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Abstract9

Intraspecific interactions are key drivers of population dynamics because they establish rela-10

tions between individual fitness and population density. The component Allee effect is defined as11

a positive correlation between any fitness component of a focal organism and population density,12

and it can lead to positive density dependence in the population per capita growth rate. The13

spatial population structure is key to determining whether and to which extent a component14

Allee effect will manifest at the demographic level because it determines how individuals interact15

with one another. However, existing spatial models to study the Allee effect impose a fixed spa-16

tial structure, which limits our understanding of how a component Allee effect and the spatial17

dynamics jointly determine the existence of demographic Allee effects. To fill this gap, we intro-18

duce a spatially-explicit theoretical framework where spatial structure and population dynamics19

are emergent properties of the individual-level demographic and movement rates. Depending on20

the intensity of the individual-level processes the population exhibits a variety of spatial pat-21

terns, including evenly spaced aggregates of organisms, that determine the demographic-level22

by-products of an existing individual-level component Allee effect. We find that aggregation in-23

creases population abundance and allows populations to survive in harsher environments and at24

lower global population densities when compared with uniformly distributed organisms. More-25

over, aggregation can prevent the component Allee effect from manifesting at the population26

level or restrict it to the level of each independent group. These results provide a mechanistic27

understanding of how component Allee effects might operate for different spatial population28

structures and show at the population level. Because populations subjected to demographic29

Allee effects exhibit highly nonlinear dynamics, especially at low abundances, our results con-30

tribute to better understanding population dynamics in the presence of Allee effects and can31

potentially inform population management strategies.32
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1 Introduction33

Intraspecific interactions are critical to understanding population ecology because they define how34

demographic rates depend on population density and ultimately drive population dynamics. The35

Allee effect is characterized by a positive correlation between population size or density and any in-36

dividual fitness component (Courchamp et al., 2008; Levitan, 2005; Stephens et al., 1999). Because37

of this positive density dependence, populations subjected to Allee effects might have thresholds for38

population survival that manifest in sudden extinctions, existence of alternative stable states, and39

hysteresis (Courchamp et al., 2008; Lande, 1987; Oro, 2020a; Sun, 2016). These highly nonlinear40

features make populations exhibiting Allee effects hard to manage without a mechanistic under-41

standing of how the individual-level processes and interactions that underlie the Allee effect are42

responsible for the trends and patterns observed in population dynamics.43

Allee effects are studied mainly at two levels: the component and the demographic Allee effect44

(Stephens et al., 1999). The component Allee effect is a positive association between population den-45

sity and one (or many) components of individual fitness, such as offspring survival, mating success,46

or fecundity (Courchamp et al., 2008; Drake and Kramer, 2011; Orr, 2009) (Fig. 1a). Component47

Allee effects rely on several mechanisms. In some fish, rotifer, and mammals such as marmots,48

the presence of conspecifics changes the environmental conditions locally, improving habitat quality49

and individual fitness (Allee and Bowen, 1932; Allee and Rosenthal, 1949; Ghazoul, 2005; Stephens50

et al., 2002). Especially in group-living organisms, cooperative behaviors such as group vigilance,51

nursing, resource sharing, and social foraging also make individuals more competent in the presence52

of conspecifics (Angulo et al., 2018, 2013; Dechmann et al., 2010; Luque et al., 2013; Nowak and Lee,53

2011; Snaith and Chapman, 2008). Allee effects are also frequent in sexually reproducing species.54

In motile organisms, females are more likely to find mates at larger population sizes (Dennis, 1989;55

Garrett and Bowden, 2002; Liermann and Hilborn, 2001; Tcheslavskaia et al., 2002). In sessile56

organisms, such as pollinators or broadcast spawners, fecundation is more likely at high population57

densities (Ashman et al., 2004; Guy et al., 2019; Lundquist and Botsford, 2011; Luzuriaga et al.,58

2006; Wagenius, 2006). On the other hand, the demographic Allee effect is a population-level emer-59

gent property due to the existence of one or more component Allee effects, and it manifests as a60

positive correlation between the net per-capita growth rate and the population size. This positive61

density-dependence is easier to identify at low population densities because competition hinders its62

effect in more crowded scenarios (Courchamp et al., 2008). Demographic Allee effects are strong if63

the population cannot survive below a specific threshold size (Allee threshold) or weak if positive64

density-dependence is not intense enough to establish such a survival threshold (Courchamp et al.,65

2008; Drake and Kramer, 2011).66
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Figure 1: Allee effect across spatial scales. The component Allee effect (a) is a result of interactions
between individuals that manifests at a (b) local scale around a focal organism. At the demographic scale

(c), individuals are spatially scattered, possibly forming aggregates. In the presence of aggregates, the
population has a fourth characteristic scale, defining inter-group facilitation (d)

The fitness of a focal individual in the presence of a component Allee effect is a nonlinear func-67

tion of the local density of conspecifics around it (Fig. 1b). Moreover, because Allee effects have68

a more substantial impact at low population densities and often require the direct interaction be-69

tween at least two organisms, the spatial population structure is key to determining whether and70

to which extent a component Allee effect will manifest at the demographic level (Kanarek et al.,71

