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Abstract 
 
Somatic activity of LINE-1 (L1) mobile elements has been implicated in cancer etiology, which 
may be related to the loss of p53-mediated regulation as a result of TP53 mutations. Quantifying 
the mechanisms of L1 regulation in cancer has been challenging. Here, we build a statistical 
model of L1 regulation by simultaneously quantifying L1 retrotransposition, L1 expression, and 
the fitness costs of mutated TP53 with precision. We first developed Total ReCall, an algorithm 
specifically tailored to the mechanisms of L1 reintegration, to detect L1 insertions from short-read 
whole-genome sequencing. Applying Total ReCall to high-quality data consisting of >750 paired 
tumor and normal samples from The Cancer Genome Atlas (TCGA) shows high L1 insertion 
heterogeneity among tumor types, with increased retrotransposition burden in lung squamous cell 
carcinoma, head and neck, and colon cancers. We next assessed the active RNA expression of 
intact L1 in >9,000 TCGA tumor samples, establishing, for the first time, a clear correlation 
between L1 expression and retrotransposition. Finally, we integrated the number of L1 insertions, 
L1 expression and a mathematical model of TP53 fitness into a multi-modal model of p53-
mediated mechanisms of L1 regulation. We show that TP53 mutations enable retrotransposition 
both by disinhibiting L1 expression and enabling its reintegration and quantify the relative weights 
of this dual regulatory role. We demonstrate how mechanism-based multi-modal modeling applied 
at scale can statistically disentangle the complex interplay between canonical driver events in 
tumor evolution and retrotransposon activity. 
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Introduction 
 
More than half of the human genome is composed of repeat sequences1,2,3. Normally, various 
processes such as epigenetic repression silence these repeats4 but oncogenesis is associated 
with disruptions to these pathways5, 6. In cancer, repeats can be re-expressed as RNA, translated 
in some cases into protein, and may be actively involved in genome instability and cancer 
immunogenicity7,8,9,10,11,12. The LINE-1 (L1) element is an especially interesting class of repeats 
which possesses the ability to reinsert itself via retrotransposition at new loci in the human 
genome13. An intact L1 element is ~6 kb in length, but most of the >1 million copies that comprise 
~17% of the human genome are 5’ truncated2 .There are just over 100 L1s capable of coding for 
the full length ORF1p and ORF2p proteins, the latter functioning as the reverse transcriptase and 
endonuclease1 needed for L1 activity. 
 

 Despite its frequent reintegration in cancer genomes11, measuring L1 retrotransposition from 
short-read sequencing data to accurately quantify its movement in cancer poses technical 
challenges due to the many genomic copies of highly similar L1 sequences, as well as different 
modes of the retrotransposition process (Fig. 1a-d) making it difficult to disambiguate the source 
of L1-containing sequencing reads. While methods have been developed for detecting somatic 
retrotransposition events14,11,15 we set out to build a first-principles approach that accounts for the 
specific retrotransposition cycle of L1 (Fig. 1). The resulting “Total ReCall” method relies on two 
key signals that arise when aligning sequencing reads to the reference genome (Fig. 1g): (i) reads 
that span the retrotransposon insertion site breakpoint will result in chimeric reads which contain 
portions of both the insertion site sequence from the human genome as well as the inserted L1 
sequence,  and lead to “soft clipped” alignments, and (ii) paired-end reads that arise from 
fragments spanning the inserted L1 sequence will often have one read map near the insertion 
site, but the other read  map to one of the many L1 sequences elsewhere in the genome, even to 
a different chromosome or a distant site on the same chromosome, resulting in “discordant read 
pairs”. 
 
We applied Total ReCall to assess somatic L1 retrotransposition prevalence in a pan-cancer 
cohort of 765 paired tumor-normal samples across 22 tissue types from The Cancer Genome 
Atlas (TCGA), assessing heterogeneity across types. To achieve a clear picture of the L1 life 
cycle in cancer, we aimed to accurately quantify L1 RNA expression simultaneously with  
retrotransposition, since RNA not only encodes the protein machinery for retrotransposition but 
also acts as the substrate for new genomic copies of L1. To do so, we used the L1EM mechanistic 
model of L1-driven transcription (“active expression”) at intact L1 copies in the genome16. Using 
this, we assessed heterogeneity of active expression of L1 RNA in 9,011 tumor samples across 
32 tissue types, and we found similar patterns between the RNA levels of L1 and the abundance 
of its retrotransposition. TP53, the most frequently mutated gene in cancers17, encodes a protein 
that functions to maintain genome stability, including suppression of L1 retrotransposition18. 
Studies involving genetic manipulation of TP53 in human cell lines and animal models have 
demonstrated that loss of p53 function leads to derepression of retroelements as seen with 
common TP53 cancer mutations19,20. We integrated combined L1 insertional and transcriptional 
data with TP53 mutational status and fitness21, which allowed us to model this critical regulatory 
mechanism at large scale. We find that p53 plays a dual role in restraining retrotransposition, both 
by repression of L1 transcription and by regulation of its integration into the genome. 
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Results 

Total ReCall uses clipped sequences to accurately identify somatic L1 insertions 
 
We designed the Total ReCall algorithm (Fig. 1) to analyze patterns in paired-end whole-genome 
sequencing (WGS) data to detect “canonical” retrotransposition events (where a single stretch of 
L1 starting from the 3’ end is inserted in the genome; Fig. 1e), as well as “inversion-containing” 
retrotranspositions (a genomic insertion that contains part of an L1 sequence adjacent to an 
inverted part of L1; Fig. 1f; see Methods). To derive somatic insertions in tumors, the algorithm 
looks for read patterns (Fig. 1g) that are specific to the tumor sample and not found in normal 
tissue from the same patient. For validation, we tested Total ReCall using a child-mother-father 
trio sequenced with both Illumina short-read and PacBio long-read technologies as part of the 
NIST-led Genome in a Bottle (GIAB) Consortium22, using the latter as ground truth for 
retrotransposition events (see Methods). We found that Total ReCall on the short-read data had 
high sensitivity (71%, Extended Data Fig. 1a-b) for detection of long-read-based trio 
retrotransposition calls, and the inferred lengths of the retrotransposed sequence insertions 
(estimated for canonical events only) were highly correlated (Pearson correlation R > 0.99, p < 
1x10-10, Extended Data Fig. 1c). 
 
Applying Total ReCall to TCGA, we found a total of 4,357 tumor-specific somatic 
retrotranspositions in our quality-controlled (see Methods) dataset of 765 tumors (mean of 5.7 
calls per sample; Fig. 2a). As a negative control, we looked for insertions found in the normal 
tissue but not present in the matched tumor, which yielded only 100 such instances (mean of 0.13 
calls per sample), consistent with a low number of false positives. Approximately two thirds 
(65.5%) of tumor samples were found to have no somatic retrotransposition calls (in the negative 
control, 91.6% of normal samples had no normal-specific calls). Because many tumor samples 
were sequenced at higher depths than their paired normal samples, we next confirmed that the 
tumor samples had a significantly higher rate of somatic L1 calls than the normal samples even 
when adjusting for sequencing depth in various ways (Extended Data Fig. 2). 
 
Among the somatic retrotranspositions detected, slightly over half (2,416 of 4,357, 55.5%) had a 
canonical orientation of inserted L1 sequence that is consistent with single-stranded priming (Fig. 
2b, Fig. 1c), while the remaining (1,941, 44.5%) showed evidence of inversion-containing 
integrations that result from double-stranded priming (Fig. 1d). This inversion-containing 
frequency is higher than previous estimates of approximately 19-25% within germline L1 
polymorphisms23,15, possibly reflecting the higher levels of genomic instability in tumors. As 
expected, the length of inserted L1 sequence (estimated from the 2,416 canonical insertions, Fig. 
1g) shows a pattern of 5’ decay, with over 94% containing a 5’-truncated L1 sequence, and only 
6% approaching full length of a reverse-transcribed L1 transcript (defined here as having at least 
97% of the L1Hs consensus [5,833 of 6,032 bases], Fig. 2c). We thus estimate the “mortality rate” 
for the L1 life cycle in cancer (i.e., the fraction of new L1 integrations that fail to insert the full L1 
sequence) as being nearly 19 out of 20. 
 
