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Abstract:  24 
Psychedelics offer a profound window into the functioning of the human brain and mind through 25 
their robust acute effects on perception, subjective experience, and brain activity patterns. In 26 
recent work using a receptor-informed network control theory framework, we demonstrated that 27 
the serotonergic psychedelics lysergic acid diethylamide (LSD) and psilocybin flatten the brain’s 28 
control energy landscape in a manner that covaries with more dynamic and entropic brain 29 
activity. Contrary to LSD and psilocybin, whose effects last for hours, the serotonergic 30 
psychedelic N,N-dimethyltryptamine (DMT) rapidly induces a profoundly immersive altered state 31 
of consciousness lasting less than 20 minutes, allowing for the entirety of the drug experience to 32 
be captured during a single resting-state fMRI scan. Using network control theory, which 33 
quantifies the amount of input necessary to drive transitions between functional brain states, we 34 
integrate brain structure and function to map the energy trajectories of 14 individuals undergoing 35 
fMRI during DMT and placebo. Consistent with previous work, we find that global control energy 36 
is reduced following injection with DMT compared to placebo. We additionally show longitudinal 37 
trajectories of global control energy correlate with longitudinal trajectories of EEG signal 38 
diversity (a measure of entropy) and subjective ratings of drug intensity. We interrogate these 39 
same relationships on a regional level and find that the spatial patterns of DMT’s effects on 40 
these metrics are correlated with serotonin 2a receptor density (obtained from separately 41 
acquired PET data). Using receptor distribution and pharmacokinetic information, we were able 42 
to successfully recapitulate the effects of DMT on global control energy trajectories, 43 
demonstrating a proof-of-concept for the use of control models in predicting pharmacological 44 
intervention effects on brain dynamics. 45 
 46 
 47 
 48 
 49 
  50 
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Introduction: 51 
Serotonergic psychedelics such as lysergic acid diethylamide (LSD), psilocybin, and N,N-52 
dimethyltrypamine (DMT) are powerful neuromodulators that transiently alter human experience 53 
(Nichols 2004; Shulgin and Shulgin 1997) and have shown potential for treating a variety of 54 
common affective and addictive disorders (Andersen et al. 2021; Vollenweider and Smallridge 55 
2022). DMT is a naturally occurring tryptamine and is the primary psychoactive compound found 56 
in ayahuasca, a ceremonial brew used for hundreds of years in South America (Metzner 2005). 57 
Unlike LSD and psilocybin, DMT is rapidly metabolized in the body by mono-amine oxidase 58 
(MAO) enzymes, requiring it to be combined with MAO-inhibitors in order to be orally active, as 59 
is the case in ayahuasca. This results in a DMT experience that rises and falls over the course 60 
of several hours, similar to oral LSD and psilocybin. When inhaled or injected intravenously at 61 
large enough doses, however, DMT rapidly produces immersive “breakthrough” experiences 62 
characterized by vivid and complex visual imagery  - occurring within one minute of 63 
administration - and lasting for only 15-30 minutes (Lawrence et al. 2022; Timmermann et al. 64 
2019; Strassman et al. 1994; Strassman 1995). This provides a unique opportunity to study 65 
human brain dynamics during the onset, peak, and offset of DMT’s effects over a single 66 
functional scan.  67 
 68 
Human neuroimaging studies with LSD and psilocybin have demonstrated that the psychedelic 69 
state is one of prominent reorganization of brain dynamics (Carhart-Harris and Friston 2019; 70 
Vollenweider and Preller 2020; Doss, Madden, et al. 2021; McCulloch et al. 2022). These 71 
compounds acutely decrease integrity within the brian’s functional sub-networks, while 72 
increasing integrity between functional sub-networks (Roseman et al. 2014; McCulloch et al. 73 
2022; Girn et al. 2022; 2023; Dai et al. 2023). The impact of psychedelics on subjective 74 
experience (Kraehenmann et al. 2017), neural dynamics (Preller, Burt, et al. 2018; Preller, 75 
Schilbach, et al. 2018), and therapeutic behavior change (Cameron et al. 2023) has been linked 76 
to agonism of the serotonin 2a (5-HT2a) receptor. This finding affords a unique opportunity to 77 
model and study the perturbation of brain dynamics using whole-brain computational models 78 
that incorporate receptor distribution information. Such whole-brain models have highlighted the 79 
central role of  the spatial distribution of the 5-HT2a receptor in the shift in brain dynamics under 80 
LSD and psilocybin (Deco et al. 2018; Kringelbach et al. 2020; Singleton et al. 2022).  81 
 82 
Network control theory is a linear dynamical systems approach that models state transitions 83 
occurring within a network (Gu et al. 2015). When applied to the brain, typically the structural 84 
connectivity matrix derived from diffusion MRI (dMRI) is the network over which transitions 85 
between functional brain states are modeled. These functional brain states may be theoretical, 86 
e.g. activations of a priori functional networks (He et al. 2022; Parkes et al. 2022), or empirical, 87 
e.g. statistical brain maps derived from task functional MRI (fMRI) (Braun et al. 2021; Luppi et 88 
al. 2023) or commonly recurring patterns of co-activation derived from the clustering of task-free 89 
fMRI time-series (Cornblath et al. 2020; Singleton et al. 2022). Overall, network control theory 90 
has demonstrated utility in describing brain dynamics in a variety of cognitive states (Cornblath 91 
et al. 2020; Zhou et al. 2021) and neuropsychiatric/degenerative conditions (He et al. 2022; 92 
Braun et al. 2021; Parkes et al. 2021; Tozlu et al. 2023), as well as throughout development 93 
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(Parkes et al. 2022; Cornblath et al. 2019) and during neuromodulation and pharmacologically 94 
induced altered states (Singleton et al. 2022; Stiso et al. 2019; Luppi et al. 2023).  95 
 96 
Receptor-informed network control theory is an extension we recently deployed in order to 97 
model the effects of LSD and psilocybin on brain activity dynamics. We found that the acute 98 
