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Abstract10

Optimal feedback control provides an abstract framework describing the architecture of the sensorimotor11

system without prescribing implementation details such as what coordinate system to use, how feedback is in-12

corporated, or how to accommodate changing task complexity. We investigate how such details are determined13

by computational and physical constraints by creating a model of the upper limb sensorimotor system in which14

all connection weights between neurons, feedback, and muscles are unknown. By optimizing these parameters15

with respect to an objective function, we find that the model exhibits a preference for an intrinsic (joint angle)16

coordinate representation of inputs and feedback and learns to calculate a weighted feedforward and feedback17

error. We further show that complex reaches around obstacles can be achieved by augmenting our model with18

a path-planner based on via points. The path-planner revealed “avoidance” neurons that encode directions to19

reach around obstacles, and “placement” neurons that make fine-tuned adjustments to via point placement.20

Our results demonstrate the surprising capability of computationally constrained systems and highlight new21

characteristics of the sensorimotor system.22

Introduction23

Optimal feedback control (OFC) has emerged in the last two decades as a useful and general theoretical framework for24

understanding the sensorimotor system [TJ02; Sco04; Sco+15]. In OFC, the motor cortex is viewed through the lens25

of control theory: the motor cortex and effectors such as the arm are viewed as dynamical systems, where the motor26

cortex is a controller whose job is to move the effector in a way that optimally achieves some goal, such as reaching27

a target in minimal time or energy use. The controller also receives sensory feedback, both visual and proprioceptive,28

which is used to estimate the state of the effector and compare it to the desired state in order to continually generate29

corrections to the current movement path.30

31

OFC explains features of actual movements, but is agnostic on implementation32

OFC has been successful in explaining many features of movement such as the shape of reach trajectories and33

velocity profiles [FMB13], triphasic patterns of neural activity and changes in directional tuning [TMK07], and biases34

in the preferred directions of neurons [LS13]. However, while providing a useful framework for the overall structure35

of the sensorimotor system, it is agnostic on the details of how feedback control may be implemented by populations36

of neurons, although recent studies have sought to tease out the brain regions that may form the components of an37

OFC system [Tak+21; DAl+22]. Under dynamical systems based approaches like OFC, the activity of a region or38

population of neurons may not consistently represent something like the velocity of a hand or the coordinates of a39
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target [Vya+20; Chu+10].40

41

Many experiments have found neural correlates of coordinate systems42

This representational neutrality leaves us the job of understanding how the neural correlates of coordinate systems43

and their transformations fit into the more abstract OFC framework. Experiments using wrist movement have shown44

that subsets of M1 neurons display activity that modulates with the preferred direction of muscle as well as the di-45

rection of movement [KHS99]. In a reaching task, Kurata found that neurons could be classified into types whose46

activity depended on target locations in head-centered visual coordinates or motor coordinates, as well as neurons that47

had either differential or non-differential activity for both coordinates and thus could be contributing to coordinate48

transformations [Kur07]. Most directly, [WH06; WH07] compared the mutual information between the firing rate of49

primary motor, dorsal pre-motor, and ventral pre-motor (PMv) neurons and the movement direction during a reach task50

in three different coordinate systems: an extrinsic cartesian, intrinsic joint angle, and intermediate shoulder-centered51

system that rotates with the shoulder. They found evidence for all three coordinate systems, with a small bias for a52

shoulder-centered system in M1 and for both shoulder-centered and joint angle coordinate systems in PMv.53

54

Optimizing the sensorimotor architecture for simple reaches55

In the first part of this paper, we ask what aspects of the motor control system can be uncovered within the OFC56

framework when we simulate realistic effector kinematics and apply computational limitations in the controller during57

simple reaches. In particular, we seek to gain insight into the following questions: 1) Is there a preferred coordinate58

system in the representation of movement? and 2) How are feedback and input signals incorporated by an optimal59

controller into its dynamics?60

We study these questions by creating an architecture wherein the motor cortex is modeled as a linear system that61

provides outputs to the end effector, a nonlinear physics-based model of the primate arm, and the state of the effector62

is fed back to the motor cortex. The connection weights between neurons, muscles, and feedback are all unknown.63