Pan-cancer survey reveals highest L1 retrotransposition “burden” in lung squamous cell 
carcinoma  
 
In our analysis of 765 tumors across the 22 tissue types available in the quality-controlled TCGA 
data, we found a high degree of heterogeneity in the number of somatic retrotranspositions per 
sample, dubbed the “RT burden”. In particular, lung squamous cell carcinoma had the highest 
median RT burden of 13 (Fig. 2d). The next highest, head and neck squamous cell carcinoma 
tumors had a median RT burden of 8, and the highest mean burden (32.6 RTs / sample) of any 
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tumor type in the dataset. After these, colon adenocarcinoma samples had a median RT burden 
of 7, and uterine corpus endometrial carcinoma and rectal adenocarcinoma samples both had a 
median of 2. Stomach, ovarian, cervical, and bladder tumors all had a median RT burden of 1, 
while breast cancers had a median of 0, but 44% of samples did have at least one somatic RT. 
In contrast, for the remaining tumor types we did not detect any somatic retrotranspositions in 364 
of 388 samples. 
 
Note, however, that without sufficient quality control (QC, see Methods) of the whole-genome 
sequencing data, the patterns we observed were obscured. In particular, our QC-pipeline 
removed tumor-normal pairs for which sequencing had been performed earlier in the TCGA 
project, when read lengths were shorter and thus would not allow the detection of clipped reads 
(the critical component of Total ReCall), giving the appearance of 0 retrotranspositions in these 
samples (see Methods). Unfortunately, this filtering removed all esophageal carcinoma and uveal 
melanoma data from our analysis, cases which are likely to have many RT events11,14. 
 
L1 RNA expression also differs by tumor types but is related to RT burden 
 
Throughout TCGA, high-quality tumor RNA-seq data is available from 9,011 distinct individuals 
across 32 tumor types, and normal RNA-seq from 719 individuals across 23 tumor types (see 
Methods). We quantified locus-level L1 RNA “active” expression (transcription driven by the L1 
promoter) from these 9,730 samples using L1EM tool16 and aggregated expression levels 
(transcripts per million, TPM) across fully intact loci (as curated by L1Base24) to calculate the total 
relative abundance of intact L1 RNA present in each sample. 
 
We found that lung squamous cell carcinoma has the greatest median gain of L1 expression in 
tumor samples with respect to paired normal (tumor median 33.0 TPM, normal median 2.5 TPM, 
p < 1x10-10 one-sided Mann-Whitney U test), while esophageal samples have the highest 
expression of L1 RNA overall among both tumor and normal samples (tumor median 41.9 TPM, 
normal median 11.1 TPM, p = 5x10-5 one-sided Mann-Whitney U test, Fig. 3a). Prostate tissue 
had the next highest levels of L1 RNA in normal samples after esophagus, and no significant gain 
of L1 RNA in the prostate adenocarcinoma samples (tumor median 10.0 TPM, normal median 9.5 
TPM, p = 0.12 one-sided Mann-Whitney U test). 
 
Next, to relate L1 retrotransposition to L1 expression, we start by aggregating signals within tumor 
types and comparing summary statistics. For the 21 tumor types with at least 5 tumor samples in 
both the WGS and RNA-seq datasets, we ranked each tumor type twice, first based on average 
L1 RNA expression, then by average RT burden. We found that tumor types with higher 
retrotransposition ranks tended to also have higher L1 RNA rank (Pearson correlation coefficient 
R = 0.57, Extended Data Fig. 3a). The 10 tumor types with an average RT burden of at least 1 
per sample have higher median L1 RNA expression (median of 14.8 TPM), while the 11 tumor 
types with an average below one retrotransposition per sample have lower L1 RNA expression 
(median of 3.3 TPM, p = 0.022, two-sided Mann-Whitney U test, Fig. 3b). We next compared the 
subset of 620 cancer patients where both retrotransposition and expression could be assessed, 
i.e., both WGS and RNA-seq had been performed. At the individual sample level, tumors with at 
least one retrotransposition had significantly higher L1 RNA expression (median 18.0 TPM, 
N=189) than those with none (median 3.5 TPM, N=431; p < 1x10-10, two-sided Mann-Whitney U 
test, Fig. 3c). 
 
Pan-cancer statistical model finds that p53 limits retrotransposition by repression of LINE-
1 transcription and regulation of integration 
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To incorporate the orthogonal signal of TP53 mutational status into our analyses, we first adjusted 
our estimates for L1 RNA and RT burden per sample based on sequencing quality metrics to 
minimize technical biases that may make distinguishing biological relationships more difficult (see 
Methods, Extended Data Fig. 3b-c). Consistent with the relationship between L1 RNA and L1 RT 
in Fig. 3b-c, the adjusted values for these also significantly correlate with each other for the tumors 
with both WGS and RNA-seq data (N = 620, Pearson correlation R = 0.55, p < 1x10-10, Extended 
Data Fig. 3d). We then used the TP53 alteration status as defined by cBioPortal25,26  to group our 
WGS and RNA-seq datasets into p53 mutant and wild type categories. The p53 mutant groups 
exhibited significantly higher L1 RNA and L1 RT burden than the wild type samples (p < 1x10-10 
for both, two-sided Mann-Whitney U test, Fig. 4). 
 
We previously created a “fitness model” of the selective advantage a TP53 mutation gives to a 
tumor cell to quantify the pro-tumor advantage of loss of native p53 function conferred by 
missense mutations in a mathematical model (defined by the ability to bind 8 key transcriptional 
targets)21. The fitness model has been further extended here to represent the corresponding 
impact of additional types of alterations other than point mutations to TP53 (see Methods) for the 
first time, enabling us to compute p53 functional fitness for every tumor sample in our dataset 
(Fig. 5a). We observe that L1 RNA expression and RT burden are each significantly correlated 
with mutant p53 fitness (R=0.30, p < 1x10-10; R=0.25, p < 1x10-10, respectively, Pearson 
correlation, Extended Data Fig. 4). Additionally, the correlation between L1 RNA and mutant p53 
fitness remains significant when using L1 RT burden as a covariate, and the correlation between 
L1 RT burden and fitness similarly remains significant when using L1 RNA as a covariate. 
 
We next tested whether L1 RNA expression mediates the relationship between p53 mutational 
fitness and L1 RT burden. Statistical mediation analysis (see Methods) was performed on the 
subset of tumor samples for which WGS, RNA-seq, and p53 mutation data were all available (N 
= 620 tumor samples). The results revealed a significant mediated effect of p53 mutational fitness 
on L1 RT burden through L1 RNA (αβ’= 0.20, p < 1x10-5, Fig. 5b). The unmediated effect of p53 
mutational fitness on L1 RT burden was also significant (τ’ = 0.10, p = 1.2x10-3). The combined 
linear regression model of L1 RT burden as a function of L1 RNA and p53 functional fitness has 
a Pearson correlation coefficient R = 0.56 (p < 1x10-10, Extended Data Fig. 5). This shows a 
complementary partial mediating role of L1 RNA expression on the relationship between p53 
mutational status and L1 RT burden, suggesting that p53 regulates somatic retrotransposition via 
at least two mechanisms: one that is L1 RNA-dependent, and one that is not. This modeling at 
scale is thus highly consistent with the proposed dual regulatory role of p53 in restraining L1 
retrotransposition27, with the non-L1 RNA mechanism likely mediated through regulation of 
genomic instability-associated processes. 
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Discussion 
 
Our study substantiates with quantitative statistical evidence that a regulatory relationship exists 
between p53 and L1 throughout human cancers. We have employed a theoretical fitness model 
to evaluate the extent to which mutation has altered p53 function in each tumor context, but the 
significance of the statistical mediation model is robust to the method for quantifying mutational 
status. Both the mediated and unmediated modulation of L1 retrotransposition by p53 remain 
significant when the model is evaluated using a binary mutated category (i.e., in every sample, 
p53 is either altered (1) or not (0)) as defined by cBioPortal (Extended Data Fig. 6)25,26. While 
there are limitations when using observational data, such as cancer types examined, causal 
assumptions of the directionality of mediation, and survivorship bias of cancer cells with mutated 
p53 under L1 overexpression28, our large pan-cancer study is well-powered and is consistent with 
previous studies using human cell lines as model systems19,29. Our analysis suggests that p53 
transrepression of L1 through direct binding of the genomic L1 5’ UTR is likely to be somatically 
active across tissues and significantly mutagenically disrupted in cancers. 
 