administration of LSD and psilocybin reduces the control energy required to transition between 99 
task-free fMRI-derived brain-states in a manner that, across individuals, covaries with increases 100 
in brain activity entropy - i.e., the diversity or complexity of the brain’s spontaneous oscillations  101 
recorded across time, a well-known marker of psychedelic action (Carhart-Harris 2018). 102 
Moreover, we provided evidence that the enhanced state-transitioning effect of psychedelics is 103 
associated with the brain’s spatial distribution of the 5-HT2a receptor expression (Singleton et 104 
al. 2022). In that work, we studied the transitions between and dynamics of four representative 105 
activity patterns. While this approach is ideal for summarizing overall changes, it lacks the 106 
temporal resolution necessary for capturing instantaneous, moment-to-moment, shifts in 107 
dynamics under a rapidly changing cognitive state such as when under the influence of DMT. 108 
 109 
Given the rapid kinetics of DMT’s effects, the use of time-resolved analysis techniques will be 110 
crucial for capturing changes in the brain’s activation dynamics in real time. Here, we employ a 111 
time-resolved network control analysis of N=14 healthy individuals undergoing simultaneous 112 
electroencephalography (EEG) and fMRI recordings for 8 minutes before and 20 minutes after 113 
an intravenous (I.V.) bolus injection of DMT and (on a separate visit) placebo (Figure 1a) 114 
(Timmermann et al. 2023). These multimodal and continuous scanning conditions enable high 115 
temporal (EEG) and spatial (fMRI) resolution of brain activity before, during, and after an 116 
injection of DMT. Herein, we expand upon our prior work with LSD and psilocybin (Singleton et 117 
al. 2022) by deploying a time-resolved network control analysis of the entire trajectory of the 118 
effects of DMT (Figure 1b). We compare control energy dynamics between DMT and placebo, 119 
observe temporal trajectories of these dynamics, and relate these changes to contemporaneous 120 
changes in neuronal signal diversity (Lempel-Ziv complexity; a measure approximating entropy) 121 
from concurrently-acquired EEG. Further, we compare DMT-related changes in regional 122 
dynamics to various serotonin receptor maps, including 2a. Lastly, we demonstrate an ability to 123 
simulate the impacts of DMT on control energy dynamics in silico using only fMRI data from 124 
placebo scans, 2a receptor density information, and pharmacokinetic modeling of DMT plasma 125 
concentrations. 126 
 127 
 128 
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 129 
Figure 1: Time-resolved network control analysis of the human brain during a 130 
pharmacologically-induced alteration of consciousness. (a) Fourteen individuals were 131 
scanned over two days in which they received either DMT and saline placebo in separate visits 132 
(two-weeks apart, single-blind, counterbalanced design). On each day, a 28-minute long eyes-133 
closed resting-state EEG-fMRI scan was performed with DMT/placebo intravenously 134 
administered at the end of the 8th minute. On the same day, identical scanning sessions were 135 
performed where participants were asked to rate the subjective intensity of drug effects at the 136 
end of every minute. (b) Here, we deploy a time-resolved network control analysis of the brain's 137 
trajectory through its activational landscape. The position in the landscape is illustrated here as 138 
a 3D vector containing regional BOLD signal amplitude at a given time t. We compute a control 139 
energy time-series from the regional activity vector time series by modeling transitions between 140 
adjacent regional activity vectors (x0 and xf, respectively) using a linear time-invariant model 141 
within a network control theory framework. In this framework, the state of the network x(t), here 142 
a vector of regional  BOLD activations at time t, evolves over time via diffusion through the 143 
brain’s weighted structural connectome A, the adjacency matrix. In order to complete the 144 
desired transition from the initial (x0) to the target state (xf), input (u) is injected into each region 145 
in the network. Varying control strategies (reflected in the matrix B) may be deployed wherein 146 
different regions are assigned varied amounts of control within the system. Integrating input u(t) 147 
at each node over the length of the trajectory from x0 to xf yields region-wise control energy, and 148 
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summing over all regions yields a global value of control energy required to complete the 149 
transition. 150 
 151 
Results: 152 
We analyzed simultaneous EEG-fMRI resting-state data for 14 participants acquired across two 153 
sessions, each on separate days (Timmermann et al. 2023). At each session, 28 minute long 154 
resting-state EEG-fMRI scans were collected, with I.V. bolus infusion of either DMT or placebo 155 
at the end of the 8th minute (Figure 1a).  156 
 157 
Global control energy is lower after DMT infusion versus after placebo 158 
We first begin by computing a control energy time-series from each participant’s 28 minute 159 
resting-state DMT and placebo fMRI scans. Control energy here is defined as the amount of 160 
input needed to drive the system from the current brain activity pattern to the next, where each 161 
brain activity pattern is a regional vector summarizing a single brain volume within the fMRI 162 
(Figure 1b). We find that DMT control energies are significantly lower than placebo control 163 
energies for a majority of the time points (65.5%; corrected p < 0.05) in the 20 minutes following 164 
injection (Figure 2a shows group average time series). 165 
 166 
 167 

 168 
Figure 2: Global control energy is reduced after DMT injection compared to after placebo 169 
injection, and negatively correlates with signal diversity and subjective drug intensity 170 
ratings. (a) Group-average global control energy time-series for the DMT and placebo (PCB) 171 
conditions. Global control energies for each time point’s transition following injection were 172 
compared via a two-sided, paired t-test and p-values were corrected for multiple comparisons 173 
