Abstract
During intestinal organogenesis, equipotent epithelial progenitors mature into phenotypically distinct stem cells that are responsible for life-long maintenance of the tissue. While the morphological changes associated with the transition are well-characterized, the molecular mechanisms underpinning the maturation process are not fully understood. Here, we leverage intestinal organoid cultures to profile transcriptional, chromatin accessibility, DNA methylation and 3D chromatin conformation landscapes defining fetal and adult epithelial cells. We observed prominent differences in gene expression and enhancer activity, accompanied by changes in 3D organization and local changes in DNA accessibility and methylation, between the two cellular states. Using integrative analyses, we identified sustained YAP transcriptional activity as a major gatekeeper of the immature fetal state. We found the YAP-associated transcriptional network to be regulated at various levels of chromatin organization, and likely to be coordinated by changes in extracellular matrix composition. Altogether, our work highlights the value of unbiased profiling of regulatory landscapes for the identification of key mechanisms underlying tissue maturation.
Competing Interest Statement
The authors have declared no competing interest.