We give the controller input and feedback in both cartesian and joint angle coordinate systems, and then optimize its64

neural connectivity over a large set of reaches with respect to a simple objective function that penalizes position error65

and energy use. Importantly, the controller is able to make accurate and efficient reaches between any two points in66

the workspace and is not fit to experimental data or optimized for a particular task such as a center-out reach. We67

find that a strong preference emerges for joint angle coordinates and that the system naturally learns to compute an68

error feedback signal.69

70

Augmenting the optimal sensorimotor architecture for complex reaches71

In the second part of this paper we consider how more complex reaches around obstacles can be achieved by72

augmenting the control system that was developed for simple reaches. We explore the use of via points - intermediate73

targets that guide the reach along an arbitrary path - as inputs to our M1 model and show that, when carefully chosen,74

they allow the model to successfully navigate around obstacles. We propose a simple method for determining via75

points that maintains a high rate of obstacle avoidance and show that it can be implemented by a (non-linear) feed76

forward neural network that serves as a PM-like “planning area” for our simple reach model with linear controller. We77

use lesion studies to analyze groups of neurons in the trained network and find that some neurons tend to specialize78

for calculating via points in particular regions of space or reach directions, while others are broadly responsible for79

biasing the via point to the left or right of the line between the initial position and target.80

Online Methods81

Arm model82

We constructed a two-dimensional, physics-based arm model with two joints and six muscles. There are two83

bones, an upper arm bone mimicking the humerus and a lower arm bone mimicking the ulna. Masses and lengths of84

the upper and lower arm segments were set to typical values of the Rhesus macaque (Macaca mulatta), taken from85

[CS00]. The joints consist of a shoulder and elbow joint, each of which has its angular motion soft-constrained by an86

exponentially increasing opposing force to realistic ranges (between -45 and 135 degrees for the shoulder, where 0 has87

the arm pointing out to the right, and between 0 and 135 degrees for the elbow, where 0 is complete extension).88

Joint torques in the arm model are produced by a set of six muscles whose role is to mimic the action of one or more89

real muscle groups. The muscles consist of two uniarticular shoulder muscles, two uniarticular elbow muscles, and90
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two bijoint muscles which span both the shoulder and elbow as shown in Fig. 1A. Each pair of muscles consists of a91

flexor and an extensor. Muscle moment arms were taken from [TMK07]. For simplicity, muscles are assumed to have92

linear dynamics of the form ṁ = 1
tm
(�m+ In) where m is the muscle activation, tm = 0.02 sec is the activation (and93

deactivation) time constant, and In is the neural input function which will be made explicit below. For a given muscle94

activation level, the torque about the spanned joint is calculated by multiplying the muscle activation by the maximum95

muscle force and the moment arm. The kinematics and equations of motion for the arm were derived using standard96

techniques (see i.e. [TMK07; LS13]). The equations of motion will be denoted ṙ = R(r,m), where r = [q f q̇ ḟ ] is97

the vector of joint angles and angular velocities.98

99

Neural model100

The arm model is controlled using a linear dynamical system with feedback shown on the first line of equation101

1. The set of neuronal units has some firing rate at time t denoted by the vector x(t), and all units receive input from102

other neuronal units with weights given by the neuron-neuron connectivity matrix A and a bias vector B0 that sets the103

baseline firing rates. The i, j entry of A is the weight that unit i places on input from unit j. In addition, units receive a104

set of inputs denoted by SiBiui, where each ui is a static input vector to the system and Bi is the corresponding weight105

matrix that maps the input into the neural state space. We consider two different coordinate systems in the horizontal106

plane - an orthogonal cartesian coordinate system that is fixed with respect to the body and represents points as (x,y)107

pairs with the origin at the shoulder, and a joint angle coordinate system that represents points as (q ,f) pairs consisting108

of the shoulder angle relative to the x axis and the elbow joint angle as shown in Fig. 1B. The inputs u1 and u2 are the109

starting position of the hand in cartesian and joint angle coordinates, respectively, and inputs u3 and u4 are the position110

of the target in cartesian and joint angle coordinates. Finally, the neuronal units receive feedback denoted by SiCivi(t),111

where each vi(t) is a time-varying feedback function and Ci is the corresponding weight matrix. v1(t) and v2(t) are the112

current hand position in cartesian and joint angle coordinates, and v3(t) is the muscle activation level for each of the 6113

muscles.114

The neural model is coupled to the muscle dynamics via the neural input function In = s(D0 +D1x) where D1 is115

the neural population to muscle connectivity matrix, D0 is a bias term, and s(x) = 1/(1+e�x) maps the input between116