using the Benjamini-Hochberg method (Benjamini and Hochberg 1995). Nearly two-thirds of 174 
post-injection control energies  (65.5%) were found to be significantly lower under DMT 175 
compared to placebo (* = corrected p < 0.05). (b) Differences in global control energy and EEG 176 
signal diversity between the DMT and PCB conditions are negatively correlated over the 28 177 
minute scans (Pearson’s R = -0.348, pperm < 0.0001), indicating that lower demand for fMRI-178 
based global control energy was associated with increased EEG-based signal diversity of brain 179 
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activity. (c) Differences in global control energy between the DMT and PCB conditions were 180 
averaged over one minute intervals in order to compare with subjective drug intensity ratings (0 181 
- 10) collected at the end of each minute (the latter of which were obtained during a separate 182 
fMRI from the one used to calculate global control energy). We found a negative correlation 183 
over time between intensity ratings and differences between the DMT and placebo conditions’ 184 
global control energies (Pearson’s R = -0.418, pperm 0.0116).  185 
 186 
Global control energy under DMT negatively correlates with subjective drug intensity 187 
ratings and signal diversity from simultaneous EEG 188 
We next relate the dynamical changes observed under DMT to signal diversity, quantified in 189 
terms of Lempel-Ziv complexity, derived from simultaneous EEG recordings. We correlate the 190 
between-condition differences in these metrics and find that the more fMRI-based global control 191 
energy is decreased under DMT, the more signal diversity from EEG is increased (Figure 2b; 192 
Pearson’s R = -0.34801, pperm < 0.0001). In separate scanning sessions with an identical dosing 193 
regimen, the same participants rated the subjective intensity of drug effects on a scale of 0-10 at 194 
the end of every minute. We reduced the dimensionality of the control energy time-series by 195 
averaging over one-minute windows corresponding to the collection of intensity ratings. 196 
Correlating the between-condition differences in these metrics, we find that reduction of control 197 
energy by DMT correlates with the intensity of the drug’s subjective effects over time (Figure 2c; 198 
Pearson’s R = -0.4184, pperm = 0.0116). 199 
 200 
 201 
Spatial patterns of control energy and its correlation with signal diversity and intensity 202 
are associated with spatial patterns of serotonin 2a receptors  203 
Next, we interrogate control energy under DMT at the regional, rather than global, level. 204 
Regional control energy reflects the amount of input injected into each region in order to 205 
complete a desired transition, whereas global control energy is the sum of this metric over all 206 
regions. While global control energy provides a single metric useful for summarizing the relative 207 
difficulty of state transitions, regional control energy can help quantify the varied contributions of 208 
each brain region to the global measure. We evaluated regional control energy under DMT in 209 
three ways (Figure 3a): 1) the change in regional control energy post-injection relative to pre-210 
injection, 2) each region’s control energy correlated with global EEG signal diversity over time 211 
during DMT scans, and 3) each region’s control energy correlated with subjective drug intensity 212 
over time during DMT scans. Reflecting the global result in Figure 2, we find that regional 213 
control energy is generally decreased following DMT injection, and is generally inversely 214 
correlated with both EEG signal diversity and drug intensity ratings (Figure 3a). Our purpose in 215 
assessing control energy at a regional level is to relate its spatial distribution to biologically 216 
relevant patterns in the human brain. To do so, we calculated the Spearman rank correlation 217 
between each of these regional metrics and the serotonin 2a receptor cortical density 218 
distribution derived from PET imaging (Figure 3b) (Beliveau et al. 2017). To assess the 219 
robustness of these regional metrics’ correlations with the 2a cortical map, we compared their 220 
values against 10,000 correlations calculated with spun permuted (Váša et al. 2018) 2a cortical 221 
maps that preserve spatial autocorrelations present in the original maps. We find that each of 222 
our regional metrics from Figure 3a is negatively correlated with the serotonin 2a spatial 223 
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distribution. These negative correlations indicate that brain regions with more serotonin 2a 224 
receptors have their control energies decreased more by DMT, and their control energies over 225 
time are more negatively correlated with EEG signal diversity and subjective drug intensity 226 
(Figure 3c).  227 
 228 

 229 
Figure 3: Regional control energy and its temporal correlation with signal diversity and 230 
drug intensity are associated with serotonin 2a receptor maps. (a) Regional control energy 231 
metrics. (left) The change in regional control energy in the 8 minutes after DMT injection, 232 
relative to the 8 minutes prior to the injection. (middle) Each region’s control energy time-series 233 
over the course of the full 28 minute DMT scans correlated with global signal diversity from EEG 234 
during the same scans. (right) Regional control energy during the DMT scans was averaged 235 
over one minute windows corresponding to the timing of subjective drug intensity ratings from 236 
separate scans. The windowed control energy time-series for each region was then correlated 237 
with the subjective drug intensity ratings. (b) Each of the regional metrics in (a) were then 238 
correlated with the cortical spatial map of the serotonin 2a receptor derived from PET (Beliveau 239 
et al. 2017). The strength of these correlations were compared against null correlations with 240 
10,000 cortical spin permutations (Váša et al. 2018) of the 2a receptor map. (c) Scatter plots of 241 
the three cortical regions’ metrics from (a) and serotonin 2a receptor density from (b). 242 
 243 
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 244 
Through dominance analysis, we next compare the strength of the regional metrics’ 245 
associations with serotonin 2a receptor maps against their associations with other serotonin 246 