2013; Kramer et al., 2009; Surendran et al., 2020) (Fig. 1c). Back to Allee’s seminal experiments,72

several studies have investigated the impact of the spatial population structure, and more specifi-73

cally of aggregation, on Allee effects (Allee, 1938). For instance, some plant populations produce74

more and heavier seeds if distributed in clumps (Luzuriaga et al., 2006; Wagenius, 2006). Plant75

aggregates can also facilitate nearby individuals because they attract pollinators to them, which76

extends the facilitation range beyond the scale of a single cluster of plants (Fig. 1d) (Le Cadre77

et al., 2008), and ameliorate physical stresses (Silliman et al., 2015). Broadcast spawners subjected78

to a strong Allee effect, such as the red sea urchin Strongylocentrotus franciscanus, can survive at79

low abundances by aggregating (Guy et al., 2019; Lundquist and Botsford, 2011). Finally, several80

social species form spatially segregated groups, which could contribute to population persistence81

in harsh environmental conditions (Angulo et al., 2018; Lerch et al., 2018; Woodroffe et al., 2020).82

Aggregation and group living are thus ubiquitous features of populations subjected to Allee effects,83

and they strongly influence the emergent population dynamics. To explain how these spatial fea-84
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tures impact populations subjected to component Allee effects, recent studies have introduced the85

group-level Allee effect, defined as any positive association between the organism’s fitness and group86

size (Lerch et al., 2018). However, a theoretical framework describing how group-level Allee effects87

emerge from component Allee effects and the individual-level processes responsible for aggregation88

and group formation is lacking.89

Over the last decades, theoretical studies have been key to develop much of our current un-90

derstanding of Allee effects (Asmussen, 1979; Cushing, 1988; Hsu and Fredrickson, 1975; Kostitzin,91

1940; Lande, 1987; Sun, 2016; Tammes et al., 1964; Volterra, 1938). Several models, either de-92

terministic or stochastic, consider well-mixed populations and disregard spatial degrees of freedom93

(Dennis, 1981, 2002; Méndez et al., 2019). The effect of space has been investigated mainly using94

metapopulation approaches in which each node represents a group or cluster of individuals and links95

represent any inter-group interaction (Padrón and Trevisan, 2000; Rijnsdorp and Vingerhoed, 2001).96

These frameworks already incorporate group-level Allee effects because they restrict fitness benefits97

due to intraspecific interactions to each metapopulation and have helped explain why component98

Allee effects rarely many manifest at the demographic level in group-living species (Courchamp99

et al., 2008; Rijnsdorp and Vingerhoed, 2001). However, metapopulation models impose the exis-100

tence of groups in the stationary state and do not describe the group-forming dynamics. Alternative101

approaches, based on individual-based models (IBMs) or partial differential equations (PDEs), in-102

corporate space explicitly and can describe the group-forming dynamics (Keitt et al., 2001; Maciel103

and Lutscher, 2015; Surendran et al., 2020; Wang et al., 2019). Therefore, these approaches can104

explain how different spatial patterns of population density impact the outcome of ecological dy-105

namics, such as species invasions, in the presence of Allee effects (Keitt et al., 2001; Maciel and106

Lutscher, 2015) or Allee-effect features, such as the Allee threshold (Surendran et al., 2020).107

In this work, we develop a theoretical framework to investigate Allee effects across different levels108

of spatial organization within a population. We present this formalism starting from a stochastic109

and spatially explicit individual-based description of a population with density-dependent reproduc-110

tion mimicking a component Allee effect. This description is the most fundamental level at which111

we can describe a population, allowing us to explicitly model the relationship between the mech-112

anism responsible for the component Allee effect and individual birth and death rates. From this113

individual-level description, we derive the corresponding deterministic equation for the dynamics114

of the population density. This approximation allows us to investigate in which conditions individ-115

uals aggregate due to individual-level interactions and to study the population-level consequences116

of the component Allee effect depending on the spatial population structure. Finally, we identify117

the cases in which we can describe the long-term spatial distribution of individuals in terms of118

a metapopulation model, and use this approach to investigate the emergence of group-level Allee119
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effects. Our results recapitulate several observations on the interplay between spatial structure,120

group, and demographic Allee effects, providing a unifying theoretical framework to investigate the121

interplay between component Allee effects and spatial dynamics.122

2 Methods123

2.1 A spatially explicit individual-based model with component Allee effect124

At the most fundamental level, we describe the spatio-temporal population dynamics using an125

IBM in which we can incorporate any ecological interaction, such as competition, predation, or126

cooperation, movement, and birth-death dynamics tracking single individuals. We consider a popu-127

lation with density-independent birth, death, and movement and also account for density-dependent128

birth and death processes. Specifically, individuals interact via binary reproductive facilitation and129

ternary competition. Reproductive facilitation is common even in species with asexual reproduction130

when individuals need the presence of conspecifics to reach the physiological condition to reproduce131

