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Abstract 
DNA methylation rates have previously been found to broadly correlate with maximum lifespan 
in mammals, yet no precise relationship has been observed. We compared methylation rates 
at conserved age-related sites across mammals in both skin and blood and found that 
methylation rates scale with maximum lifespan to the power of negative one. The emergence 
of an explicit scaling law suggests that methylation rate is either a fundamental limiting factor 
in maximum lifespan across species or is linked to an underlying universal constraint. 

Main 
Organisms display enormous variation as the result of evolution, spanning many orders of 
magnitude in characteristics such as size, energy requirements, and lifespan. Despite this 
remarkable diversity, it has been observed that life is often bound by shared underlying 
mechanisms and constraints1. These fundamental connections between organisms can be 
reflected in scaling laws, which mathematically describe an association between two physical 
quantities over several orders of magnitude.  
 
A notable example of a scaling law in the field of biology is Max Kleiber’s observation that an 
animal’s metabolic rate is proportional to its mass to the power of three-quarters2. This 
observation was later shown to hold across not just whole organisms, but also cells, 
mitochondria, and enzymes, spanning a total of 27 orders of magnitude in mass3. It has been 
proposed that this relationship arises from the transport of materials through branching fractal-
like networks and that evolution tends to minimise the energy required to supply these 
materials4. Such an explanation demonstrates the power of scaling laws to reveal fundamental 
processes that govern biological systems.    
 
DNA methylation is an epigenetic modification in which a methyl group is added to a cytosine 
base followed by a guanine (CpG). Methylation status at a given CpG can vary between cells, 
meaning a methylation proportion can be calculated for each CpG across a population of cells. 
Methylation proportions of some CpGs change in a predictable way with age. This observation 
led to the development of the first “epigenetic clocks” in the early 2010s5–7 which used 
methylation proportions of selected CpGs to predict chronological age in humans. Since then, 
epigenetic clocks have been extended to numerous other organisms, including the 
development of clocks which measure age across mammalian species8.   
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Recently, DNA methylation rates have been shown to generally correlate with a species’ 
maximum lifespan, although no consistent scaling law has been observed and the biological 
mechanisms behind the correlation remain unclear. Lowe et al. (2018)9 looked at age-related 
CpGs across six mammals and found a negative trend between methylation rates and 
maximum lifespan. Similarly, Wilkinson et al. (2021)10 looked at age-related CpGs in 26 
species of bat and again found a negative correlation between methylation rate and longevity. 
More generally, methylation dynamics have even recently been used to develop epigenetic 
predictors of life-history traits11 and to attempt to identify specific CpGs and associated genes 
involved in both ageing and longevity12. 
 
We compared the blood methylation rates of conserved age-related CpGs across seven 
species of mammal, representing four taxonomic orders and covering approximately two 
orders of magnitude in maximum lifespan. In contrast to previous studies, we restricted our 
analyses to CpGs which were age-related in each mammal being compared. We found that 
methylation rates scale with maximum lifespan to the power of negative one. We corroborated 
this finding by repeating our analysis on skin samples from 23 species of bat and 4 other 
mammals. We observed approximately the same trend in this dataset, indicating that this 
scaling law is independent of tissue type. The emergence of an explicit scaling law suggests 
that epigenetic mechanisms are linked to fundamental constraints on lifespan that are shared 
across species. 
 
For each species, we conducted univariate linear regressions for each CpG of the form 
methylation ~ age. A CpG was considered age-associated if the adjusted R-squared value 
from this regression was greater than 0.1. The methylation rate of each CpG was defined as 
the slope from these regressions. In the case of datasets with multiple measurements for 
individuals, linear mixed-effects models were used with random intercepts for individuals and 
the marginal R2 value was used. 
 
We then selected a baseline species (see Methods for details) and compared each other 
species to this baseline species in a pairwise manner. For each comparison we:  
1) Selected the set of conserved and age-related CpGs common to both species.  
2) For each CpG in this set, calculated the absolute methylation rate for each species 
3) Calculated the methylation rate ratio of the comparison species compared to the baseline 
species for each CpG. That is, for each CpG, methylation rate ratio = absolute rate of 
comparison species/absolute rate of baseline species. For example, a ratio of 2 would mean 
that the methylation rate of the species in question was twice as fast as the methylation rate 
of the baseline species in a particular CpG.  
4) Calculated the median and interquartile range (IQR) of the resulting values across all CpGs 
included in the analysis.  
 