Many studies have noted that the role of p53 as a general regulator of cell cycle control, apoptosis, 
and senescence is insufficient to explain the extent of tumor suppression by p5330,31,32. In a 2018 
review, Tiwari et al. hypothesized that p53 may also be suppressing tumor formation through its 
role in directly restricting expression of transposons27. We theorize here that various cellular stress 
response pathways may be activated by p53 in response to retrotransposition, and in addition 
p53 regulates L1 via different mechanisms, likely by acting on the L1 promoter that controls L1 
RNA expression. Using the mechanistic models of stimulus-dependent regulation and tonic 
regulation27 as a framework for interpretation, our results suggest that L1 modulation in cancer by 
p53 uses both modes of regulation and occurs at both the transcriptional and retrotransposition 
levels. Previous studies have demonstrated mechanisms by which p53 can directly transrepress 
L1, by binding its 5’ UTR RNA polymerase II promoter and facilitating the deposition of histone 
marks19,20. Our finding of a significant correlation between p53 mutational fitness and L1 RNA 
expression across a dataset of clinical tumor samples is consistent with this transrepression being 
somatically active and relevant to cancers. Repression of the L1 lifecycle at the transcriptional 
stage will logically preclude retrotransposition, as is represented by the RNA-mediated path of 
our statistical model. The non-RNA-mediated effect of p53 mutation modulating L1 
retrotransposition may be imposed by negative selection against reintegrations28 or their 
consequences for gene expression33,34,35  following stimulus-dependent regulation by wild-type 
p53 (e.g., cell cycle arrest), or via a still undescribed mechanism. 
 
To our knowledge, this work includes the first pan-cancer analysis of the expression levels of 
active L1 mRNA. Of note, a previous study observed relationships between L1 expression and 
DNA damage and replication stress, suggesting that the oncogenicity of L1 derepression is in 
excess of what can be attributed to completed cycles of retrotransposition that disrupt gene 
expression36, and therefore L1 RNA may itself be oncogenic through some mechanisms. For 
example, abundance of L1 transcripts can play a role in heterochromatin erosion37. Additionally, 
the presence of cytosolic L1 RNA/cDNA hybrids resulting from reverse transcription could lead to 
an inflammation response that can alter the tumor microenvironment by activating the cGAS 
innate immune receptor, which in turn activates the interferon pathway38. This analysis uncovers 
tissue- and tumor-type dependence of L1 expression at the RNA level and informs understanding 
of L1 behavior and activity in these different contexts. For instance, a previous study investigating 
L1 ORF1p binding in prostate cancer suggested the possibility that cytoplasmic ORF1p may affect 
RNA processing after finding many non-L1 transcripts associated with ORF1p, including in 
particular RNAs that were also enriched at p-bodies38. Although that study focused on prostate 
cancer, our analysis did not find significant activity of L1 retrotransposition in prostate tumors (only 
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one somatic insertion was identified out of 15 tumor samples profiled), nor did intact L1 RNA 
expression in prostate tissues vary significantly between tumor and normal samples. 
 
There are still many open questions about the interplay of L1 and p53 in cancer. In an earlier 
study (on a smaller cancer dataset), L1 ORF1p positively correlated with copy number alteration 
in breast, ovarian, and endometrial tumors, especially when p53 was mutated36. Our observations 
provide additional evidence into the diverse regulatory roles of p53 that influence L1 RT burden 
in cancer. Using state-of-the-art multi-modal modeling of L1 retrotranspositions (Total ReCall), L1 
RNA expression (L1EM), as well as p53 mutational fitness, we are able to leverage statistical 
modeling of causality to uncover associations that were previously masked by experimental and 
biological heterogeneity. Having robust tools to measure L1 RNA expression, L1  
retrotransposition, and p53 mutational fitness may prove useful in cancer risk stratification and 
advance personalized cancer medicine. 
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Methods 
 
Pan-cancer datasets 
TCGA 
Whole genome sequencing data were downloaded from the Genomics Data Commons (GDC) 
cloud storage, using the GA4GH standard Data Repository Service (DRS) for URI resolution. 
DRS links to the hg19-aligned BAM files were collated from pre-existing Terra workspaces 
(https://app.terra.bio) for TCGA (v1.0 of ControlledAccess data). RNA-Seq data were downloaded 
from the GDC directly (https://portal.gdc.cancer.gov/repository) as hg38-aligned BAM files using 
the GDC Data Transfer Tool (https://docs.gdc.cancer.gov/Data_Transfer_Tool). All subsequently 
described processing of these data was performed within the Terra.bio cloud data platform 
(https://terra.bio/).  
 
Genome in a Bottle 
Alignments to hg38 and indices (BAM and BAI files, respectively) for PacBio and Illumina reads 
for the Genome in a Bottle project22  were downloaded from the NCBI archive. A complete list of 
access links can be found in Supplementary Table 1. 
 
Validation against long-read sequencing of LINE-1 retrotransposition  
Non-reference L1 elements were called in the long read data using PALMER v 2.0.039, and high 
confidence autosomal calls were selected. We then manually curated the calls by visually 
reviewing the PacBio reads at the loci of PALMER calls in IGV and identifying likely false 
negatives (non-reference L1 elements not called by PALMER in some of the members of the trio) 
and manually adding the calls in additional trio members according to the manual assessment 
(based on reads with insertions and/or clipped reads). L1 elements that were present in the 
genome of all the members of the son/father/mother trio were removed from consideration. We 
were left with 70 L1 elements present in the genomes of only one or two members of the trio of 
Ashkenazi Jewish ancestry (HG002/HG003/HG004) and 123 L1 elements present in the 
genomes of only one or two members of the trio of Han Chinese ancestry 
(HG005/HG006/HG007). As a sanity check of this curated call set, we verified that there were no 
L1 elements present in the genome of a child (HG002 or HG005) and absent from the genomes 
of both parents. This curated set of L1 elements was used for comparison with our L1 calls using 
Total ReCall on the short reads. 
 
We ran Total ReCall (our Illumina short read-based L1 insertion caller described below) using 
different members of each trio as “case” and “control” (resulting in all 6 pairwise comparisons for 
each trio) and compared the results to the curated long-read calls as “ground truth”. For a “perfect” 
agreement between a PacBio and an Illumina call, we require that the call is present in all pairwise 
comparisons where it should be present with the correct filtering status (e. g., if a given L1 element 
is present only in the maternal genome in PacBio calls, it should be called in the mother vs. father 
and the mother vs. child and not called in any other of the 6 pairwise comparisons; if a given L1 
element is present in the paternal and the child genomes in PacBio calls, it should be called in 
the father vs. mother and the child vs. mother, but also called in the father vs. child and the child 
vs. father yet filtered-out due to its presence in the “case” sample). In addition, we also assessed 
if the strandedness and the presence or absence of a L1 inversion agreed between the PacBIo 
and Illumina calls. 
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Overall, 137 out of 193 long-read calls were also called properly by Total ReCall, including 93 
canonical retrotranspositions and 44 inversion-containing retrotranspositions. We inferred the 
transposon length for each of these 93 calls using PALMER calls as the distance between the 
middle points of the inferred confidence intervals for the start and end points in the L1 (thus 
excluding possible 3’ transductions) and compared it to the length inferred using Total ReCall. 
Agreement was very good (Pearson correlation R > 0.99, p < 1 × 10-10, t-test, Extended Data Fig. 
1). 
 