0 and 1. In summary, the dynamics of our coupled motor cortex and arm model are given by:117

ẋ = Ax+B0 +
4

Â
i=1

Biui +
3

Â
i=1

Civi(t)

ṁ =
1

tm
(�m+s(D0 +D1x))

ṙ = R(r,m)

(1)

and illustrated by the diagram in Fig. 2. Smoothly time-varying noise was added to the joint angle feedback in the118

form of a draw from a gaussian process with a standard deviation (amplitude of the gaussian kernel function) ranging119

from 1.8 degrees to 36 degrees and autocorrelation scale (standard deviation of the kernel function) of
p

0.1. The120

autocorrelation scale sets how rapidly the noise changes over time. In our case, we have it change relatively slowly so121

that it represents a drift in the estimated joint angles.122

Because each neural unit in our model has a smooth output that represents a mean-subtracted firing rate and can123

have both positive and negative connections to other units, we consider the units as abstractly representing neurons124

or populations of neurons with similar sets of inputs and activation patterns. We therefore use the terms ”neurons” or125

”neural units” to refer to them.126

127

Optimization128

Given a training set of S samples consisting of starting points and targets (no obstacles) spread uniformly over129

the reachable space and a time window of length T in which to make each of the reaches, we optimized the matrices130

A, {Bi}, {Ci}, D0, D1 simultaneously in our model with respect to the following objective function:131

S

Â
i=0

TZ

0

b1 kposition error(t)k2 +b2 kx(t)k2 +b3 km(t)k2 +b4 kAk1,1 +b5 kD1k1,1 (2)
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where position error(t) is the time-varying difference between the position of the hand and the target, b1, b2, and132

b3 are fixed parameters which set the amount of penalization for position error, neural activity, and muscle activity,133

and b4 and b5 set the penalization on neuron to neuron and neuron to muscle connectivity. We set b2 and b3 approx-134

imately 1/200 the size of b1, and b4 and b5 approximately 1/105 the size of b1. Note that the norms for the A and135

D matrices are the entry-wise L1 norms (the sum of absolute values of the entries of the matrix) to promote sparsity,136

while the norms for the other terms are the standard L2 norm squared (sum of squares of entries). T was set to 1137

second and S = 10,000 training samples were used. We set the number of neurons in our model (the dimension of x)138

to 20. Experiments with varying numbers of neurons showed that performance was relatively consistent across a wide139

range between 10 and 200 neurons thanks to the sparsity penalty on A, which effectively pruned unneeded neurons.140

The optimization was accomplished using Pontryagin’s adjoint sensitivity method [Pon+63], in which gradients are141

calculated by formulating and numerically solving an ordinary differential equation (ODE) called the adjoint ODE142

backwards in time. The system of differential equations comprising the equations of motion, neural and muscle dy-143

namics, and adjoint equations was coded in python using the NumPy and SciPy numerical libraries and integrated144

using an adaptive fifth order Runge-Kutta method [Har+20; Vir+20]. Gradient descent using the BFGS algorithm with145

the calculated gradient vectors was performed until convergence [Vir+20].146

147

Obstacles148

Reaches around obstacles were accomplished by augmenting the linear neural controller described above with149

time-varying intermediate targets (“via points”) that replace the fixed final target input used in unobstructed reaches.150

Based on the assumption that the optimized linear controller makes reaches in approximately straight lines, we propose151

a simple method, called the visual cone method, for calculating via points that allow the effector to move around an152

obstacle. At any given time, the set of rays passing from the current hand position to the set of points that produce153

trajectories that intersect the obstacle forms a cone, and any via point outside this cone is in what we call the “safe154

region,” meaning that a reach to a point in this region will never hit the obstacle if it travels in a straight line from155

the starting point to the via point. The safe region and its cone-shaped complement, the ”unsafe region”, for a given156

starting point and target are shown in Fig. 1C. Finding the cone and whether a via point is safe is a simple calculation.157