receptor subtypes, namely the serotonin (5-HT) 1a, 5-HT1b, and 5-HT4 receptors, and the 247 
serotonin transporter (5-HTT). Dominance analysis is a method of ranking the importance of 248 
multiple input variables (in our case, the five different serotonin receptor/transporters) in 249 
explaining a target variable through a series of linear regression models (Azen and Budescu 250 
2003). A separate dominance analysis was run with each of the three metrics from Figure 3a as 251 
the target variable. We find that serotonin 2a density is the most dominant variable when 252 
explaining the variance in all three regional metrics (Figure 4).  253 
 254 

 255 
Figure 4: Dominance analysis reveals highest relative importance of the serotonin 2a 256 
receptor in DMT-related changes in cortical activity metrics. Three separate dominance 257 
analyses were performed using cortical values from five PET-derived serotonin receptor and 258 
transporter spatial densities (Beliveau et al. 2017) as input variables and each cortical metric 259 
from Figure 3a as the output. Dominance analysis assesses the relative importance of each 260 
input in explaining the output variable’s variance while controlling for the contributions of other 261 
predictors in multiple regressions (Azen and Budescu 2003). Displayed is the percent relative 262 
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importance given to each receptor/transporter map for explaining the variance in each cortical 263 
metric, as determined by dominance analysis. 5-HT = serotonin (5-hydroxytryptamine). 264 
 265 
 266 
DMT’s impacts on control energy can be simulated from pharmacokinetics and the 267 
serotonin 2a receptor maps  268 
For our simulation of DMT’s impact on control energy, we begin with all participant’s placebo 269 
fMRI scans. Prior to DMT injection, our control strategy, B, is uniform. Thus, pre-injection, our 270 
simulation matches the placebo control energy from Figure 2a. Following injection, we begin 271 
adding control to the system in a time and space-dependent manner according to our 272 
pharmacologically-derived time-varying control strategy (Figure 5, top). This strategy 273 
successfully estimates DMT’s impact on global control energy during the 20 minutes post-274 
injection (Figure 5, bottom).  275 
 276 
Supplemental analyses 277 
We performed several analyses to supplement our main findings. First, we calculate the time-278 
resolved control energies for a priori resting-state networks (Yeo et al. 2011). We find that the 279 
most prominent reductions in control energy under DMT compared with placebo occur in the 280 
visual, frontoparietal, and default mode networks (SI Figure 1). We find that DMT’s impact on 281 
the frontoparietal and default mode network are strongest in the first ten minutes after injection. 282 
Interestingly, DMT’s impacts on the visual network are strongest in the final ten minutes after 283 
injection (SI Figure 2). Next, we reproduce our main results without the use of global signal 284 
regression during fMRI preprocessing (SI Figure 3). We find that these results are consistent 285 
with the main text, however the regional metrics are less varied and have weaker correlations 286 
with 2a receptor maps. We also show scatter plots as in Figure 3, but with subcortical regions 287 
included (SI Figure 4). The corresponding correlations are all strong and negative, however, 288 
spin testing was not performed to calculate the p-values as subcortical regions cannot be spin 289 
permuted. In SI Figure 5, we show distance metrics between true and simulated DMT control 290 
energies for two alternative models to demonstrate the advantage of incorporating both the 291 
simulated brain-effect concentration (compared to simulated plasma concentration) and the 292 
spatial 2a receptor density map (compared to uniform spatial map). Lastly, we demonstrate 293 
DMT significantly reduces global control energy under a variety of BOLD signal normalization 294 
approaches (SI Figure 6).  295 
 296 
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 297 
Figure 5: Global control energy time-series for the DMT condition is simulated using only 298 
placebo fMRI data, coupled with simulated DMT plasma concentrations and 2a receptor 299 
density information. Pharmacokinetic modeling yields an estimate of DMT concentration over 300 
the length of the 28 minute scans. Here, we specifically used predicted ‘brain-effect 301 
compartment’ concentrations from a previously validated model using plasma concentration 302 
sampling and EEG (Eckernäs et al. 2023). Multiplying DMT concentration over time by regional 303 
PET-derived serotonin 2a densities (Beliveau et al. 2017) yields an estimate for DMT’s impact 304 
on each brain region over time which can be used as a time-varying control strategy. In order to 305 
simulate the impact of DMT on the global control energy time-series, we use each participant’s 306 
placebo fMRI data and apply the time-varying control strategy via inclusion in the diagonal of 307 
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matrix B. Prior to DMT injection, the control strategy (diagonal in B) is uniform, as is the case for 308 
all previously calculated energy metrics. 309 
 310 
 311 
Discussion: 312 
 313 
In this work, we use a time-resolved network control theory framework to characterize brain 314 
activation dynamics underlying the DMT psychedelic experience (Figure 1). We find that, on a 315 
global level, control energy is reduced under DMT compared to placebo. We then interrogate 316 
the effect of DMT in a temporally- and spatially-resolved manner. Temporally, we find that the 317 
increase in global control energy under DMT covaries with increases in EEG signal diversity and 318 
subjective drug intensity (Figure 2). Spatially, we find that the regional distribution of DMT’s 319 
effects is aligned with serotonin 2a receptor densities (Figures 3 and 4). Finally, we demonstrate 320 
a computational framework for predicting DMT’s impact on global brain dynamics using a 321 
network control model informed by pharmacokinetics and pharmacodynamics (Figure 5).  322 
 323 
Comparing global control energies between DMT and placebo reveals an overall reduction in 324 