We plotted the median methylation rate ratios in blood against maximum lifespan (Fig. 1a). 
This revealed a relationship in which methylation rates decay to an asymptote as lifespan 
increases. Taking the logarithm of both axes (see Methods for details) resulted in a consistent 
linear association with the slope equal to approximately -1 (slope = -1.04, 95% CI -1.23 to -
0.87) (Fig. 1b). This result supports a simple relationship in which methylation rates, 𝑀, scale 
proportional to lifespan, 𝐿, to the power of negative 1: 
 

𝑀	 ∝ 	𝐿!" (Equation 1) 
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The error bars in Fig. 1b represent the IQR of rate ratios, demonstrating that this scaling is 
observed not just on average across CpGs, but is generally observed at the level of individual 
CpGs. Additionally, while the sample sizes were moderate in terms of individuals, the number 
of CpGs used in each comparison was large - generally in the order of a few hundred to a few 
thousand (Supp. Tables 1 and 2). 
 
Similar results were seen in skin samples (Fig. 1c and 1d) (slope = -0.87, 95% CI -1.16 to -
0.59), indicating that the scaling is a general property of methylation rates across different 
tissue types. However, the association was less tight than seen in blood, potentially in part 
because the vast majority of samples were from bats, for which maximum longevity is known 
with less certainty than better-studied mammals such as mice and chimpanzees. Additionally, 
skin is an external tissue which may be more impacted by environmental adaptations, such 
as those acquired for living in water (e.g. beluga whale) or underground (e.g. naked mole rat). 
 
Fig. 1e shows an individual CpG that exhibits the trend we observe on average, with 
decreasing methylation rates as maximum lifespan increases.  
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Figure 1: a, Methylation rate ratio versus maximum lifespan in blood samples, using rates in the zebra 
as a baseline. Each point is the median value. Regression line plotted from the power-law association 
shown in b. Shaded region represents the 95% confidence interval. From left to right, species are: 
house mouse (Mus musculus) (n=113), roe deer (Capreolus capreolus) (n=94), yellow-bellied marmot 
(Marmota flaviventris) (n=149 samples from 73 individuals), naked mole rat (Heterocephalus glaber) 
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(n=92), plains zebra (Equus quagga burchellii) (n=96), chimpanzee (Pan troglodytes) (n=113 samples 
from 83 individuals), human (Homo sapiens) (n=656). b, Same data as in a), but with axes log-
transformed. Error bars show the interquartile range of values. Regression line from a simple linear 
regression of the form y~x. c, and d, show an equivalent analysis as a) and b), but in skin samples 
using the big brown bat (Eptesicus fuscus) as baseline. Error bars omitted for clarity. Icons represent 
the same species as in a) and b), but with different sample sizes (human (n=41), mole rat (n=63), zebra 
(n=22)) and with the addition of the beluga whale (Delphinapterus leucas) (n=69). Unmarked points are 
various species of bat (n>=15) (see Methods). e, Example of an individual conserved CpG in blood 
samples in which the methylation rates (i.e. slopes resulting from the linear regressions) decrease as 
lifespan increases. f, Log-log plots of blood and skin methylation rates versus maximum lifespan, 
presented alongside somatic mutation rate (per Mb) versus maximum lifespan. Y-axis represents 
normalised rates. Regression lines shown with points omitted, with shaded regions representing 95% 
confidence intervals. Intercept of regression lines adjusted so that they start at zero on the plot. Mutation 
rate data taken from Cagan et al. (2022)13. Created with BioRender.com. 
 
Our analysis of DNA methylation data in mammals reveals a scaling law between maximum 
lifespan and DNA methylation rate over approximately two orders of magnitude and in two 
distinct tissue types. Many organism characteristics, including lifespan, scale with body 
mass4,14. However, the relationship we observe is independent of body mass, with no clear 
trend seen when regressing against mass instead of lifespan (Ext. Data Fig. 1). Notably, the 
naked mole rat, which is a common outlier in such cross-species comparisons due to its 
remarkably long life for its body mass, fits well on our trend line in blood samples.  
 