(Courchamp et al., 2008). Some examples of species exhibiting asexual reproduction and repro-132

ductive facilitation are self-fertile snails, and parthenogenetic female lizards (Crews et al., 1986;133

Thomas and Benjamin, 1974). Competition, on the other hand, reduces individual fitness at very134

high population densities and is necessary to avoid unbounded population growth. The combination135

of binary reproductive facilitation and ternary competition results in a hump-shaped relationship136

between per capita reproduction rate and local density of individuals similar to that reported by137

Allee in his experiments with laboratory populations of the flour beetle (Allee, 1938; Allee et al.,138

1949).139

We can summarize the previous processes and interactions in the following set of demographic140

reactions141

b−→ + (2.1a)

d−→ Ø (2.1b)

+
β−→ + + (2.1c)

+ +
γ−→ + (2.1d)

(2.1a) and (2.1b) represent density-independent birth and death. (2.1c) represents a binary cooper-142

ative interaction in which two individuals interact at rate β and produce a third individual. The last143

reaction, (2.1d), describes ternary competition. This set of processes is one of the mathematically144

simplest ways of modeling a component Allee effect at the individual level (Méndez et al., 2019).145

5

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.12.540532doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.12.540532
http://creativecommons.org/licenses/by-nd/4.0/


However, one can think of many other density-dependent processes that might result in a compo-146

nent Allee effect, such as reduced death, sexual reproduction, or collective predation, among others147

(Drake and Kramer, 2011; Oro, 2020b). Any of these alternative processes can be incorporated into148

our modeling approach by simply modifying the set of reactions (2.1).149

To introduce spatial dynamics, we consider that individuals are located in the sites of a one-150

dimensional regular lattice with periodic boundary conditions, but it is straightforward to extrap-151

olate the derivation to more realistic two-dimensional landscapes. We label each lattice node with152

an integer index i ∈ [0, N ], and denote the spatial coordinate with x ∈ [0, L]. The distance between153

two adjacent lattice nodes is δx such that the spatial coordinate of the i-th node is xi = i δx. Indi-154

viduals move on the lattice performing a nearest-neighbor random walk, and the density-dependent155

interactions in (2.1c)-(2.1d) only occur if individuals are within an interaction-specific range.156

We can express individual random movement using the reaction notation of (2.1) as157

x
h−→ x±δx, (2.2)

where h is the jump transition rate and δx is the displacement length. These choices result in158

a diffusive movement with diffusion coefficient D = h δx2. To account for the spatial extent of159

the interactions between individuals, we modify the demographic rates in the reactions (2.1c) and160

(2.1d). We consider that two individuals facilitate one another if they are closer than the facilitation161

range Rf . As a result, a focal individual at location x reproduces with rate β/2Rf . In terms of162

reactions, this process can be written as:163

x + x′

β
2Rf−−→ x + x′ + x (2.3)

provided that |x−x′| ≤ Rf . For negative interactions, we consider that a focal individual at location164

x can die due to competition by forming triplets with two neighbors at locations x′ and x′′. This165

process occurs with rate γ/4R2
c provided that the distance between the focal individual and each of166

these two neighbors is shorter than or equal to the competition range |x−x′| ≤ Rc and |x−x′′| ≤ Rc.167

In terms of reactions, we can write this process as168

x + x′ + x′′

γ

4R2
c−−→ x′ + x′′ (2.4)

Finally, notice that both for the facilitation and the competition terms, we are assuming that the169

non-local reaction rates do not depend on the distance between individuals as long as the pairwise170

distances between individuals in a pair or triplet are shorter than the interaction range. We are171

therefore modeling the interaction kernel with a top-hat function. The factors dividing the rates β172
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and γ are normalizing factors of the top-hat kernel. This normalization makes birth/death rates173

depend on population density rather than on population size.174

2.2 Derivation of population-level approximations175

We use the Doi-Peliti formalism to derive a deterministic approximation of the spatial stochastic176

dynamics introduced in Section 2.1. This deterministic approximation neglects demographic fluc-177

tuations and maps the set of discrete reactions to a deterministic partial differential equation that178

describes the dynamics of a population density field ρ(x, t) in continuous space and time (Doi,179

1976; Hernández-García and López, 2004; Peliti, 1985; Täuber, 2007). Hence, this approximation180

fails to describe noise-driven consequences of the Allee effect that might be ecologically relevant at181

low population sizes, such as extinctions caused by demographic noise (Méndez et al., 2019). It,182

however, allows us to apply tools from spatially-extended dynamical systems and obtain analyti-183

cal insights of the underlying stochastic dynamics. More specifically, we can investigate in which184

conditions individuals form aggregates, resulting in a regular spatial pattern of population density185

(Cross and Hohenberg, 1993). Following the steps detailed in the Supplementary Material section186

S1, the stochastic dynamics defined in Section 2.1 leads to the following partial differential equation187

for ρ(x, t)188

∂ρ(x, t)

∂t
=
[
r + β ρ̃f (x, t)− γ ρ̃2c(x, t)