the input necessary for transitioning between brain-states following injection with DMT (Figure 325 
2a). Prior work with other psychedelics (LSD and psilocybin) has demonstrated that these 326 
serotonergic 2a agonist compounds increase the diversity of brain state dynamics (Lord et al. 327 
2019; Carhart-Harris et al. 2014; Atasoy et al. 2017; Girn et al. 2022; Luppi et al. 2021; 328 
Tagliazucchi et al. 2014; Schartner et al. 2017). Decreased control energy may be reflective of a 329 
system poised near a state of criticality, whereby lowered barriers facilitate access to a larger 330 
repertoire of state dynamics (Girn et al. 2023; Carhart-Harris and Friston 2019; Toker et al. 331 
2022). In our own recent work using an approach similar to the one employed here, we found 332 
that LSD and psilocybin decreased control energy, and, across individuals, larger decreases 333 
under LSD were associated with more complex brain-state sequences (Singleton et al. 2022). 334 
The present study further strengthens evidence for this association between control energy and 335 
neural entropy by showing that the global control energy throughout the fMRI time-series is 336 
temporally coupled with neural signal diversity measured with simultaneous EEG (Figure 2b). 337 
Signal diversity here refers to the Lempel-Ziv complexity of EEG signal averaged across 338 
electrodes, and its increase has been a consistent characteristic of acute psychedelic 339 
experiences (Timmermann et al. 2019; Schartner et al. 2017). We also find that control energy 340 
over time is inversely related to the intensity of the subjective drug effects (Figure 2c), linking 341 
our fMRI-based metric to participants’ experiences in real time.  342 
 343 
We next sought to interrogate regional differences in DMT’s effects on control energy, and its 344 
association with EEG signal diversity and subjective intensity. In general, the regional metrics 345 
reflect what is observed at a global level - namely, regional control energy is decreased 346 
following injection with DMT and is inversely correlated with EEG signal diversity and subjective 347 
drug intensity (Figure 3a). Of particular interest to us was the extent to which regional 348 
heterogeneity in these metrics might be explained by biologically relevant information. The 349 
serotonin 2a receptor is the primary target in the brain responsible for initiating a cascade of 350 
changes that give rise to the characteristic subjective and neural effects of psychedelics 351 
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(Kraehenmann et al. 2017; Preller, Burt, et al. 2018; Preller, Schilbach, et al. 2018). Our 352 
previous simulation studies demonstrated that the serotonin 2a receptor spatial map was 353 
particularly suited for lowering global control energies (Singleton et al. 2022). Here, we further 354 
demonstrate that regional differences in empirical control energies during psychedelic 355 
administration are related to regional serotonin 2a receptor densities (Figure 3c). We rank-356 
correlated each of the three regional metrics’ values with that of the serotonin 2a cortical 357 
distribution. In each case, we find that the regional spatial pattern of control energy differences 358 
and its association with signal diversity and drug intensity are inversely related to the density of 359 
the serotonin 2a receptor, above and beyond the effect of spatial autocorrelation (Figure 3c).  360 
 361 
One might ask, however, whether the serotonin 2a receptor is associated with the regional 362 
metrics at a level above and beyond other serotonin system receptors. To answer this question, 363 
we performed a dominance analysis (Azen and Budescu 2003) for each regional metric using 364 
five input variables: the serotonin 2a (5-HT2a), serotonin 1a (5-HT1a), serotonin 1b (5-HT1b), 365 
serotonin 4 (5-HT4) receptors, and the serotonin transporter (5-HTT). The serotonin 2a receptor 366 
was found to have the highest relative importance in explaining the variance of regional 367 
decreases in control energy after DMT, as well as the control energy’s correlation with signal 368 
diversity and subjective intensity (Figure 4). Together, these results suggest that regions having 369 
higher densities of the serotonin 2a receptor are the most impacted by DMT, and have stronger 370 
couplings with neural and subjective effects.  371 
 372 
Having established an association between DMT’s impact on control energy and the serotonin 373 
2a receptor distribution, we finally ask the question: “can DMT’s impact on control energy be 374 
simulated from non-drug data (i.e., in this case, the placebo dataset) using a pharmacologically-375 
informed control framework”? Our control energy calculations up to this point were agnostic to 376 
regional heterogeneity, i.e. they deployed a uniform control strategy (encoded by the control 377 
matrix B being the identity). However, adjustments to the control strategy have been 378 
successfully deployed for in silico hypothesis testing (Cornblath et al. 2020; He et al. 2022; Zhou 379 
et al. 2021; Parkes et al. 2022) and simulations of external and internal forms of stimulation 380 
(Singleton et al. 2022; Stiso et al. 2019; Luppi et al. 2023). DMT injection exhibits rapid onset of 381 
subjective and neural effects in a concentration-dependent manner (Strassman et al. 1994; 382 
Strassman 1995). Previous work has demonstrated successful pharmacokinetic modeling of 383 
DMT plasma concentration and its neural effects at dosing regimens similar to those used in the 384 
present study (Eckernäs et al. 2022; 2023). Here, we used an independently validated model of 385 
DMT’s pharmacokinetic impact on EEG alpha rhythms to simulate population-level ‘brain-effect’ 386 
concentrations of DMT over the course of the 28 minute scans (Eckernäs et al. 2023). We next 387 
combine this temporal estimation of DMT’s effects with spatial information by multiplying the 388 
simulated DMT concentration at each time-point with the regional serotonin 2a receptor maps 389 
(Beliveau et al. 2017). This yields a temporal and spatial map of DMT’s hypothesized impact on 390 
brain dynamics, which we operationalize as a time-varying control strategy within our network 391 
control theory approach (Figure 5). Our ability to estimate DMT’s impacts on control energy 392 