Short-read whole-genome sequencing data from TCGA 
 
Reprocessing of alignment files 
Whole-genome sequencing reads data from The Cancer Genome Atlas (TCGA) were reverted to 
unaligned BAM format using the GATK v4.1.8.1 tool RevertSam with options “--SORT_ORDER 
queryname --VALIDATION_STRINGENCY SILENT”. Any reads that were not paired-end were 
dropped, and the remaining reads were converted to FASTQ format with GATK v4.1.8.1 tool 
SamToFastq with options “INTERLEAVE=true INCLUDE_NON_PF_READS=true”. The paired-
end FASTQ files were then aligned to the hg38 human reference using BWA-MEM v0.7.15-
r114040 with options “-K 100000000 -p -v 3 -t 16 -Y -T 0”, where we used the “-Y” option to retain 
clipped read sequences for supplementary alignments that are clipped (i.e., “soft-clipping”), since 
clipped read information is the key evidence that Total ReCall leverages (see below). Duplicate 
reads were marked with GATK v4.1.8.1 tool MarkDuplicates using options “--
OPTICAL_DUPLICATE_PIXEL_DISTANCE 2500 --VALIDATION_STRINGENCY SILENT”. 
 
Quality control data filtering 
Variability of sequencing library quality across TCGA WGS data (which was generated over the 
span of years) can obscure the differentiable signal of biological relationships. With that in mind, 
we filtered the entire WGS dataset (4,314 samples from 2,106 patients) to only those samples 
sequenced with paired-end reads, where both mates had been retained in the alignment files 
stored in NCI Genomic Data Commons (4,142 samples from 2,058 patients). Each of these 
samples was realigned to the hg38 reference genome as described above. To de-duplicate 
individual patients with multiple tumor or normal samples, only the primary tumor and a single 
normal sample were retained, resulting in 1,848 tumor-normal pairs from 1,848 patients. Using all 
1,848 tumor-normal pairs agnostic to additional data quality parameters, no correlation could be 
found between L1 RNA expression, p53 mutational status, and L1 retrotransposition, due to very 
large confounding differences between the libraries. To account for these differences and better 
capture biological relationships, the quality of each WGS library was evaluated using a modified 
Picard41 tool to quantify the total number of reads, average base quality, average read length, and 
fractions of reads with split or discordant alignments (the two sources of information on which 
Total ReCall relies). All reads that did not have a matched pair, that were marked as duplicates, 
that had mapping quality equal to zero, or whose base and quality score strings were inconsistent 
(i.e., of differing lengths) were removed from the analysis. From the remaining reads, for each 
sample, we calculated 1) the fraction of chimeric reads, 2) the fraction of overall clipped bases, 
3) the average read length, 4) the average base quality, and 5) the total coverage. Note that a 
chimeric read is defined per Picard/GATK v4.1.8.1 as a read pair aligned in an unexpected 
orientation or significantly further apart than expected (with maximum insert size set to 100,000). 
Because Total ReCall will depend on signal from split-read alignments (i.e., clipped reads) to 
nominate candidate insertion sites, and because bwa mem is intended for use with reads a 
minimum of 70bp, tumor-normal pairs where either sample was sequenced with reads shorter 
than 70bp were removed from our analysis dataset. We additionally removed all paired samples 
with a chimeric read fraction in the tumor or normal sample greater than 2%, resulting in a total of 
765 tumor-normal pairs from unique patients across 22 tumor types in our final analysis dataset. 
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Due to their importance, the five metrics for each tumor and paired normal sample calculated here 
were also used to adjust the retrotransposition count estimates for each tumor sample, as shown 
in Extended Data Fig. 3 and described below. 
 
Identification of somatic LINE-1 retrotransposition  
Our Total ReCall method for identification of somatic L1 insertions uses both soft-clipped reads, 
as well asreads not properly mapped as a pair (“discordant” read pairs) as a signal. We use the 
clipped reads as the primary signal because of their higher specificity: the last mapping point as 
well as the clipped sequence are the same (up to sequencing errors) for all the clipped reads 
supporting the same breakpoint. Interpretation of these types of signals arises from the 
mechanistic biochemistry of the life cycle of retrotransposons. 
 
Class I transposable elements replicate via a reverse transcribed RNA intermediate (“copy-and-
paste”) in a process known as retrotransposition, whereas class II elements replicate via a DNA 
intermediate (“cut-and-paste”). Further subdividing based on distinct mechanisms of mobility, 
there are three major categories of transposable elements: class I LTR retrotransposons 
(including endogenous retroviruses), class I non-LTR retrotransposons, and class II DNA 
transposons42. Among the transposable elements, only some non-LTR retrotransposons are 
known to be able to move within the genome. L1 elements are capable of autonomous 
retrotransposition, and SINE (e.g., Alu) and SVA elements are “parasites” that rely on the L1 
machinery for mobility. 
 
The difference between the mechanisms utilized by LTR and non-LTR retrotransposons is that 
the LTR retrotransposons first synthesize the double stranded DNA from RNA transcript in a 
complex process involving the long terminal repeats (LTRs) and then integrate that sequence into 
the host genome. On the other hand, enzymes of non-LTR retrotransposons (LINE elements) 
reverse transcribe their RNA directly into the genome using the so-called target-primed reverse 
transcription (TPRT) process43. 
 
Unlike the LTR retrotransposons, which always integrate the complete provirus with the LTRs into 
the genome (sometimes, the internal provirus part may be removed by homologous 
recombination leaving a solo LTR), reverse transcription of a non-LTR retrotransposon may be 
terminated prematurely resulting in a partial integration. Apart from such a 5’ truncation, another 
common structural variant of L1 is inversion resulting from double priming and simultaneous 
reverse transcription of the same L1 transcript into both strands of the genome (Fig. 1d)44,45. In 
addition to that, it is not uncommon for there to be 3’ transductions, where during L1 RNA 
expression the polymerase overruns the poly(A) signal at the 3’ end of the L1 element resulting 
in transcription and retrotransposition of some genomic sequence downstream of the 3’ end of 
the source L1 element in addition to the L1 element itself 23,46. In the Total ReCall method 
developed here, we focus on detecting these three most common features of the structural 
variations that result from L1 retrotranspositions: 5’ truncation, L1 inversion, and 3’ transduction. 
We believe that the analysis of even rarer and more complex structural variations arising from L1 
retrotransposons (e.g., instances with more than one template switching during the reverse 
transcription process, which would result in a series of inversions) is better left for long-read data. 
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We thus designed the Total ReCall algorithm (Fig. 1) to detect both “canonical” retrotransposition 
events and “inversion-containing” retrotranspositions. In particular, "single-stranded" 
retrotransposition (Fig. 1c) leads to a canonical retrotransposition with a single segment of L1 
inserted into the genome (Fig. 1e), with the two ends of the insertion detectable in the clipped 
short-reads (Fig. 1g). On the other hand, a “double-stranded” retrotransposition event (Fig. 1d), 
where each strand of the target site genomic DNA incorporates reverse transcribed sequence of 
a single L1 mRNA, leads to an inversion-containing retrotransposition with a DNA insertion that 
contains part of a L1 sequence and another part of it that is inverted, i.e., contains reverse 
complementary L1 sequence, in an adjacent position in the genome (Fig. 1f), which will be 
reflected in the short-reads data (Fig. 1g). 
 