]
ρ(x, t) +D∇2

xρ(x, t), (2.5)

where189

ρ̃α(x, t) =

∫
G
(∣∣x− x′

∣∣ , Rα

)
ρ
(
x′, t

)
dx′ (2.6)

with α = {f, c} for facilitation and competition, respectively. G(|x− x′| ;Rα) is the normalized190

interaction kernel for each of the intraspecific interactions191

G(
∣∣x− x′

∣∣ ;Rα) =


1

2Rα
if |x− x′| ≤ Rα

0 otherwise.
(2.7)

When the population density is uniform, the nonlocal model of Eq. (2.5) is mathematically192

equivalent to the cubic model used in the literature as the paradigmatic example of a population-193

level model with demographic Allee effect (Kot, 2001; Méndez et al., 2019; Oro, 2020a). This cubic194

model has two stable stationary solutions and one unstable. One of the stable stationary solutions195

is the extinction state. The second stable stationary state, ρ+, and the unstable one, ρ−, are the196
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roots of the quadratic equation r + β ρ− γ ρ2 = 0,197

ρ± =
β ±

√
β2 + 4γ r

2γ
. (2.8)

Finally, because ρ(x, t) is a population density, we must integrate it over the system size to198

obtain the total population size,199

A =

∫ L

0
ρ(x, t)dx. (2.9)

3 Results200

3.1 Group formation201

We first perform numerical simulations of the stochastic dynamics represented by the set of reactions202

in (2.1)-(2.4) using the Gillespie algorithm (Gillespie, 1977). For high diffusion, i.e. high values of203

h, the population reaches a steady state with a uniform spatial distribution of organisms (Fig. 2a,204

b). As diffusion decreases, however, individuals start to aggregate and the population develops a205

spatial pattern characterized by isolated clumps of organisms interspersed with unpopulated regions206

(Fig. 2c-f). Moreover, the total population size increases in the stationary state due to aggregation207

(Fig. 2g), indicating that grouping improves the environmental conditions and increases the system208

carrying capacity. The same type of spatial structure and population dynamics are observed in two209

dimensions (Fig. S1).210

Next, we compare these simulation outcomes with the results of integrating the deterministic211

approximation in Eq. (2.5). Our results return a very good quantitative agreement between the212

stochastic individual-level dynamics and the deterministic equation for population density (Fig. 3),213

which allows us to use the latter to investigate in which conditions aggregates form and their214

population-level consequences.215

To investigate whether organisms aggregate or not, we perform a linear stability analysis of216

Eq. (2.5). This technique consists in adding a small spatial perturbation to a stable uniform solution217

of the equation and calculating the perturbation growth rate. If the perturbation growth rate is218

negative, the uniform solution is stable and patterns do not form. Conversely, the perturbation219

leads to spatially periodic solutions or patterns if its growth rate is positive (Cross and Hohenberg,220

1993). We consider a solution of the form ρ(x, t) = ρ+ + ϵψ(x, t) where ρ+ is a uniform solution221

of Eq. (2.5), and ψ(x, t) an arbitrary perturbation modulated by an amplitude parameter ϵ << 1.222

We insert this solution into Eq. (2.5) and obtain an ordinary differential equation for the dynamics223

of the perturbation ψ(x, t). By linearizing and Fourier transforming this differential equation, we224

obtain the perturbation growth rate as a function of its wavenumber k (see Supplementary Material225
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Figure 2: Emergence of spatial patterns for different diffusion regimes. Spatial distribution of individuals
resulting from the individual-based stochastic model for (a-b, D = 0.08), intermediate (c-d, D = 1.2), and
high diffusion (e-f, D = 8). Top panels (a, c, e) show the number of individuals at each lattice node at the

end of a single simulation run. Bottom panels (b, d, f) show the temporal dynamics of the spatial
distribution of individuals. The leftmost panel (g) shows the dynamics of population size at high (green),

intermediate (red), and low (blue) diffusion together with the prediction from the non-spatial model
(black-dashed line), A = ρ+L. Bottom panels (b, d, f, g) share the same time scale in the vertical axis and

top panels share the same x axis as their bottom counterparts. Other parameter values for all panels:
b = 30, d = 40, β = 4, γ = 0.1, L = 10, Rf = 0.75 and Rc = 1, δx = 0.02; uniform initial condition. See

Supplementary Material section S6 for details on the algorithm.

section S2 for details of the calculation). This perturbation growth rate is226

λ(k) = ρ+

[
β
sin(Rf k)

Rf k
− 2γρ+

sin(Rc k)

Rc k

]
−Dk2. (3.1)

If λ(k) is positive for a given wavenumber k, a perturbation with that wavenumber will grow and227

create a regular pattern of population density. The wavenumber maximizing λ(k) in Eq. (3.1), kmax,228

defines the dominant periodicity of the spatial pattern at short times and is related to the periodicity229

of the long-term spatial pattern of population density. Hence, we can estimate the number of groups230

m that form in a system of size L as m ≈ Lkmax/2π. Moreover, we can better understand how231

the different processes and interactions included in the microscopic model contribute to pattern232

formation by analyzing term by term all the different contributions to the perturbation growth233

rate.234

First, the linear stability analysis shows that diffusion contributes with a negative term to235