through pharmacologically-informed adjustments to model parameters serves as an important 393 
proof-of-concept for using network control theory in computational psychiatry applications 394 
(Moujaes et al. 2022; Vohryzek et al. 2023). Importantly, we validated the superior utility of our 395 
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two specific pieces of information in the control strategy - the ‘brain-effect’ versus the plasma 396 
concentration and the 2a receptor’s spatial information versus a uniform control approach (SI 397 
Figure 4). 398 
 399 
The present work validates a meaningful fMRI correlate of the increased signal complexity or 400 
entropy that has been reliably demonstrated with EEG or MEG recordings of the psychedelic 401 
state. The latter modalities have limited spatial resolution (EEG) or depth (MEG), precluding 402 
inferences about specific regional effects or changes in deep structures. Thus, observing fMRI 403 
correlates of other modalities’ recordings deepens our understanding of the so-called ‘entropic 404 
brain’ effect (Carhart-Harris et al. 2014; Carhart-Harris 2018). The strength of fMRI is its high 405 
spatial resolution and whole-brain coverage; however, relative to EEG, its cost, immobility and 406 
other practical challenges limit its widespread application. Recent work has shown that EEG-407 
recorded signal complexity or entropy can be effectively tracked in real time (Mediano et al. 408 
2023), inspiring ideas regarding how such information could be used to adapt treatment 409 
parameters such as dosage, in a way to suit individual responses. More work across all 410 
modalities is required to further deepen our understanding of mechanisms of psychedelic action, 411 
e.g., to test whether the observed acute brain effects begin with a 5-HT2a receptor agonism 412 
initiated spike-to-wave decoupling (Celada et al. 2008) translating downstream into anatomical 413 
and functional neuroplastic changes such as those found in preclinical (Ly et al. 2018; Shao et 414 
al. 2021; Hesselgrave et al. 2021; Cameron et al. 2023; Vargas et al. 2023) and clinical 415 
neuroscience research (Doss, Považan, et al. 2021; Daws et al. 2022).  416 
 417 
Although the present analysis expands on prior work in this field, several important limitations 418 
must be considered. First, our small sample size limits the generalizability of our findings; 419 
however, this is the third independent dataset which has found decreased control energy during 420 
psychedelic administration, which lends more confidence in our findings (Singleton et al. 2022). 421 
Our time-resolved control energy analysis provides the ability to associate control energy 422 
changes in real time with other imaging metrics and subjective effects. However, like many time-423 
resolved metrics, this increases noise sensitivity. For our correlational analyses, we consider 424 
associations between group-level metrics in order to more accurately assess changes over time 425 
and space. In addition, we assess our simulation’s success based on the group-average outputs 426 
from our model. Extending the work towards individual level modeling will be a fruitful avenue 427 
for future research, with implications for personalized medicine (Moujaes et al. 2022; Vohryzek 428 
et al. 2023). Elucidating the potential impacts of vasoconstriction (Gamoh, Hisa, and Yamamoto 429 
2013) and arousal (Liu and Falahpour 2020) on our findings also requires sophisticated 430 
experimental designs (e.g., using an active stimulant as control) and should be investigated in 431 
future studies. 432 
 433 
In summary, we have demonstrated that time-resolved network control analysis captures 434 
meaningful changes in brain activation dynamics during the onset, peak, and offset of an 435 
infused DMT experience. We found significant reductions in the control energy required for the 436 
brain to traverse its activity landscape under DMT, and an association between decreases in 437 
control energy and increases in EEG-based neural signal complexity and subjective drug effects 438 
in a manner that is regionally related to serotonin 2a receptor density. Finally, we demonstrated 439 
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that through a pharmacologically-informed network control framework, that we are able to 440 
simulate DMT’s impacts on control energy over time - an important step towards understanding 441 
mechanisms of these neuromodulators.  442 
 443 
Methods: 444 
 445 
Participants and Experimental Procedures 446 
The original single blind, placebo controlled, counterbalanced study was approved by the 447 
National Research Ethics (NRES) Committee London – Brent and the Health Research 448 
Authority and was conducted under the guidelines of the revised Declaration of Helsinski 449 
(2000), the International Committee on Harmonisation Good Clinical Practices guidelines, and 450 
the National Health Service Research Governance Framework. Imperial College London 451 
sponsored the research, which was conducted under a Home Office license for research with 452 
Schedule 1 drugs. 453 

The original study is presented in (Timmermann et al. 2023) however we summarize the 454 
relevant design material here. Volunteers participated in two testing days, separated by 2 455 
weeks. On each testing day, participants arrived and were tested for drugs of abuse and were 456 
involved in 2 separate scanning sessions. In this initial session (task-free) they received 457 
intravenous (IV) administration of either placebo (saline) or 20 mg DMT (in fumarate form) in a 458 
counterbalanced order (half of the participants received placebo and the other half received 459 
DMT). This first session always consisted of continuous resting-state scans which lasted 28 460 
minutes with DMT/placebo administered at the end of 8th minute. Participants laid in the scanner 461 
with their eyes closed (an eye mask was used to prevent eyes from opening), while EEG activity 462 
was recorded. A second session then followed with the same procedure as the initial session, 463 
except on this occasion participants were asked to rate the subjective intensity of drug effects 464 
every minute in real time. The design was single blind (only researchers were aware of the 465 