Assume we know the current hand position p, the location of the center of the obstacle a distance d from p, and the158

obstacle’s radius r. Let w denote the vector from the current position to the obstacle center and v the position of a159

potential via point. The vector q pointing along one side of the cone is found by rotating w by an angle a = sin�1(r/d).160

The potential via point v lies in the safe region if161

w · v�p

kv�pk < w · q

kqk (3)

Physically, the safe and unsafe regions are closely related to whether a point is visible or not. The closest safe point162

is then found by projecting the target onto the nearest wall of the cone. Since trajectories of the model are in reality163

not exactly straight, we improve the obstacle avoidance rate by moving perpendicularly outward from the walls of the164

cone in both directions in small increments until we find a safe via point. This requires ”testing” points by running165

the forward model simulation; for the sake of speed we limit this to no more than 10 points on either side of the cone,166

although typically only one or two tests are needed as we accept the first valid point. The accepted via point is then167

fed to the linear controller as a new target, with updates occurring every 50 ms.168

169

Neural networks170

Although the visual cone method was constructed with simplicity and biological feasibility of the computations in171

mind, we further investigate its feasibility by training feedforward neural networks on the via points generated by the172

cone method in order to determine how complex a network would need to be in order to reproduce the outputs of the173

method. To simplify the task, we trained the neural networks on fixed length reaches of 18 cm, with 6 cm diameter174

circular obstacles placed at the midpoint of each reach. The reach direction and region of the workspace in which175

the reach occurred were random, as was the shift of the obstacle relative to the centerline of the reach (the straight176

line between the starting point and target), which could be up to 2 radii in either direction. Rather than continuously177

predicting via points throughout the reach, the networks were only required to output the first via point, as this was178

the primary via point that allowed the reach to move around the obstacle. After 50 ms, all subsequent via points179

were simply set to the final target position. The neural networks were feedforward networks with ReLU activation,180

either 10, 20, 50, 100, or 200 neurons in each hidden or input layer (the 2 neuron output layer predicted the via point181

coordinates), and between 1 and 6 hidden layers. The networks were constructed using the PyTorch framework and182

4
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trained for 1000 epochs with the Adam optimizer at a learning rate of 5⇥10�4 [Pas+17]. The most accurate network183

was then chosen for virtual lesion analysis. We clustered neurons in the final hidden layer of this network based on184

the vector of weights associated to each neuron (the set of weights that the neuron applies to inputs from the previous185

layer). This was accomplished by first calculating principal components and taking the top 3 as a reduced dimensional186

representation. K-means clustering was then used to identify clusters within the principal component space, with187

only consistently identified clusters across multiple random initializations and choices of cluster number k subject to188

analysis [Vir+20].189

Results190

Simple reaches: The optimized model reproduces several established features of the sensorimotor system191

After optimizing our model, we find that our model is able to reproduce several important aspects of M1 neurons192

and their generated movement from the experimental literature as shown in Fig. 3. The neurons in our model develop193

tuning curves and direction preferences that do not change with the length of the reach, reproducing experimental194

results by [Geo+82; FSE93]. Fig. 3C shows that direction preferences do change when the reach occurs in a different195

part of the workspace, with the preferred direction rotating clockwise as the task region (shown by dashed boxes)196

moves from left to right, reproducing results by [CJU90]. Finally, the overall wrist velocity curve of the optimized197

model is bell-shaped, with longer reaches developing higher peak velocities in similar proportion to that seen in ex-198

periments [CD19].199

200

The controller weights joint angle input and feedback over cartesian coordinates201

Optimization of the model occurs over a large set of random reaches throughout the workspace, and therefore it202

can perform a reach from any given starting point to any target. The center-out trajectories shown in Fig. 4A demon-203

strate that the model has learned an effective control policy that results in relatively straight and accurate reaches.204

In terms of the model parameters, the most apparent outcome of the optimization process is the difference in the205

sizes of the learned weights between the cartesian and joint angle input and feedback – the matrices B1 vs B2 (these206

weight the starting position in cartesian and joint angles, respectively), B3 vs B4 (weighting the target position), and207