Eq. (3.1) and hence tends to homogenize population density and eliminate patterns. Second, long-236

range competition and facilitation enter in the perturbation growth rate via the Fourier transform237

of their corresponding interaction kernel, which, in the case of the top-hat kernel chosen in our238

model, are damped oscillatory functions with interaction-specific frequency, magnitude, and sign239
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Figure 3: Comparison between the stochastic model and its deterministic limit. A) Population size as a
function of time for a single realization of the stochastic process (black line) and the deterministic

approximation (blue). B) Spatial distribution of individuals generated by the stochastic dynamics (thin
blue, orange, and green lines; each line represents a snapshot of the stationary spatial distribution of
individuals) and the deterministic approximation (blue thick curve). For the latter, we used an initial

condition ρ+ + ϕ(x), where ϕ(x) is a white noise uncorrelated in space with mean zero and variance ϵ≪ 1,
and transformed population density to size by multiplying the value of the density field in each of the PDE

integration nodes by the length of the lattice mesh used in the discrete simulations δx. Parameters and
lattice mesh are the same we used in Figure 2 (e, f). The deterministic simulations run until t = 1500, with

dt = 0.05 and dx = 0.008. See Supplementary Material section S6 for details on the algorithm.

(Fig. 4). The frequency of each oscillatory function is determined by the interaction range, while240

the magnitude is determined by the intensity of the intraspecific interaction. The sign preceding241

the each oscillatory function indicates how competition or facilitation impact population growth,242

with the negative sign corresponding to competition and the positive one to facilitation.243

To better understand the role of long-range competition and facilitation in the formation of244

aggregates, we next consider the limit cases in which each of these interactions vanishes or acts on a245

local scale. In the local competition limit, Rc → 0, the perturbation growth rate is always negative246

because ρ+ < β/(2 γ) when populations are uniformly distributed [see Eq. (2.8)]. Therefore, patterns247

do not form. However, if facilitation is local, Rf → 0, or vanishes, β = 0, the perturbation growth248

rate can still be positive for certain wavenumbers, and patterns can potentially form. Varying249

facilitation makes the fastest-growing wavenumber, and therefore the number of groups, oscillate250

around the value obtained when long-range interactions are purely competitive. Therefore, long-251

range competition is a sufficient and necessary condition for pattern formation, and it sets the252

periodicity of the long-term spatial pattern of population density. Facilitation, on the other hand,253

plays a secondary role in pattern formation, rearranging the pattern periodicity around the value254
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Figure 4: a) Perturbation growth rate as a function of the wavenumber k (red). The dashed lines
represent the contributions of the facilitation (blue) and competition (green) terms to λ(k). b) The fastest
growing wavenumber, kmax, as a function of Rf . The grey dashed line is the number of peaks predicted in
the absence of facilitation, β → 0. We use r = −2, D = 0.001and β = 1, γ = 1. For panel (a) we choose

Rf = 2.6.

set by the competition range (Rietkerk and Van de Koppel, 2008). Previous studies have already255

identified long-range competition as a cause of spatial patterns through the establishment of the256

so-called exclusion regions, i.e., regions between clusters of organisms in which individuals would257

compete with individuals from two neighbor groups (Hernández-García and López, 2004; Martínez-258

García et al., 2013, 2014). In fact, for low diffusion, our simulations show that the distance between259

aggregates is very close to the competition rangeRc, as expected when patterns form due to exclusion260

regions (Hernández-García and López, 2004; Martinez-Garcia et al., 2023; Pigolotti et al., 2007).261

Moreover, the spatial patterns of population density exhibit aggregates shorter than the range of262

both non-local interactions, which makes the intensity of competition and facilitation inside an263

aggregate approximately constant.264

3.2 The effect of the population spatial distribution on demographic Allee effect265

In the previous section, we investigated the conditions in which organisms distribute in non-uniform266

patterns of population density and quantified the features of the emergent aggregates. Next, we267

study how aggregation impacts the demographic Allee effect compared to a uniformly distributed268

population. More specifically, we focus on how group formation affects the main features of a strong269

demographic Allee effect: the stationary population density, the Allee threshold, and the value of270

the net growth rate at which extinction is the only stationary state, rc. Because we are interested in271

the strong Allee effect regime, we limit our analysis to negative density-independent net population272

growth rates, r < 0. In this parameter regime, if the population density is uniform, from Eq. (2.8),273

we find that rc = −β2/(4 γ) and both ρ+ and ρ− exist and are positive for r ∈ [rc, 0]. This range274

of values of r defines the region of the parameter space in which the population exhibits a strong275

demographic Allee effect, with Allee threshold equal to ρ− and stationary population density ρ+.276
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As we already saw from the simulations of the stochastic individual-based dynamics, aggregation277

increases the stationary population density. The Allee threshold becomes space-dependent, and it278

is determined by the local density of individuals within the competition and facilitation ranges.279