order of administration). 466 
  467 
This article only analyzes the resting-state scans in which no intensity ratings were asked, but 468 
uses the intensity ratings for correlational analyses. In total, 20 participants completed all study 469 
visits (7 female, mean age = 33.5 years, SD = 7.9). 470 
  471 
fMRI and EEG acquisition 472 
The original study is presented in (Timmermann et al. 2023), however we summarize the 473 
relevant acquisition information here. Images were acquired in a 3T MRI (Siemens Magnetom 474 
Verio syngo MR B17) using a 12-channel head coil for compatibility with EEG acquisition. 475 
Functional imaging was performed using a T2*-weighted BOLD sensitive gradient echo planar 476 
imaging sequence with the following parameters: repetition time (TR) = 2000ms, echo time (TE) 477 
= 30ms, acquisition time (TA) = 28.06 mins, flip angle (FA) = 80°, voxel size = 3.0 x 3.0 x 478 
3.0mm3, 35 slices, interslice distance = 0mm. Whole-brain T1-weighted structural images were 479 
also acquired. 480 
  481 
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EEG was recorded inside the MRI during image acquisition at 31 scalp sites following the 10-20 482 
convention with an MR compatible BrainAmp MR amplifier (BrainProducts, Munich, Germany) 483 
and an MR-compatible cap (BrainCap MR; BrainProducts GmbH, Munich, Germany). Two 484 
additional ECG channels were used to improve heart rate acquisition for artifact minimization 485 
during EEG preprocessing. EEG was sampled at 5 kHz and with a hardware 250 Hz low-pass 486 
filter. EEG-MR clock synchronization was ensured using the Brain Products SyncBox hardware. 487 
  488 
fMRI preprocessing 489 
The same preprocessing pipeline as used in previous work with LSD and psilocybin (Singleton 490 
et al. 2022) and reported in Timmermann and colleagues (2023) was used here. Six out of 20 491 
participants were discarded from group analyses due to excessive head movement during the 492 
28 minute DMT scans (>15% of scrubbed volumes with a scrubbing threshold of frame-wise 493 
displacement (FD) of 0.4 (Power et al. 2014)), leaving 14 for analysis. Preprocessing steps 494 
consisted of 1) de-spiking (3dDespike, AFNI (Cox 1996)), 2) slice time correction (3dTshift, 495 
AFNI), 3) motion correction (3dvolreg, AFNI) by registering each volume to the most similar 496 
volume, in the least squares sense, to all others (in-house code), 4) brain extraction (BET, FSL 497 
(Smith et al. 2004)), 5) rigid body registration to anatomical scans, 6) non-linear registration to 498 
2mm MNI brain (Symmetric Normalization (SyN), ANTS (Avants, Tustison, and Song 2009)), 7) 499 
scrubbing - using an FD threshold of 0.4 - with scrubbed volumes being replaced with the mean 500 
of the surrounding volumes. Additional preprocessing steps included: 8) spatial smoothing 501 
(FWHM) of 6mm (3dBlurInMask, AFNI), 9) band-pass filtering between 0.01 to 0.08 Hz 502 
(3dFourier, AFNI), 10) linear and quadratic de-trending (3dDetrend, AFNI), 11) regressing out 9 503 
nuisance regressors (all nuisance regressors were bandpassed filtered with the same filter as in 504 
step 9), out of these, 6 were motion-related (3 translations, 3 rotations) and 3 were 505 
anatomically-related. Lastly, global signal regression was performed and time-series were 506 
parcellated into 100 cortical (Schaefer et al. 2018) and 16 subcortical (Tian et al. 2020) regions 507 
of interest.  508 
 509 
Structural connectivity network construction 510 
The structural connectome used for network control theory analysis was identical to the one 511 
used in prior work (Luppi et al. 2021; Singleton et al. 2022). Namely, we relied on diffusion data 512 
from the Human Connectome Project (HCP, http://www.humanconnectome.org/), specifically 513 
from 1021 subjects in the 1200-subject release (Van Essen et al. 2013). A population-average 514 
structural connectome was constructed and made publicly available by Yeh and colleagues 515 
(2018) in the following way. Multishell diffusion MRI was acquired using b-values of 1000, 2000, 516 
3000 s/mm2, each with 90 directions and 1.25 mm iso-voxel resolution. Following previous work 517 
(Luppi et al. 2021; Yeh et al. 2013; Singleton et al. 2022), we used the QSDR algorithm 518 
implemented in DSI Studio (http://dsi-studio.labsolver.org) to coregister the diffusion data to MNI 519 
space, using previously adopted parameters (Yeh et al. 2013). Deterministic tractography with 520 
DSI Studio’s modified FACT algorithm then generated 1,000,000 streamlines, using the same 521 
parameters as in prior work, specifically, angular cutoff of 55◦, step size of 1.0 mm, minimum 522 
length of 10 mm, maximum length of 400mm, spin density function smoothing of 0.0, and a QA 523 
threshold determined by DWI signal in the CSF. Each of the streamlines generated was 524 
screened for its termination location using an automatically generated white matter mask, to 525 
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eliminate streamlines with premature termination in the white matter. Entries in the structural 526 
connectome Aij were constructed by counting the number of streamlines connecting every pair 527 
of regions i and j in the augmented Schaefer-116 atlas (Schaefer et al. 2018; Tian et al. 2020). 528 
Lastly, streamline count was normalized by the number of voxels contained in each pair of 529 
regions. 530 
 531 
5-HT receptor mapping 532 
Details for obtaining the serotonin receptor density distribution have been previously described 533 
(Beliveau et al. 2017) however we provide a brief summary here. PET data for 210 participants 534 
(not under the influence of psychedelics) were acquired on a Siemens HRRT scanner operating 535 
in 3D acquisition mode with an approximate in-plane resolution of 2mm (1.4 mm in the center of 536 
the field of view and 2.4 mm in cortex) (Olesen et al. 2009). Scan time and frame length were 537 
designed according to the radiotracer characteristics. For details on MRI acquisition parameters, 538 
which were used to coregister the data to a common atlas, see Knudsen et al (2016). The 539 
voxelwise average density (Bmax) maps for each receptor were parcellated into 116 regions of 540 
interest for the augmented Schaefer-116 atlas (Schaefer et al. 2018; Tian et al. 2020). 541 
 542 