C1 vs C2 (weighting the hand position), as shown in Fig. 4B. In all cases, the absolute values of the learned weight208

matrices corresponding to joint angles are more than 3 times larger on average than the learned weights for the cor-209

responding cartesian coordinates. Accounting for differences in the scale of the coordinates increases this even further.210

211

Feedback noise changes the operating mode of the controller rather than the coordinate system212

Another important outcome of the optimization is that the feedback (C2) and start position (B2) matrices become213

scaled, negative versions of the target (B4) weight matrix, showing that the model naturally learns to compute both214

feedback (target minus feedback) and feedforward (target minus starting position) error signals. When we increase215

the noise level in the joint angle feedback and retrain the model, we find that, as expected, the weighting applied to216

the now unreliable joint angle feedback decreases, as shown in Fig. 5A. However, rather than compensating with in-217

creased levels of cartesian feedback, the weighting applied to the cartesian feedback remains relatively constant while218

the weight given to the joint angle starting position increases significantly. Further, the complexity of the controller, as219

shown by the density of the neuron-neuron connectivity matrix in Fig. 5B increases significantly. Rather than switch220

coordinate systems, these changes indicate that the model prefers to continue using joint angle coordinates, but now221

in a manner more strongly driven by the feedforward error.222

223

Complex reaches: The visual cone method provides a computationally simple means of finding via points224

Although our linear neural system is effective at controlling the arm in simple reaches, we find that it struggles to225

navigate around an obstacle in a realistic way. We believe this is because there are two important nonlinearities which226

must be accounted for, as shown in Fig. 6A. The first is that when the center of the obstacle moves from one side of227

the centerline of the reach to the other, the direction of the reach must jump to the opposite side of the obstacle because228

this is now the shorter path. In addition, when the obstacle has shifted so much that it is no longer in the way, the shift229

in the reach must go to zero and remain there for any further shift of the obstacle. Our visual cone method takes into230

account these nonlinearities, and by using it to compute via points we are able to avoid hitting the obstacle 95% of the231

time.232

233
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A neural network can learn the visual cone method234

We fit a range of feedforward neural networks to via points generated by the visual cone method and found that235

a 3 hidden layer, 200 neuron network most accurately reproduced test set via points generated by the cone method,236

although most networks with at least 100 neurons and 2 hidden layers had satisfactory performance (see Supplemental237

Material Fig. S2A). Figure 6B compares the via point placement of the cone method (in black) versus the best trained238

neural network (in red) in 3 different regions of space and 4 reach directions. At the center of each region of space239

shown by the red circles on the leftmost column of Fig. 6B, an obstacle was placed and shifted by small increments up240

to 2 radii perpendicular to the centerline. For each obstacle shift, reaches were taken from one side of the circle to the241

other in the indicated directions. We see that the neural network is generally able to reproduce the visual cone method’s242

via points, and that the via point shift function often takes the expected zigzag shape shown in Fig. 6A. Individual243

reaches in each region of space and reach direction are shown in Fig. 6C. Each obstacle shift is colored according to244

the corresponding reach, and we can see how reaches typically move around the obstacle in the appropriate direction245

before reorienting towards the target. Due to the fact that the linear controller does not make perfectly straight reaches,246

i.e. for a given reach it may be biased to move toward the left or right, reaches sometimes take a longer path than247

necessary to accommodate this bias by going around the “wrong” side of the obstacle.248

249

Clustering reveals coarse ”avoidance” and fine-tuned ”placement” groups of neurons250

When we cluster neurons in the final hidden layer of our path planning network based on their input connectivity251

(the weights that they apply to inputs from neurons in the previous layer), lesioning reveals two main classes of252

neurons. The first are those that seem to encode a rough direction in which to go around an obstacle and have an253

influence across all regions of space, which we refer to as obstacle ”avoidance” type neurons. Pre and post-lesion254

effects of this cluster are shown in Fig. 7A and B. The gray panels in A) indicate the spatial regions and reach255

directions where lesioning had a significant (> 50% relative difference) impact on the via point distance from the256

reach centerline. Lesioning this cluster produced a very pronounced shift of the via points across nearly all regions257

and reach directions while keeping the shape of the placement curves relatively unchanged. The direction of the post-258

lesion shift depended on the reach direction and spatial region, with a rightward shift for upward or downward reaches259