This local densities, in turn, depend on the number and spatial arrangement of groups. Finally, rc280

decreases due to aggregation (Fig. 5). As a result of these changes in rc and the Allee threshold,281

populations exhibiting a self-organized spatial pattern of population density and a component Allee282

effect can persist in harsher environments and at higher numbers than uniformly distributed popula-283

tions. Moreover, because spatially structured populations have lower Allee thresholds, they are less284

susceptible to extinctions caused by environmental perturbations and can recover after extinction285

following smaller fluctuations than uniformly distributed populations. We obtained these results286

using the deterministic approximation in Eq. (2.5), which allows us to compute both stable and287

unstable solutions of our model (see Supplementary Material section S3 for a detailed description288

of how we obtained the bifurcation diagram in Fig. 5). We further tested these predictions with289

direct numerical simulations of the individual-level stochastic dynamics and obtained a very good290

agreement for most values of r. The disagreement between the deterministic approximation and291

stochastic simulations appears for values of r close to rc. In this regime, fluctuations in population292

size can take the population size below the Allee threshold and cause extinctions more easily (Den-293

nis, 2002). Thus, fluctuations become an important driver of population dynamics in this parameter294

regime, and the mean-field results diverge from the stochastic ones.295

To develop a more mechanistic understanding of how spatial patterns impact the properties of296

the demographic Allee effect, we further approximate the deterministic equation (2.5) for population297

density by a network, metapopulation-like description in which each node or population represents298

a group of individuals and each link represents the existence of inter-group facilitation. We build299

this approximation based on three features of the spatial patterns of population density. First,300

all individuals within a group must interact with one another via competition and facilitation.301

Mathematically, this means that competition and facilitation ranges must be greater than clusters302

of organisms. Second, individuals of different groups must not compete with each other. In terms303

of our model, this condition implies that the competition range must be shorter than the distance304

between pattern aggregates. Finally, if two groups interact with each other via facilitation, this305

positive interaction must reach all the individuals in both groups. Therefore, the facilitation range306

must be large enough to encompass all the individuals of a neighbor group. The first two assumptions307

are only met when diffusion is low, and the spatial structure of the system is determined mainly by308

the finite-range ecological interactions. The last assumption is correct provided that the first two309

are met, except for specific values of Rf for which the facilitation range reaches neighboring clusters310

partially. Considering these three assumptions, the number of individuals in each group changes311
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Figure 5: Effect of spatial self-organization on the demographic Allee affect. Population abundance as a
function of the net population growth, r, obtained from: the deterministic density equation when patterns
develop, Eq. (2.5) (blue points and blue lines); the non-spatial cubic model (blue lines); the meta-population

approximation, Eq. (3.3) (dashed red line); and the stochastic dynamics (black circles with error bars
indicating the variance of 50 independent realizations). The filled points and the blue solid line represent a
stable equilibrium, whereas the empty symbols and blue dashed lines represent unstable equilibrium states.

The deterministic simulations run until t = 1500, with dt = 0.05 and dx = 0.008. The stochastic model
runs until t = 500 with β = 10−1, γ = 10−3, Rf = 0.5, Rc = 1 and δx = 0.02. All simulations are done with

L = 32 and D = 10−3. See Supplementary Material section S6 for details on the numerical methods.

according to (see Supplementary Material section S4),312

∂N (t)

∂t
=

[
r + β(η + 1)

N (t)

2Rf
− γ

N 2(t)

4R2
c

]
N (t), (3.2)

which is a cubic equation for the dynamics of group size, N . This equation encodes all the informa-313

tion about the underlying network of inter-group interactions in the parameter η, which defines the314

number of groups that interact with a focal group via facilitation, excluding the focal group itself.315

Solving Eq. (3.2) we can obtain the possible stationary group sizes N0 = 0 (extinction) and:316

N± =

(η + 1)
β

2Rf
±

√√√√((η + 1)
β

2Rf

)2

+
rγ

R2
c

γ/2R2
c

. (3.3)

The predictions of this metapopulation-like approximation for rc and the steady-state population317

size are in excellent agreement with those of the density equation and the outcome of the stochastic318
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simulations (Fig. 5). In addition, mapping the spatially explicit dynamics to a set of coupled319

ordinary differential equations allows us to obtain analytical expressions for these two features of320

the demographic Allee effect in the presence of spatial patterns of population density. The steady-321

state population size is A = mN+, where N+ is given by Eq. (3.3) and m is the number of groups322

that we can estimate from the pattern wavelength predicted by the wavenumber that maximizes323

the perturbation growth rate in Eq. (3.1), kmax. Imposing N+ = N− in Eq. (3.3), we can calculate324

the critical value of the net growth rate that can sustain a non-zero population size,325

rc = −γ−1

[
β

2

Rc

Rf
(η + 1)

]2
. (3.4)