EEG signal diversity: Lempel-Ziv complexity 543 
Following our previous study involving DMT (Timmermann et al. 2019), as well as those 544 
performed with LSD, psilocybin and ketamine (Schartner et al. 2017), we performed signal 545 
diversity analysis using the Lempel-Ziv 1976 algorithm (LZ76), as reported in Timmermann et al. 546 
(2023). The EEG signal at each single electrode was binarized using its mean for each 2-547 
second epoch, and then the LZ76 algorithm was used to generate a dictionary of unique 548 
subsequences whose size quantifies the temporal diversity for the signal (denoted here as LZs). 549 
The average LZs across channels was used for correlational analyses with control energy.  550 
 551 
Dominance Analysis 552 
Dominance analysis was used in order to determine the relative importance of each 553 
receptor/transporter map on predicting nodal control energy metrics. Dominance analysis aims 554 
to establish the relative significance (or "dominance") of each independent variable in relation to 555 
the overall fit (adjusted R2) of the multiple linear regression model 556 
(https://github.com/dominance-analysis/dominance-analysis) (Azen and Budescu 2003). This 557 
process involves fitting the same regression model to every possible combination of predictors 558 
(creating 2p – 1 submodels for a model with p predictors). Total dominance is characterized as 559 
the mean increase in R2 when incorporating a single predictor of interest to a submodel, 560 
considering all 2p – 1 submodels. The aggregate dominance of all input variables equals the 561 
total adjusted R2 of the comprehensive model, rendering the relative importance percentage an 562 
easily understandable technique that apportions the overall effect size among predictors. As a 563 
result, in contrast to alternative methods for evaluating predictor significance, such as those 564 
based on regression coefficients or univariate correlations, dominance analysis takes into 565 
account predictor-predictor interactions and offers interpretability. 566 
 567 
Minimum control energy 568 
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Network control theory allows us to probe the constraints of white-matter connectivity on 569 
dynamic brain activity, and to calculate the minimum energy required for the brain to transition 570 
from one activation pattern to another (Singleton et al. 2022; Cornblath et al. 2020; Karrer et al. 571 
2020). While this procedure has been detailed elsewhere (Karrer et al. 2020), we summarize it 572 
briefly here. We obtained a representative NxN structural connectome A obtained as described 573 
above using deterministic tractography from HCP subjects (see Methods and Materials; 574 
Structural Connectivity Network Construction), where N is the number of regions in our atlas. 575 
We then employ a linear time-invariant model: 576 
 577 

�̇�(𝑡) = 𝐴𝑥(𝑡) 	+ 	𝐵𝑢(𝑡)     (Eq. 1) 578 
 579 
where x is a vector of length N containing the regional activity at time t. B is an NxN matrix that 580 
contains the control input weights, and is otherwise known as the control strategy. In our 581 
analyses, B is constructed by placing an input vector, v, along the diagonal of the matrix B. In 582 
uniform control scenarios, v is a vector of length N containing all ones. In the case of our DMT 583 
simulation, a time-varying control strategy (B) was used (Figure 5, top), where the input vector, 584 
v was a function over time of simulated DMT concentration 𝐷𝑀𝑇(𝑡), the regional serotonin 2a 585 
receptor density vector ρ, and a scaling parameter α: 586 
 587 

𝑣(𝑡) 	= 1	 + 𝛼 • (𝐷𝑀𝑇(𝑡) + 	𝜌)	    (Eq. 2) 588 
 589 
which effectively adds additional control to the system as a function of increasing DMT, in a 590 
manner that is regionally skewed by 2a density. In order to estimate the scaling parameter α, we 591 
performed a grid search over values [1, 10, 20, 30, 40, 50, 60, 70] and chose the value which 592 
minimized the Euclidean distance between the simulated output and the empirical DMT control 593 
energy on a group-level (SI Figure 4; alpha = 30). DMT concentration over time was simulated 594 
from previously published population level pharmacokinetic parameter estimates to obtain the 595 
typical predicted concentrations after a bolus dose of 20 mg DMT fumarate (using the R 596 
package mrgsolve) (Eckernäs et al. 2023). Specifically, theoretical effect compartment 597 
concentrations (based on EEG Alpha rhythms) were operationalized as DMT(t), as this can be 598 
thought of as representing DMT concentration in the brain. The regional serotonin 2a receptor 599 
density ρ was derived from previously published PET data (See Methods: 5-HT receptor 600 
mapping) (Beliveau et al. 2017).  601 
 602 
To compute the minimum control energy required to drive the system (network) from an initial 603 
activity pattern (x0) to a final activity pattern (xf) over some finite amount of time (T), we minimize 604 
the inputs (u(t)) subject to Equation 1: 605 
 606 

𝑢(𝑡)∗ 	= 	𝑚𝑖𝑛 ∫"# 𝑢$ (𝑡)𝑢(𝑡)	𝑑𝑡      (Eq 3) 607 
 608 
where T is the time horizon that specifies the time over which input to the system is allowed. 609 
Here, a common choice of T = 1 was used (Braun et al. 2021; Betzel et al. 2016; Parkes et al. 610 
2022; Karrer et al. 2020). The minimum control energy for a single brain region i is then: 611 
 612 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2023. ; https://doi.org/10.1101/2023.05.11.540409doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540409
http://creativecommons.org/licenses/by-nc/4.0/


𝐸%∗ 	= 	∫
"
# :|𝑢(𝑡)%∗|:&

&𝑑𝑡      (Eq 4) 613 
 614 
And, finally, the global minimum control energy for a transition is the sum of Eq 4 over each 615 
region: 616 
 617 

𝐸'%( 	= 	∑)%	+	, 𝐸%∗      (Eq 5) 618 
 619 
This quantity was calculated for each pair of initial x0 and final xf brain states (i.e. adjacent BOLD 620 
volumes in each individual’s fMRI scans) to obtain a time-series of control energy over each 621 
individuals’ 28 minute scanning sessions.  622 
 623 
Data and code availability 624 
Data used in this analysis were published alongside the original study (Timmermann et al. 625 
2023). Code to reproduce this analysis is available at: https://github.com/singlesp/DMT_NCT. 626 
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