in the left and center regions (the red line appears shifted in different directions for the upward and downward reaches260

because the orientation is flipped; in the physical space the shifts are both to the right), and a leftward shift in the right261

region. A similar phenomenon occurs in the center versus left regions for leftward and rightward reaches. In contrast,262

a cluster of the second type consists of what we call ”placement” type neurons, which are those that have a limited263

spatial-directional influence, making more fine-tuned adjustments to the via point placement in specific regions of264

space and reach directions. As shown in Fig. 7C and D, these type of neurons play an important role in adjusting the265

via point away from the centerline for certain obstacle positions while leaving the rest of the via point placement curve266

unchanged. In this example, the cluster adjusts via point placement for obstacles that are in the 90 degree clockwise267

direction from the reach, but only in the center and right regions of space and rightward and upward reach directions.268

Discussion269

In optimizing the controller, we emphasize again that the model is not fit to an experimental data set and is not trained270

for a specific task such as center-out reaches. The final controller is not necessarily optimal for any particular reach, but271

rather is locally optimal within the class of linear controllers with respect to the average error over the entire training272

set of reaches. A single set of neural weights is required to give appropriate controller dynamics for all reaches.273

Despite this, the optimization process nearly always yields a solution that works well in controlling the arm across the274

entire reachable space regardless of initial weights and a wide range of tuning parameters.275

Because they can be computed directly from muscle lengths, joint angles are more closely related to a coordinate276

representation that might be computed from proprioceptive feedback in the form of stretch and load information from277

muscle afferents. In contrast, extrinsic coordinates are more closely related to visual input and intermediate retinotopic278

coordinates. In primates, proprioceptive feedback is likely to be noisier than visual feedback, but this is balanced279

by the fact that visual feedback has much longer delays – approximately 135 ms versus 60 ms for the long-latency280

muscle response generated through the transcortical pathway involving M1 and 30 ms for spinal level feedback [Car81;281

Mat91]. When we increased the noise in the joint angle feedback but not the cartesian coordinate feedback during282

training, the model continued to use joint angle coordinates in a feedforward mode rather than switching to cartesian283

coordinates. This suggests that differences in noise level result in changes in the type of computation (feedforward284

6

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.14.540714doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.14.540714


versus feedback) rather than changes in the preferred coordinate system. Our model assumes no feedback delays in285

either coordinate system; adding significantly higher delays in the visually-inspired cartesian coordinate system would286

only further increase the preference toward joint angles.287

If we only give the model access to cartesian coordinate input and feedback, we find that the linear controller is288

incapable of producing accurate and efficient reaches regardless of how much we penalize position error or muscular289

effort (see Supplemental Material Fig. S1B). We believe the model prefers to use joint angle coordinates because of the290

simpler error feedback relationship between muscle activations and the movement of the hand. A positive difference291

between the target and current joint angle always requires flexor activation while a negative difference always requires292

extensor activation, whereas in cartesian coordinates, the muscles required to correct a displacement in either the x or293

y coordinate may be completely reversed depending on where the hand is in space.294

There are many possible coordinate systems, and in this study we chose two examples that are on opposite ends295

of the intrinsic/extrinsic spectrum. The important thing from the point of view of the controller is that the preferred296

coordinate system have a relatively direct relationship to the error, rather than that it be joint angles specifically. The297

fact that a simple linear controller is sufficient for a wide range of movements shows that controller complexity and298

cost due to the number of synapses and neurons that need to be maintained can be significantly reduced when the right299

coordinate representation is used. Although motor cortex is not necessarily a linear system, evidence indicates that300

this may be a reasonable approximation. Studies by Evarts, Cheney, and Fetz showed that many M1 neurons have301

activity that closely tracks the magnitude of applied torque across joints, and over a large part of the tested range, M1302

neuron responses varied linearly with the level of static force [Eva68; CF80]. However, later work by Georgopoulos303

and many others using center-out tasks pointed to cartesian movement directions as the information encoded by M1304

neurons [Geo+82]. Our model shows that cartesian direction preferences and cosine tuning curves are seen in center-305

out tasks even when computation occurs primarily in a joint angle coordinate system. Although in theory a sufficiently306

complex system could allow any coordinate system to be used, computational costs imposed by biology make it likely307