As expected, rc decreases with increasing facilitation and decreasing competition strength. In326

addition, rc decreases when the number of groups that interact with one another increases. More327

specifically, for certain net growth rates r, a population would only be able to survive provided that328

groups facilitate each other (Fig. 6c), which makes long-range interactions a necessary conditions329

for population survival. Notice, however, that when the facilitation range increases and groups rely330

on one another for survival, the whole population becomes less resistant to local perturbations that331

might cause global extinctions due to the high connectivity between groups.332

Organism grouping sets new ways in which the individual-level component Allee effect manifests333

at the population level and determines the Allee threshold. We analyze these possible outcomes334

for different numbers of groups and facilitation ranges using the metapopulation-like approximation335

in Eq. (3.2) that gives the dynamics of each group independently. Mimicking the one-dimensional336

landscape we used in all previous analyses, we consider that groups are arranged in a line. However,337

we do not consider periodic boundary conditions to prevent the number of groups from being338

effectively infinite. If the facilitation range is short so individuals in different groups do not interact339

with one another, the fitness of the individuals within each aggregate only depends on group size340

(Fig. 6a), and groups are independent units. In consequence, the formation or extinction of a group341

does not have any effect on the others, and the minimum population size that ensures population342

survival is equal to the Allee threshold of one single group, N− from Eq. (3.3) with η = 0. If the343

facilitation range is such that groups interact with one another, the fitness of the individuals can344

increase significantly due to the presence of neighbor groups. As a consequence, group size increases345

in the presence of more groups (Fig. 6b and 6c), and the Allee threshold is N− from Eq. (3.3)346

with η > 0. For very harsh environmental conditions (low r) the population only survives if groups347

facilitate one another (Fig. 6c).348

Finally, we computed the stationary-state population size as a function of the diffusion coeffi-349

cient to evaluate the range of diffusion intensity at which the first two assumptions underlying the350
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Figure 6: Demographic Allee effect in a population composed of groups. Here, we set the number of
groups in the system and compute the size of a single group in the stationary state, N+. The red symbols

correspond to a situation in which groups are isolated, r = −2 and Rf = 0.5; blue and green symbols
correspond to cases with inter-group facilitation with Rf = 2 and r = −2 (blue) and r = −100 (green). For

all cases, Rc = 1

group-level approximation in Eq. (3.2) remain valid (Fig. 7a). Consistently with the simulations of351

the stochastic individual-based dynamics (Fig. 2), we observe that the total population abundance352

decreases as diffusion increases. In the low-diffusion regime, the population abundance agrees with353

the predictions of the meta-population approximation. However, as diffusion increases, diffusion354

takes control of the spatial dynamics, and the assumptions underlying the metapopulation approx-355

imation stop being valid. As a result, the population density decreases until diffusion reaches a356

critical value (black dashed line in Figure 7a), at which patterns do not form and the population357

abundance is equal to that predicted by models assuming uniformly distributed individuals. We358

also observe this decrease in population density in the spatial patterns of population density, which359

tend to become uniform as diffusion increases (Fig. 7b).360

4 Discussion361

We theoretically investigated the demographic consequences of a component Allee effect across362

various levels of spatial organization (Fig. 1). Our framework incorporates a component Allee effect363

arising from reproductive facilitation, which makes the reproduction rates of a focal individual364

increase with the population density within its neighborhood, and growth limitation caused by365

intraspecific competition. Extending our analysis to other types of individual-level interactions366
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Figure 7: (a) Effect of increasing diffusion on the population abundance. Self-organized spatial patterns
disappear when diffusion increases and the population abundance decreases from the metapopulation

prediction N+ to the uniform solution ρ+. (b) Effect of diffusion on spatial patterns, stationary patterns of
population density for different diffusion intensities (color code indicated in the legend). The black dashed
lines limit the extent of the facilitation range, Rf . Parameter values (for both panels): t = 2× 104, with

dt = 0.05, dx = 0.008, L = 32 and parameters: r = −2, Rf = 0.5 and Rc = 1.

leading to component Allee effects, such as social behaviors, mate limitation, or environmental367

conditioning (Courchamp et al., 2008; Oro, 2020b) is straightforward. We focused on quantifying368

the impact of the spatial distribution of organisms on specific features of the demographic Allee369

effect, such as the Allee threshold, the long-term total population size, and the lowest value of the370

density-independent growth rate for which the population survives. We measured these quantities371

in both uniformly and non-uniformly distributed populations.372

Our approach, similarly to Surendran et al. (2020), differs from non-spatial and spatially implicit373

metapopulation models by explicitly considering the range of interaction for both reproductive fa-374

cilitation and crowding effects. This level of detail is partially captured by metapopulation models,375

which assume that individuals only interact with others within the same population. Metapopula-376

tion frameworks, however, assume a fixed population structure in groups, whereas groups emerges377

naturally from individual-level processes in our model. This explicit description of the processes378

the lead to grouping allows us to identify the individual-level processes that control for each of379

the population-level features of the demographic Allee effect and subsequently manipulate them to380

understand how different spatial structures impact the demographic Allee effect.381