To identify the breakpoints of the L1 insertion event, Total ReCall collects the clipped sequences 
of the reads in the vicinity, sort them by length in decreasing order and cluster in a cd-hit-like47,48  
way: take each new sequence and align it against the existing representatives; if a match is found, 
assign the sequence to the corresponding cluster, otherwise designate it as a new representative. 
We group the reads representing the “left” (clipped on the 3’ end w.r.t. the reference genome) and 
the “right” (clipped on the 5’ end w.r.t. the reference genome) breakpoints. The longest clipped 
sequence in the cluster serves as the representative of the breakpoint. If we orient the clipped 
sequence so that the clipping point is at its 5’ end, a canonical L1 retrotransposition is 
characterized by one breakpoint with the poly(T) sequence (regardless of whether a 3’ 
transduction is present) and the other breakpoint with a sequence mapping to the positive strand 
of the L1 sequence. The coordinate of the alignment of the clipped sequence at the breakpoint to 
the L1 sequence can be used to infer the length of the transposon (without the 3’ transduction, if 
one exists). An inversion-containing L1 retrotransposition is characterized by one breakpoint 
bearing the poly(T) sequence (regardless of whether a 3’ transduction is present) and the other 
breakpoint with a sequence mapping to the negative strand of the L1 sequence. 
 
As noted above, we increased sensitivity by using the “soft clipping” instead of the “hard clipping” 
for supplementary alignments (bwa option -Y) relevant when the longer part of the read spanning 
the breakpoint contains the L1 sequence (and whose primary mapping is thus to L1 genomic 
sequence elsewhere in the genome). The use of such supplementary alignments is highly 
desirable since they provide a longer clipped sequence, which can in turn be aligned to the L1 
sequence more specifically. 
 
Total ReCall also identifies reads that belong to discordant read pairs and map near the 
breakpoints and use their mates as a secondary signal to determine the confidence of the call. If 
such a read is also clipped at the breakpoint location, its mate is given a higher preference over 
the mates of the other reads. 
 
Clipped sequences, as well as sequences of the reads belonging to discordant read pairs, were 
aligned to the L1 consensus sequence using LAST aligner49. The consensus sequence of the L1 
transposon was constructed by merging the three DFAM50  sequences for its 3’, 5’ ends and ORF2 
subdomain (DF0000225, DF0000226, DF0000316). We resolved the ambiguous characters in 
the DFAM consensus sequences using the alignment of the 146 intact L1 sequences from 
L1base24. 
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To identify somatic L1 retrotranspositions (i.e., in our typical use case of tumor-specific insertions), 
Total ReCall checked each call in the case sample for the presence in its control sample of the 
signal of a clipped read with a matching sequence or a breakpoint, retaining as “somatic” (i.e., 
case-specific) only calls without such signal in the control. In addition, we implemented filters for 
low complexity and regions with large numbers of alignment artifacts (“high entropy regions”), 
e.g., regions having too many clipped reads with distinct sequence and low complexity regions 
where genomic sequence matches clipped sequence. Finally, Total ReCall requires each of the 
2 breakpoints of a called insertion rely on at least 3 clipped reads. 
 
It is worth mentioning that the short-read data possess inherent limitations, for example, difficulty 
identifying 3’ transductions. Long such transductions may be identified via discordant read pairs 
whose mates map downstream of source LINE-1 element. At the same time, this method will fail 
to identify short 3’ transductions. Some other shortcomings are the ambiguity of pairing between 
the left/right breakpoints if multiple ones are present in the same region as well as low mappability 
of some genomic regions (in particular, pericentromeric regions). 
 
RNA sequencing 
 
Reprocessing of alignment files 
Public RNA-seq data from TCGA was reverted to unaligned FASTQ format using GATK v4.1.8.1 
tools RevertSam with options “--SORT_ORDER "queryname" --VALIDATION_STRINGENCY 
SILENT” and SamToFastq with options “INTERLEAVE=false 
INCLUDE_NON_PF_READS=true”. Any reads that were not paired were dropped. The paired-
end FASTQ files were then aligned to the hg38 human reference genome using STAR v2.7.9a. 
 
Quality control data filtering 
Alignment files for a total of 10,904 RNA-seq samples from 10,089 individuals (10,174 tumor 
samples and 730 normal samples) were downloaded from GDC as described above. 28 of these 
(all tumor samples) could not be reverted to fastq for realignment due to the presence of unpaired 
reads or otherwise corrupted downloaded alignment files. The remaining 10,876 samples were 
realigned as described above. 634 of these (623 tumor samples and 11 normal samples) were 
sequenced with single-end reads, and therefore removed from our dataset. 59 additional tumor 
samples were removed from our dataset for containing a strand-specific sequencing library. 
Finally, we filtered out any metastatic, recurrent, or new primary tumor samples and deduplicated 
the patient samples in the dataset to include no more than one primary tumor and one normal 
sample per patient, resulting in a dataset of 9,011 tumor samples and 719 normal samples from 
9,081 individuals across 32 tumor types.  
 
LINE-1 RNA quantification 
L1 RNA expression was quantified in the 9,011 tumor and 719 normal RNA-seq samples using 
L1EM24, which formalizes a framework for quantification of expression that is based on the 
mechanisms of active transcription of L1 elements. Read counts for proper expression at loci 
corresponding to the L1Base v2 database24  of “FLI-L1s” (L1s that are full length and intact in both 
ORFs) were converted to transcripts per million (TPM) of active, fully-intact L1 expression. 
 
Counting L1HS alignments 
To compare performance of L1 RNA quantification by L1EM, we also estimated L1 expression 
using samtools view v1.3.1 with options “-F 1540” and “-L” to pass coordinates in bed format of 
L1HS annotations from RepeatMasker open-4.0.5 Repeat Library 201401313. 
From the output of alignments which overlapped the input L1HS coordinates, unique qnames 
were counted, and normalized against the total unique qnames in the alignment file to calculate  
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an approximate expression level in reads per million (RPM) for every sample (Extended Data Fig. 
7). The samples are noticeably more homogeneous than when using L1EM (Fig. 3a), and the 
largest increase in median tumor estimate over median normal estimate occurs in stomach 
adenocarcinoma, where the tumor median is only 13% higher than the normal median. 
 
Categorizing tumors as p53 wild type or mutant 
 
Categorical designations of p53 alteration were obtained through the public repository cBioPortal 
(www.cbioportal.org, accessed 23 February 2023) by querying “TCGA PanCancer Atlas Studies” 
(which includes 10,967 samples from 10,953 patients in 32 studies) for all alterations in “TP53”. 
A sample will be marked as “altered” in TP53 if any non-synonymous mutations, amplification, 
deep deletion, or structural variants have been identified in that sample. Shallow deletions or low-
level copy number gains of the gene do not contribute to classification of a sample as altered. 
The altered annotations were used to divide tumor samples into p53 mutant and wild type 
categories to test significance with Mann-Whitney U tests as shown in Fig. 4, and to demonstrate 
robustness of the mediation model between p53, L1 RNA, and L1 RT burden as shown in 
Extended Data Fig. 6. 
 
Adjusting RNA and RT estimates based on sequencing metrics 
 
Intronic rate of RNA-seq, which has previously been shown to be a key confound for L1 
expression51, was calculated using RNA-SeQC v252. A linear regression between the L1 RNA 
estimates and the intronic rate was then performed in Python v3.7.12 using statsmodels v0.13.0 
OLS to perform an ordinary least squares regression. The residuals from this model were then 
used as the adjusted L1 RNA estimates (Extended Data Fig. 3b). 
 
Similarly, quality metrics for the WGS samples were calculated as described above. An ordinary 
least squares model was fitted to the tumor-specific retrotransposition counts as a function of the 
average read length, depth of coverage, average base quality, chimeric read fraction, and clipped 
base fraction in both the tumor sample and the paired normal sample. The residuals from this 
model were then used as the adjusted L1 RT estimates (Extended Data Fig. 3c). 
 