that coordinate representations are carefully chosen in the brain to account for the degrees of freedom and musculature308

of the arm, even if they are not as simple as the pure joint angle coordinates used in this study. In our model, we note309

that a coordinate system is not explicitly represented in the activity of the neurons themselves. After multiplication310

by the weight matrices, the neurons work with an abstract N-dimensional linear combination of the two joint angle311

coordinates, and their activity reflects muscle activation in our model. Despite the lack of an explicit representation in312

neural activity, the properties of the coordinate system in which inputs and feedback are presented to the controller are313

integral to its performance.314

Our model learns to compute an error signal consisting of the difference between the current and target hand315

position. Several studies support the idea that an error signal is formed in M1 and that the size of the response316

increases with the error signal [Omr+16; IUK16]. This error feedback component of the control input allows for a317

simple controller because the error signal has a direct relationship to the output signal in the appropriate coordinate318

system. In contrast, in order to accomplish primarily feedforward control, as we see occurs in our model when319

feedback is noisy, the connectivity and therefore the complexity of the motor system must be greatly increased, as320

seen in Fig. 5B. This occurs because, without accurate error feedback, the controller must invert the dynamics of the321

effector in order to create a sequence of signals that produce a trajectory which reaches the target. Instead of simply322

reacting to an error signal, it must now “plan” in the sense of using the connections between neurons to produce323

dynamics in the neural state space that, when composed with the arm system, are the identity – the output of the324

system (the hand position) is equal to the input (the target). However, since the arm dynamics are non-linear, the325

computationally constrained linear brain model cannot accomplish this effectively and trajectories are degraded.326

The neuron to muscle connections generally form an overcomplete basis for movement since there are 6 muscles327

but only 4 are required to move the arm to any position (an extensor and flexor for each degree of freedom). A priori,328

one might expect that an L1 penalty on neuron to muscle connections such as the one we impose on our model would329

result in a minimal basis with each neuron population activating only a single muscle. What we find instead is that each330

neuron population tends to connect to multiple muscles across both joints and simultaneously deactivate antagonist331

muscles, in a fashion similar to corticomotoneuronal muscle fields in primates.332

For reaches around obstacles, the inherent nonlinearity of the task suggests that a more complex computation333

must occur with support from non-M1 regions, an idea backed up by lesion experiments [MK77]. Via points are334

a possible means by which a controller for simple reaches could be augmented to produce more complex reaches.335

Several studies have shown, using a double-step paradigm in which target locations are changed mid-reach, that online336

course-correction mechanisms of the type that would presumably be used in via point navigation result in smooth337

trajectories and depend on the posterior parietal cortex to integrate visual and somatosensory information and present338

7

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.14.540714doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.14.540714


this to PM and M1 [Arc+15; SM15]. Whether there exists a ”path planning system” that provides intermediate targets339

for a lower level system that accomplishes simple reaches in the way we have modeled is unknown. However, we340

believe that such a system may be biologically feasible, and our lesion study of a neural network implementation has341

provided potential neural tuning characteristics of such a system.342
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Figure 1: A) The model macaque arm, depicted with head to indicate forward direction and relative position and
size. Three pairs of muscles are included in the model: shoulder (blue), elbow (orange), and bijoint (red) flexors and
extensors. B) Joint angle coordinates q and f represent the angle between the upper arm and the x axis and the angle
between the upper and lower arm, respectively. The crescent-shaped shaded gray region shows the reachable area of
the arm. C) Illustration of the cone method for determining potential via point locations when an obstacle (shown as
a gray circle) is present in the path of the reach. Via points may be placed anywhere in the safe region defined as the
complement of the cone formed by the current position and the edge of the obstacle.
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Figure 2: A block diagram of the motor cortex and arm model.
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Figure 3: Comparison of model characteristics after optimization (left column) compared to experimental literature
(right column). A) Tuning curves displayed by model neuron units on a center-out task, versus experimental tuning
curves from [Tam+19] (plotted from data in [Mat+18]). B) Stability of neuron direction preferences across reach
lengths in model versus experiments in [FSE93]. C) Rotation of the preferred directions of neurons as the workspace
shifts from left to right. The region in which the center-out task was performed are indicated by the dashed squares
(left, center, and right) in the model and by the boxes in the experimental illustration [CJU90]. The vector labeled
”PD” in both images indicates the preferred direction of a single neuron. D) Bell-shaped velocity curves for reaches
to a target of varying length versus experimental data from [CD19].
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Figure 4: Cartesian versus joint angle weighting after optimization. A) Example center-out reaches of the optimized
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performed. B) Weight matrices after optimization.
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feedback matrices (shown in figure 4 as a function of the joint angle feedback noise level. B) Comparison of the
neuron-neuron connectivity matrix in no noise versus high noise conditions.