In addition, limiting the mechanisms responsible for the component Allee effect to a finite382

neighborhood around each focal individual makes the population dynamics and the features of the383

emergent demographic Allee effect depend on local, instead of total, population densities. For384

example, the Allee threshold becomes a local feature of the population that depends on the density385

of individuals within a given region of the landscape. This locality of the Allee threshold might386
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enable the survival of local populations in situations where the global density is very low, which is387

especially relevant when spatial fluctuations in population density are high, such as in the presence388

of clumps of organisms or groups. This strong dependence of the Allee threshold on the spatial389

population structure might help to explain field studies reporting population survival at low global390

population densities (Lundquist and Botsford, 2011; Rijnsdorp and Vingerhoed, 2001; Woodroffe,391

2011).392

Our model also provides the appropriate theoretical framework to formalize the group Allee393

effect and integrate it within a unifying modeling approach (Angulo et al., 2018, 2013). When394

organisms aggregate, one can consider the groups as the fundamental units of the population. If395

competition acts on a longer range than facilitation, these groups are independent units that do not396

interact with one another. In consequence, the component Allee effect impacts the demographics of397

a single group, resulting in a demographic group Allee effect that only determines the population398

dynamics within that group. This same argument can be extended to cases in which facilitation399

acts on a longer range than competition. In this limit, groups interact with one another, which can400

result in a group-level Allee effect when the fitness of a group increases in the presence of neighbors.401

This group-level component Allee effect scales to the population level by creating an emergent402

demographic Allee effect acting on groups that can even result in the existence of a minimum403

number of groups to ensure population survival.404

Beyond group-level processes, spatial heterogeneities in population density favor population sur-405

vival as long as the density within a region of the landscape is locally above the Allee threshold.406

Moreover, because groups in our model form in response to long-range competition, aggregation407

minimizes competition and results in larger global population sizes that are less prone to extinction408

due to demographic fluctuations (Dennis, 2002). Aggregation also lowers the Allee threshold signif-409

icantly, which favors the persistence of local populations at lower population densities. This local410

decrease in the Allee threshold is different from the effective decrease in the global Allee threshold411

discussed above, which is related to the locality of the Allee threshold rather than to its value.412

Finally, as found in previous studies, our model predicts that aggregated populations can survive in413

harsher environments than uniformly distributed populations. That is, uniformly distributed pop-414

ulations exhibit a higher value of rc than populations that develop self-organized spatial patterns415

(Surendran et al., 2020).416

Our model provides the simplest framework to study Allee effects across levels of spatial orga-417

nization and a unifying theoretical approach to understand how Allee effects operate for different418

population structures. To keep it as simple as possible, we made some simplifying model assump-419

tions. The choice of the component Allee effect, as we discussed before, can be easily changed420

by modifying the set of individual-level demographic reactions. Other assumptions, such as the421
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choice of the interaction kernels, would not change our results provided that they lead to spatial422

pattern formation (Colombo et al., 2023; Martínez-García et al., 2013; Pigolotti et al., 2007). One423

could also consider a different mechanism responsible for spatial pattern formation, and our results424

would hold provided that spatial patterns emerge in the form of clumps of population density. We425

considered non-local interactions as the pattern-forming mechanism because it is the most straight-426

forward way to create aggregation patterns (Martínez-García et al., 2014). An interesting direction427

for future research, however, would be to consider alternative pattern-forming interactions, such as428

density-dependent movement or resource-consumer interactions, leading to a larger variety of spa-429

tial patterns in population density, such as labyrinths and gaps (Liu et al., 2013; Martinez-Garcia430

et al., 2015, 2022; Rao and Kang, 2016; Rietkerk and Van de Koppel, 2008). Finally, our model-431

ing framework is also easily extendable to include interactions between several species (Maciel and432

Martinez-Garcia, 2021; Simoy and Kuperman, 2023), thus providing a theoretical tool to investigate433

community-level consequences of different component Allee effects.434

5 Conclusions435

We investigated the demographic consequences of an individual-level component Allee effect in a436

spatially extended population (Fig. 1). We departed from a mechanistic description of how the vital437

rates of a focal individual depend on the density of conspecifics around it. Our model, therefore,438

accounts for spatial processes both through the spatial population structure and the range of the439

different interactions among them. We considered the most straightforward set of processes leading440

to a demographic Allee effect, which in the non-spatial limit collapses to a cubic model (Kot, 2001;441

Méndez et al., 2019). Starting from this description of the individual vital rates, we present a442

series of mathematical techniques to investigate the population-level how a component Allee effect443

manifests across various characteristic spatial scales of the population.444

For the specific component Allee effect we studied here, we show that aggregation changes445

three main population-level features characteristics of Allee effects. First, aggregation enhances446

population density locally and thus allows the population to persist in harsh environments where447

uniformly distributed individuals would go extinct. Second, aggregation results in localized sub-448

populations that follow independent dynamics from one another and might eliminate the population-449

level Allee effect. Finally, aggregation decreases competition by limiting its effect to individuals450

within the same group. Consequently, aggregation reduces the Allee threshold and increases the451

total population size. More generally, our work emphasizes the potential that models developed452

from a rigorous description of the individual-level interactions and processes have to improve our453

understanding of observed patterns and trends in population dynamics.454
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