Quantifying the functional fitness of p53 
 
Somatic TP53 mutations, copy number variation data, and the variant allele fractions for TP53 
mutations in TCGA samples were downloaded from the National Cancer Institute’s Genomic Data 
Commons repository53. The variant allele fractions were averaged across mutation callers. 
Functional fitness of missense mutations was scored as defined in previous work21. Reverse-
phase protein assay data and copy number alteration data were utilized to infer mutant- and 
tissue-specific p53 protein concentrations as previously described21. 
We determine the contribution of p53 to tumor fitness as follows. Wild-type p53 acts as a 
transcription factor and regulates DNA damage by transactivating pro-senescence/apoptotic 
genes. Mutations in p53 often result in loss of DNA-binding ability to varying degrees. We estimate 
the oncogenic advantage of having a p53 mutation by the probability of mutant p53 not binding 
eight principal transcriptional targets (WAF1, MDM2, BAX, h1433s, AIP1, GADD45, NOXA, and 
P53R2). The probability of not binding target DNA depends on the concentration of the protein 
and the affinity of the mutation to the target site. Importantly, the concentration of p53 depends 
on the tissue. In this work, we utilize the method described in Hoyos et al. 2022 for missense 
mutations21. For wild-type p53, we compute the fitness in an analogous fashion to the missense 
mutations, except that we use wild-type p53 concentrations and wild-type p53 affinities to DNA 
promoter sites. We extend this method to other mutations as follows. For silent/non-coding  
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mutations, we consider the fitness to be wild type. For nonsense and frameshift mutations, we 
consider the lack of binding to be dependent on the position of the first altered residue along the 
protein. Specifically, we compute the fitness for these mutations as follows: 

𝐹𝑀𝑇 = (𝐹𝑚𝑎𝑥 − 𝐹𝑊𝑇) (1  −  
𝑝−1

393
)   +  𝐹𝑊𝑇, 

where 𝐹𝑀𝑇 is the fitness of the mutation, 𝐹𝑊𝑇 is the fitness of wild-type p53, 𝐹𝑚𝑎𝑥 is the maximum 

fitness (which corresponds to a complete deletion of the p53 gene), and 𝑝 is the position of the 

mutation (which may take an integer value between 1 and 393, inclusive). In this way, a position 
of “1” corresponds to maximum fitness, and a position of “394” (which would be after the protein) 
corresponds to wild type fitness. Tumors with wild-type p53 are assigned the wild-type p53 fitness 
that corresponds to the tissue in question.  
 
Mediation model 
 
Statistical analysis was performed in Python v3.7.12 using statsmodels v0.13.0 OLS to evaluate 
the mediation model. For the 620 samples for which we had WGS, RNA-seq, and p53 mutation 
data available, five linear regressions were fitted (see Fig. 5b): 

(1) adjusted log2(RT) = τ x p53 mutation score + c1 
(2) adjusted log2(RT) = β x adjusted log2(RNA) + c2 
(3) adjusted log2(RNA) = α x p53 mutation score + c3 
(4) adjusted log2(RT) = β’ x adjusted log2(RNA) + τ’ x p53 mutation score + c4 
(5) adjusted log2(RNA) = β* x adjusted log2(RT) + α* x p53 mutation score + c5 

Note that only equations (3) and (4) are necessary for quantifying the magnitude and significance 
of the mediation. Equation (1) is used to normalize the mediated and unmediated effects to the 
total effect of p53 on L1 RT burden. Equation (2) is included here to evaluate the correlation 
between L1 RNA and RT burden alone, without considering p53. Equation (5) (results not shown 
in Fig. 5 for simplicity) was evaluated to confirm that p53 has a significant effect on L1 RNA even 
when controlling for L1 RT burden. In each model, ci incorporates both the intercept and the error 
terms. The fitted coefficient values were then standardized based on the estimated standard 
deviations for each variable54. The ratio of τ’ to τ gives the estimate for the percentage of the total 
impact of p53 on L1 RT burden that is not mediated by L1 RNA. The product of coefficients α and 
β’ (which is equivalent to τ – τ’) gives a coefficient for the effect of p53 on L1 RT burden via L1 
RNA, and similarly the ratio of αβ’ to τ gives the estimate for the percentage of the total impact of 
p53 on L1 RT burden that is mediated by L1 RNA. 95% confidence intervals for all estimates were 
calculated using bootstrap resampling of the samples, N=100,000. 
 
Code availability 
Total ReCall code for LINE-1 retrotransposition detection from short-read whole-genome 

sequencing data will be made publicly available on GitHub at the time of peer-reviewed 

publication.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.11.539471doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.539471


Figure legends 
 
Figure 1 | Schematic of insertion of a non-LTR retrotransposon. a) Haploid copy of the 
genome before retrotransposition. Purple, target site for future insertion. b) Endonuclease breaks 
each strand of DNA, typically at two nearby but distinct positions. The locus between the two 
breakpoints is the “target site”. The relative location of the two breakpoints in this figure will result 
in a target site duplication. c) L1 RNA is reverse transcribed directly into the genome resulting in 
the synthesis of the single-stranded cDNA starting from the 3’ end of the L1 transcript and 
extending a variable length towards the 5’ end of the L1 transcript. Teal, L1 RNA. Green, reverse 
transcribed poly(T) cDNA. Blue, reverse transcribed L1 cDNA. d) In some cases, double priming 
occurs resulting in the simultaneous reverse transcription of different parts of L1 transcript into 
the two strands of the genome. Red, reverse transcribed L1 cDNA on the opposite gDNA strand.  
e-f) Genome after synthesis of the second strand of DNA and repair. The original synthesis 
strands of cDNA are always complementary to the L1 transcript. Components of the L1 sequence 
are annotated with respect to the top strand of the genome. Purple, target site which is duplicated 
following repair. Red, newly inserted L1 sequence that was synthesized on the top strand and is 
therefore reverse complemented with respect to L1 RNA. Blue, newly inserted L1 sequence that 
was synthesized on the bottom strand. Green, newly inserted poly(A). Paired-end reads 
originating from the modified genomes are shown. e) The process shown in panel (c) results in a 
(possibly truncated at the 5’ end) “canonical” retrotransposition. f) The double priming process 
shown in panel (d) results in an “inversion-containing” retrotransposition. The resulting genomic 
sequence has two L1 fragments in opposite orientations. g) Mapping of reads A-D to the 
unmodified (reference) genome lacking the transposon insertion (left) and the transposon 
sequence (right). Left, tails of reads A1, B1, and D1 that come from the novel transposon are 
clipped (shown as dashed lines). Right, read C2 and the clipped tails of reads A1 and D1 align to 
the transposon sequence. The clipped tail of read B1 contains only poly(T). In the absence of 
inversion (as in panel (e), captured by read A1), the alignment between the clipped sequence and 
the transposon sequence reflects the length of the newly inserted transposon. When inversion 
occurs (as in panel (f), captured by read D1), such an alignment will only reflect the position where 
the second priming occured. 
 
Figure 2 | L1 retrotransposition calls from Total ReCall throughout TCGA. N = 765 tumor 
normal pairs. a) Total number of retrotranspositions identified across 765 tumor and paired normal 
samples. b) Breakdown of total canonical or inversion-containing insertions identified within the 
tumor-specific somatic retrotranspositions. c) Estimated length of inserted L1 within the canonical, 
tumor-specific retrotranspositions. Blue, truncated insertions. Orange, full-length insertions. d) 
Somatic tumor-specific L1 retrotranspositions in each sample (“RT burden”) grouped by tumor 
type. Center line indicates median. Blue box indicates interquartile range. Points more than 1.5 x 
IQR away from the blue box are shown as individual outliers. Tumor types are sorted in 
descending order by median somatic RT burden. 
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Figure 3 | L1 RNA expression from L1EM throughout TCGA. a) Estimated expression of intact 
L1 RNA in each sample by tumor type. Data not shown for any tumor and sample type with fewer 
than 5 samples. Total N = 9,715. Blue, tumor samples. Gray, normal samples. Tumor types are 
sorted in descending order by median tumor-level expression. b) Average expression of intact L1 
RNA per tumor type grouped by average retrotransposition count per tumor type. Orange, tumor 
types with an average of at least one retrotransposition per sample. Blue, tumor types with an 
average of less than one retrotransposition per sample. c) Expression of intact L1 RNA grouped 
by retrotransposition count per sample. Orange, samples with any retrotransposition calls. Blue, 
samples with no retrotransposition calls. a-c, Center line indicates median. Blue, gray, or orange 
box indicates interquartile range. Points more than 1.5 x IQR away from the IQR box are shown 
as individual outliers. b-c, P calculated from two-sided Mann-Whitney U test. 
 
