was used to do binary classification. The isolate was classified as resistant or
susceptibile based on the largest output value.

The model was trained as follows. At each epoch, 300,000 bacterial isolates
were randomly sampled from the training dataset and expanded as described
above. The model was then trained on 512,000 randomly selected data points,
divided into mini-batches of size 512. The loss was based on the cross entropy
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between the known (yk) and predicted (ŷk) labels. The Adam optimizer was
used to minimize the loss during 200 epochs using a fixed learning rate of
1×10−6. The model was implemented and trained using Pytorch version 1.7.1.

Uncertainty control

An algorithm based on conditional inductive conformal prediction (CICP)
was used to quantify the uncertainty of the predictions [30] with respect to
the antibiotic and label (i.e. “susceptible” and “resistant”). For a data point
(xk, yk), the algorithm estimates a prediction set Γϵ

k containing the predictions
that are deemed sufficiently confident given a predefined confidence level 1− ϵ.
The uncertainty for a prediction was based on its conformity measure, defined
as the softmax transformation of the outputs of the neural networks. The con-
formity measure and, thus, the uncertainty, was derived individually for each
antibiotic and each label (i.e. resistance or susceptible).

We estimated the empirical distributions for each conformity measure from
the the calibration dataset, which, for an antibiotic a, were assumed to contain
l = la,S + la,R data points, where la,S and la,R are the number of data points
for susceptibile and resistance bacterial isolates, respectively. For a data point
(xk, yk), let αa,S

k and αa,R
k denote the softmax score for prediction of suscep-

tibility and resistance to antibiotic a, respectively. The prediction sets were
decided based on the empirical p-values pa,Sk and pa,Rk , which were calculated
according to

pa,Sk =
|i = 1, . . . , la,S : α̃a,S

i ≤ αa,S
k | + 1

la,S
, (1)

pa,Rk =
|i = 1, . . . , la,R : α̃a,R

i ≤ αa,R
k | + 1

la,R
, (2)

where α̃a,S
i and α̃a,R

i denotes the softmax scores calculated using the data
points in the calibration dataset. At a confidence 1− ϵ, the prediction set was
then formed by

Γϵ,a
k = {S if pa,Sk > ϵ} ∪ {R if pa,Rk > ϵ}. (3)

Performance

The model’s predictive performance was computed based on 853,466 training,
534,370 calibration, and 535,099 test data points. To evaluate the overall model
performance, F1-score (F1) was calculated. In addition, major error (ME)
rate, defined as the proportion of true susceptible bacterial isolates being erro-
neously predicted, and very major error (VME) rate, defined as the proportion
of true resistant isolates being erroneously predicted, were also calculated. To
measure the performance of the uncertainty control, true predictions encom-
passed prediction regions containing the true label for each antibiotic, and false
predictions contained either no labels or only the wrong one. The evaluation
of the prediction sets were based on 1,092,964 predictions.
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For comparison, a naive classifier was included. For an antibiotic a, the
naive classifier selected randomly between resistance and susceptibility with a
probability equal to the proportion of bacterial isolates that were resistant to
that antibiotic in the whole dataset.

Supplementary information. Additional File 1: Table S1 describes the
data expansion from patient and isolate information to data points used in the
model.
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[20] Benjamens, S., Dhunnoo, P., Meskó, B.: The state of artificial intelligence-
based FDA-approved medical devices and algorithms: an online database.
NPJ digital medicine 3(1), 1–8 (2020)

[21] Rajpurkar, P., Chen, E., Banerjee, O., Topol, E.J.: AI in health and
medicine. Nature Medicine 28(1), 31–38 (2022)

[22] The Medical Futurist: FDA-approved A.I.-based algorithms. https://
medicalfuturist.com/fda-approved-ai-based-algorithms/ (2022)

[23] Begoli, E., Bhattacharya, T., Kusnezov, D.: The need for uncertainty
quantification in machine-assisted medical decision making. Nature
Machine Intelligence 1(1), 20–23 (2019)

[24] Kompa, B., Snoek, J., Beam, A.L.: Second opinion needed: communicat-
ing uncertainty in medical machine learning. NPJ Digital Medicine 4(1),
1–6 (2021)

[25] Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018)

[26] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language
models are few-shot learners. Advances in neural information processing
systems 33, 1877–1901 (2020)

[27] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser,  L., Polosukhin, I.: Attention is all you need. Advances in
neural information processing systems 30 (2017)

[28] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,
O., Tunyasuvunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A., Bridgland,
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Table 1: The proportion of bacterial isolates extracted from female and male
patients tested to each of the antibiotics and their susceptibility rate, together
with the weights used in the loss function.

Proportion of isolates tested 1 Loss function

Antibiotic Female patient Male patient weights (S/R)2

AMC – Amoxicillin/ 45.4% (72.2% S) 47.0% (68.9% S) 0.45/0.55
clavulanic acid
AMP – Ampicillin 71.7% (45.8% S) 71.6% (42.4% S) 0.45/0.55

AMX – Amoxicillin 21.4% (45.5% S) 21.8% (42.9% S) 0.45/0.55

PIP – Piperacillin 9.6% (52.5% S) 9.1% (49.2% S) 0.45/0.55

TZP – Piperacillin/ 49.0% (93.3% S) 50.0% (91.9% S) 0.15/0.85
tazobactam

CAZ – Ceftazidime 90.6% (92.4% S) 90.2% (90.1% S) 0.3/0.7

CRO – Ceftriaxone 29.1% (91.3% S) 27.4% (88.9% S) 0.3/0.7

CTX – Cefotaxime 80.3% (90.0% S) 81.0% (87.1% S) 0.3/0.7

FEP – Cefepime 29.1% (92.5% S) 30% (90.1% S) 0.3/0.7

CIP – Ciprofloxacin 93.9% (82.5% S) 94.5% (75.8% S) 0.3/0.7

LVX – Levofloxacin 24.8% (80.0% S) 23.6% (72.0% S) 0.3/0.7

MFX – Moxifloxacin 10.0% (78.9% S) 9.1% (72.6% S) 0.3/0.7

NAL – Nalidixic acid 7.2% (76.0% S) 8.3% (71.6% S) 0.45/0.55

OFX – Ofloxacin 8.1% (83.4% S) 9.1% (78.6% S) 0.3/0.7

GEN – Gentamicin 90.7% (92.3% S) 92.0% (90.5% S) 0.15/0.85

TOB – Tobramycin 46.4% (91.6% S) 47.4% (89.4% S) 0.15/0.85

Number of bacterial isolates 249,025 219,404

1Proportion of bacterial isolates tested against each antibiotic, for bacteria isolated from
female and male patients, respectively. The susceptibility rate for the isolates is shown in
parentheses.
2Weight on the cross entropy loss function for the two different labels: susceptible/resistant.
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