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.14.540714doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.14.540714


Figure 6: A neural network can learn cone-based via point placement. A) Illustration of how via point placement
changes nonlinearly as an obstacle moves across the centerline of the reach. B) Comparison between the neural
network’s via point placement (red) and the cone method (black). Each subplot shows the distance of via points from
the centerline of a reach as a function of the obstacle position relative to the centerline. Each row of subplots shows
a reach in a particular region of the workspace (highlighted in red in the graphic to the left) and each column is a
particular reach direction (indicated by the arrows at the top of each column). C) Reach trajectories. Each subplot
shows the trajectories of the set of reaches corresponding to the obstacle shifts indicated by the colored circles. Each
colored circle indicates the position of the center of the obstacle, and the line of the same color shows the corresponding
reach trajectory. The dashed gray circle indicates the actual size of the obstacle. As in B), rows and columns of the
subplots indicate regions of space and reach directions, respectively.
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Figure 7: Effect of lesions in the neural network. A) Via point shift as a function of obstacle shift before (black)
and after (red) a lesion of all neurons in the ”avoidance” cluster. Subplots with greater than 50% relative difference
between pre and post-lesion are shaded in gray. B) Reach trajectories before and after the lesion corresponding to the
starred subplot in A). C) Via point shift as a function of obstacle shift before (black) and after (red) a lesion of all
neurons in a ”placement” cluster. D) Reach trajectories before and after the lesion corresponding to the starred subplot
in C).
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Supplemental Material, Figure S1: A) Total weighting on cartesian versus joint angle coordinates in input and feedback
as a function of the relative weight of the cartesian position error. B) Example reaches in a model with only cartesian
input and feedback.

To test whether the difference in coordinate weighting was due to the way that the objective function measured428

the position error, we modified it to include two position error terms, one measuring the sum of squares between the429

current hand position and the target in cartesian coordinates, and a second measuring the sum of squares of the angular430

error in joint angle coordinates. As shown in Fig. S1A, we found that varying the relative weighting of the two431

error terms did not change the preference for joint angle coordinates, with joint angle input and feedback weighting432

remaining more than 3 times larger even when only cartesian error was considered. Since a straight line is much more433

simply expressed in cartesian coordinates, one might expect that forcing the model to use only cartesian input and434

feedback would result in straighter reaches. However, when we remove all joint angle input and feedback and retrain435

the model from scratch, we find that it produces significantly less efficient, curvier reaches that sometimes do not even436

reach the target. Examples of typical center-out reaches from the fully cartesian model are shown in Fig. S1B.437

18

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 14, 2023. ; https://doi.org/10.1101/2023.05.14.540714doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.14.540714


N
eu

ro
ns

 p
er

 la
ye

r
10

20

50

100

200

1 2 3 4 5 6
Hidden layers

0.0250

0.0225

0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

N
eu

ro
n 

nu
m

be
r 

(n
ex

t 
la

ye
r)

Neuron number (previous layer)

0

25

50

75

100

125

150

175

0 25 50 75 100 125 150 175

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

A

B

Supplemental Material, Figure S2: Via point neural network accuracy and clustering. A) Via point prediction accuracy
on the test set for 30 feedforward neural networks with size ranging between 1 - 6 hidden layers and 10 - 200 neurons
per hidden layer. B) Weight matrix for the final hidden layer of the neural network. Each row represents the weights
that the final hidden layer applies to inputs from neurons in the previous layer. Clustering was performed on the rows of
the weight matrix and the rows were reordered according to their cluster membership (indicated by dashed horizontal
lines). From the top, clusters 1, 3, and 4 are examples of ”placement” clusters, while cluster 2 is an ”avoidance”
cluster.
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