Figure 4 | Stratification of L1 by p53 mutation. a) Expression of intact L1 RNA in samples with 
mutant or wild-type p53. Expression is adjusted for intronic rate as shown in Extended Data Fig. 
3b. b) Count of somatic L1 retrotranspositions in samples with mutant or wild-type p53. Somatic 
RT counts are adjusted for sequencing covariates as shown in Extended Data Fig. 3c. a-b, Center 
line indicates median. Blue or orange box indicates interquartile range. Points more than 1.5 x 
IQR away from the IQR box are shown as individual outliers. P calculated from two-sided Mann-
Whitney U test. 
 
Figure 5 | Mediation model relating p53 mutation, intact L1 RNA expression, and somatic 
L1 retrotransposition. a) p53 functional fitness score per sample by mutation category. InDel, 
in-frame insertion or deletion. CNA, copy number alteration. WT, wild type. Mutation categories 
with fewer than 10 samples are shown as individual points. Center line indicates median. Box 
indicates interquartile range. Points more than 1.5 x IQR away from the IQR box are shown as 
individual outliers. b) Mediation model taking p53 functional fitness as the independent variable, 
adjusted log2 of intact L1 RNA expression as the mediating variable, and adjusted log2 of somatic 
L1 retrotransposition count as the dependent variable. Left, schematic showing the linear 
regressions performed, as well as the resulting estimated weights for the mediated and 
unmediated pathways. 95% confidence intervals (square brackets) calculated with bootstrap 
resampling. Blue arrows, components of the mediated pathway. Red arrows, components of the 
unmediated pathway. Right, standardized fitted values for each coefficient within the mediation 
model and corresponding likelihood. Error bars indicate 95% confidence intervals calculated with 
bootstrap resampling, N=100,000. Coefficient estimates for α, β, τ, β’, τ’ estimated from ordinary 
least squares.  
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Extended Data Figure 1 | Genome in a Bottle validation of Total ReCall. a) Breakdown of 
curated L1 calls identified in PacBio reads by PALMER that are perfectly recalled by Total ReCall 
in Illumina short-read calls. N = 193 total curated calls. Green, 137 long-read calls identified by 
short reads. Blue, 56 long-read calls missed by short reads. b) Within the long-read calls identified 
by short reads, breakdown of canonical and inversion-containing insertions. c) Estimated length 
of canonical L1 insertions from short-read Illumina data vs. observed insertion length in PacBio 
data. N = 93, R > 0.99, p < 1 x 10-10, Pearson correlation. 
 
Extended Data Figure 2 | Adjusting tumor- and normal-specific calls per sample by 
sequencing depth. a) Left, ratio-normalizing the calls in each sample by the average read depth 
in that sample. Right, total of all calls per average read depth for all 765 tumor or normal samples. 
Y-axes in units of number of calls per read depth. N = 765 tumor and normal samples. b) Actual 
counts of calls from subset of dataset where tumor and normal sample were sequenced to 
comparable depth (within 20%). N = 154 tumor and normal samples. a-b) Center lines indicate 
median. Gray boxes indicate interquartile range. Whiskers extend to minimum and maximum 
values. Individual points shown for every sample. P calculated from one-sided Mann-Whitney U 
test. Blue, tumor samples. Orange, normal samples. 
 
Extended Data Figure 3 | Relating L1 RNA expression and L1 RT. a) Ranking tumor types 
based on highest to lowest average count of somatic RTs and highest to lowest average 
expression of intact L1 RNA. Points representing tumor types with an average of less than 1 RT 
per sample are not labeled, with the exception of lung adenocarcinoma (LUAD) and acute myeloid 
leukemia (LAML) due to their high rankings for L1 RNA expression. Labels correspond to TCGA 
study abbreviations. N = 21 tumor types. Pearson correlation coefficient R = 0.57. b-c) Adjusted 
measurements based on residuals from linear regression model vs. raw measurements. b) 
Adjusted estimates of intact L1 RNA expression per sample (log2 TPM) based on intronic rate of 
RNA-seq. N = 9,730 tumor and normal samples. c) Adjusted counts of somatic L1 RT per sample 
(log2 count) based on total coverage, average base quality, read length, rate of clipped bases, 
and rate of chimeric alignments in both the tumor and paired normal WGS. N = 765 tumor 
samples. d) Correlation between adjusted L1 RT and adjusted L1 RNA per tumor sample. N = 
620 tumor samples, R = 0.55, p < 1 x 10-10, Pearson correlation. 
 
Extended Data Figure 4 | Correlation between p53 functional fitness and L1. a) Correlation 
between p53 functional fitness and expression of intact L1 RNA (log2 TPM, adjusted). All tumor 
samples with RNA-seq and available TP53 mutation information are included; N = 8,980. R = 
0.30, p < 1 x 10-10, Pearson correlation. b) Correlation between p53 functional fitness and count 
of somatic L1 retrotranspositions (log2 count, adjusted). All tumor samples with WGS and 
available TP53 mutation information are included; N = 765. R = 0.25, p < 1 x 10-10, Pearson 
correlation. a-b) Dashed lines show fitted linear regression model, ordinary least squares. 
 
Extended Data Figure 5 | Correlation between L1 RT and mediation model fit. N = 620, R = 
0.56, p < 1 x 10-10, Pearson correlation. Dashed line, y=x. 
 
Extended Data Figure 6 | Mediation model taking TP53 alteration status as the independent 
variable. In contrast to Fig. 5 (which uses p53 functional fitness), adjusted log2 of intact L1 RNA 
expression as the mediating variable, and adjusted log2 of somatic L1 retrotransposition count as 
the dependent variable. Schematics and labels as in Fig. 5b.  
 
Extended Data Figure 7 | Estimating intact L1 RNA expression from read overlaps with 
RepeatMasker L1HS annotations in each sample by tumor type. Sample counts, plots, and 
tissue type ordering are as in Fig. 3a.  
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Figure 1 | Schematic of insertion of a non-LTR retrotransposon. Legend on following page.
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Figure 1 | Schematic of insertion of a non-LTR retrotransposon. a) Haploid copy of the genome before 
retrotransposition. Purple, target site for future insertion. b) Endonuclease breaks each strand of DNA, 
typically at two nearby but distinct positions. The locus between the two breakpoints is the “target site”. The 
relative location of the two breakpoints in this figure will result in a target site duplication. c) L1 RNA is 
reverse transcribed directly into the genome resulting in the synthesis of the single-stranded cDNA starting 
from the 3’ end of the L1 transcript and extending a variable length towards the 5’ end of the L1 transcript. 
Teal, L1 RNA. Green, reverse transcribed poly(T) cDNA. Blue, reverse transcribed L1 cDNA. d) In some 
cases, double priming occurs resulting in the simultaneous reverse transcription of different parts of L1 
transcript into the two strands of the genome. Red, reverse transcribed L1 cDNA on the opposite gDNA 
strand.  e-f) Genome after synthesis of the second strand of DNA and repair. The original synthesis strands 
of cDNA are always complementary to the L1 transcript. Components of the L1 sequence are annotated 
with respect to the top strand of the genome. Purple, target site which is duplicated following repair. Red, 
newly inserted L1 sequence that was synthesized on the top strand and is therefore reverse complemented 
with respect to L1 RNA. Blue, newly inserted L1 sequence that was synthesized on the bottom strand. 
Green, newly inserted poly(A). Paired-end reads originating from the modified genomes are shown. e) The 
process shown in panel (c) results in a (possibly truncated at the 5’ end) “canonical” retrotransposition. f) 
The double priming process shown in panel (d) results in an “inversion-containing” retrotransposition. The 
resulting genomic sequence has two L1 fragments in opposite orientations. g) Mapping of reads A-D to the 
unmodified (reference) genome lacking the transposon insertion (left) and the transposon sequence (right). 
Left, tails of reads A1, B1, and D1 that come from the novel transposon are clipped (shown as dashed 
lines). Right, read C2 and the clipped tails of reads A1 and D1 align to the transposon sequence. The 
clipped tail of read B1 contains only poly(T). In the absence of inversion (as in panel (e), captured by read 
A1), the alignment between the clipped sequence and the transposon sequence reflects the length of the 
newly inserted transposon. When inversion occurs (as in panel (f), captured by read D1), such an alignment 
will only reflect the position where the second priming occured.
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Figure 2 | L1 retrotransposition calls from Total ReCall throughout TCGA. N = 765 tumor normal pairs.
a) Total number of retrotranspositions identified across 765 tumor and paired normal samples. b)
Breakdown of total canonical or inversion-containing insertions identified within the tumor-specific somatic
retrotranspositions. c) Estimated length of inserted L1 within the canonical, tumor-specific
retrotranspositions. Blue, truncated insertions. Orange, full-length insertions. d) Somatic tumor-specific L1
retrotranspositions in each sample (“RT burden”) grouped by tumor type. Center line indicates median. Blue
box indicates interquartile range. Points more than 1.5 x IQR away from the blue box are shown as
individual outliers. Tumor types are sorted in descending order by median somatic RT burden.
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Figure 3 | L1 RNA expression from L1EM throughout TCGA. a) Estimated expression of intact L1 RNA
in each sample by tumor type. Data not shown for any tumor and sample type with fewer than 5 samples.
Total N = 9,715. Blue, tumor samples. Gray, normal samples. Tumor types are sorted in descending order
by median tumor-level expression. b) Average expression of intact L1 RNA per tumor type grouped by
average retrotransposition count per tumor type. Orange, tumor types with an average of at least one
retrotransposition per sample. Blue, tumor types with an average of less than one retrotransposition per
sample. c) Expression of intact L1 RNA grouped by retrotransposition count per sample. Orange, samples
with any retrotransposition calls. Blue, samples with no retrotransposition calls. a-c, Center line indicates
median. Blue, gray, or orange box indicates interquartile range. Points more than 1.5 x IQR away from the
IQR box are shown as individual outliers. b-c, P calculated from two-sided Mann-Whitney U test.
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Figure 4 | Stratification of L1 by p53 mutation. a) Expression of intact L1 RNA in samples with mutant or
wild-type p53. Expression is adjusted for intronic rate as shown in Extended Data Fig. 3b. b) Count of
somatic L1 retrotranspositions in samples with mutant or wild-type p53. Somatic RT counts are adjusted for
sequencing covariates as shown in Extended Data Fig. 3c. a-b, Center line indicates median. Blue or
orange box indicates interquartile range. Points more than 1.5 x IQR away from the IQR box are shown as
individual outliers. P calculated from two-sided Mann-Whitney U test.
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Figure 5 | Mediation model relating p53 mutation, intact L1 RNA expression, and somatic L1
retrotransposition. a) p53 functional fitness score per sample by mutation category. InDel, in-frame
insertion or deletion. CNA, copy number alteration. WT, wild type. Mutation categories with fewer than 10
samples are shown as individual points. Center line indicates median. Box indicates interquartile range.
Points more than 1.5 x IQR away from the IQR box are shown as individual outliers. b) Mediation model
taking p53 functional fitness as the independent variable, adjusted log2 of intact L1 RNA expression as the
mediating variable, and adjusted log2 of somatic L1 retrotransposition count as the dependent variable. Left,
schematic showing the linear regressions performed, as well as the resulting estimated weights for the
mediated and unmediated pathways. 95% confidence intervals (square brackets) calculated with bootstrap
resampling. Blue arrows, components of the mediated pathway. Red arrows, components of the unmediated
pathway. Right, standardized fitted values for each coefficient within the mediation model and
corresponding likelihood. Error bars indicate 95% confidence intervals calculated with bootstrap resampling,
N=100,000. Coefficient estimates for α, β, τ, β’, τ’ estimated from ordinary least squares.
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a. b. c.

Extended Data Figure 1 | Genome in a Bottle validation of Total ReCall. a) Breakdown of curated L1
calls identified in PacBio reads by PALMER that are perfectly recalled by Total ReCall in Illumina short-read
calls. N = 193 total curated calls. Green, 137 long-read calls identified by short reads. Blue, 56 long-read
calls missed by short reads. b) Within the long-read calls identified by short reads, breakdown of canonical
and inversion-containing insertions. c) Estimated length of canonical L1 insertions from short-read Illumina
data vs. observed insertion length in PacBio data. N = 93, R > 0.99, p < 1 x 10-10, Pearson correlation.
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Extended Data Figure 2 | Adjusting tumor- and normal-specific calls per sample by sequencing
depth. a) Left, ratio-normalizing the calls in each sample by the average read depth in that sample. Right,
total of all calls per average read depth for all 765 tumor or normal samples. Y-axes in units of number of
calls per read depth. N = 765 tumor and normal samples. b) Actual counts of calls from subset of dataset
where tumor and normal sample were sequenced to comparable depth (within 20%). N = 154 tumor and
normal samples. a-b) Center lines indicate median. Gray boxes indicate interquartile range. Whiskers
extend to minimum and maximum values. Individual points shown for every sample. P calculated from one-
sided Mann-Whitney U test. Blue, tumor samples. Orange, normal samples.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.11.539471doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.539471


Extended Data Figure 3 | Relating L1 RNA expression and L1 RT. a) Ranking tumor types based on
highest to lowest average count of somatic RTs and highest to lowest average expression of intact L1 RNA.
Points representing tumor types with an average of less than 1 RT per sample are not labeled, with the
exception of lung adenocarcinoma (LUAD) and acute myeloid leukemia (LAML) due to their high rankings
for L1 RNA expression. Labels correspond to TCGA study abbreviations. N = 21 tumor types. Pearson
correlation coefficient R = 0.57. b-c) Adjusted measurements based on residuals from linear regression
model vs. raw measurements. b) Adjusted estimates of intact L1 RNA expression per sample (log2 TPM)
based on intronic rate of RNA-seq. N = 9,730 tumor and normal samples. c) Adjusted counts of somatic L1
RT per sample (log2 count) based on total coverage, average base quality, read length, rate of clipped
bases, and rate of chimeric alignments in both the tumor and paired normal WGS. N = 765 tumor samples.
d) Correlation between adjusted L1 RT and adjusted L1 RNA per tumor sample. N = 620 tumor samples, R
= 0.55, p < 1 x 10-10, Pearson correlation.
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Extended Data Figure 4 | Correlation between p53 functional fitness and L1. a) Correlation between
p53 functional fitness and expression of intact L1 RNA (log2 TPM, adjusted). All tumor samples with RNA-
seq and available TP53 mutation information are included; N = 8,980. R = 0.30, p < 1 x 10-10, Pearson
correlation. b) Correlation between p53 functional fitness and count of somatic L1 retrotranspositions (log2
count, adjusted). All tumor samples with WGS and available TP53 mutation information are included; N =
765. R = 0.25, p < 1 x 10-10, Pearson correlation. a-b) Dashed lines show fitted linear regression model,
ordinary least squares.
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Extended Data Figure 5 | Correlation between L1 RT and mediation model fit. N = 620, R = 0.56, p < 1
x 10-10, Pearson correlation. Dashed line, y=x.
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Extended Data Figure 6 | Mediation model taking TP53 alteration status as the independent variable.
In contrast to Fig. 5, (which uses p53 functional fitness), adjusted log2 of intact L1 RNA expression as the
mediating variable, and adjusted log2 of somatic L1 retrotransposition count as the dependent variable.
Schematics and labels as in Fig. 5b.
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Extended Data Figure 7 | Estimating intact L1 RNA expression from read overlaps with
RepeatMasker L1HS annotations in each sample by tumor type. Sample counts, plots, and tissue type
ordering are as in Fig. 3a.
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