Specifically, we find that methylation rate is approximately proportional to lifespan to the power 
of negative 1. This relationship means, for example, that we would expect the shortest-lived 
mammal (Northern short-tailed shrew) to have a methylation rate approximately 100 times 
faster than the longest-lived (bowhead whale), given that its maximum lifespan is 
approximately 100 times shorter15. An interesting application of such a scaling relationship is 
that it allows estimations of maximum lifespan for newly discovered species through 
longitudinal sampling, even in the absence of any knowledge of true ages. 
 
The fact that a specific and quantitative relationship exists between methylation rate and 
maximum lifespan suggests that there is a fundamental biological constraint acting across 
diverse mammalian lineages. To further make sense of this, we can describe methylation rate, 
𝑀, at a particular CpG as the product of two underlying quantities: 𝑅, the rate of stem cell 
division, and 𝑝, the probability that a cell division results in a change in methylation state.  
 

𝑀	 ∝ 	𝑝𝑅	 ∝ 	 𝐿!" (Equation 2) 
 

This reveals that the quantity 𝑝𝑅 must be inversely proportional to lifespan. As for which these 
two factors may be responsible for the scaling we observe, we can gain additional insight by 
linking our results with the recent finding that somatic mutation rate also scales approximately 
with lifespan to the power of negative one13 (Fig. 1f). The fact that these two phenomena 
display a similar relationship with lifespan suggests two main scenarios that would explain the 
data, which we discuss below. 
  
Firstly, if methylation rates and somatic mutation rates are independent, then our results may 
indicate that aberrant methylation levels are themselves a constraint on maximum lifespan. In 
other words, age-related changes to DNA methylation are deleterious and so mechanisms to 
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mitigate this are selected for in longer-lived organisms (i.e. to decrease 𝑝 in Eq. 2). If true, the 
fact that we see similar scaling as observed in somatic mutation rates is intriguing, as it might 
imply a similar level of functional relevance for both phenomena, despite epimutations being 
widely considered to have a weaker direct impact on organism health. This scenario would 
support an instructive role of DNA methylation in the associations observed between 
epigenetic changes and physiological outcomes, in rejuvenating interventions and ageing16–
19. 
 
Secondly, it is possible that both phenomena are driven by a constraint on a common 
underlying mechanism. As for what the common underlying mechanism may be, Eq. 2 raises 
two possibilities. Given cell division plays a role in both processes, one possibility is that the 
scaling of both methylation and mutation rates is being driven by stem cell replication rates. 
Indeed, it has previously been suggested that the rate of haematopoietic stem cell divisions in 
mammals decreases with lifespan such that the total number of divisions per stem cell is 
approximately constant, regardless of lifespan20. However, as Cagan et al. note, there is 
recent evidence that replication rates may not be a major driver of mutation rates21,22, 
potentially making this explanation less likely. Alternatively, both mutation and methylation 
rates may share a common genomic maintenance mechanism that increases in effectiveness 
with lifespan. However, given that the molecular processes behind methylation changes and 
mutations are quite distinct, it is not readily apparent what this common mechanism may be.  
 
Although our study contains a relatively small number of datasets, the trend is consistent. This 
is especially striking considering that the datasets are from entirely distinct studies, comprise 
both array-based and reduced representation bisulfite sequencing (RRBS) methylation data, 
and that age and maximum lifespan estimates in species other than humans are very 
imprecise. When more data become publicly available in the future (e.g. the upcoming 
Mammalian Methylation Consortium data release), our findings will be able to be explored 
further.  

Methods 
Analysis 
In contrast to previous studies9,10, we restricted our analysis to CpGs which were age-related 
in each mammal being compared. We did this because even a conserved CpG site may 
behave markedly differently between species. For example, the ELOVL2 CpG (cg16867657) 
is the strongest age-related CpG in humans and chimpanzees (R2=0.74 and 0.90, 
respectively), but shows no age-association at all in the other species analysed (Ext. Data 
Fig. 2). As such, using this CpG to calculate methylation rates across species may not be 
appropriate. 
 
For each species, we conducted univariate linear regressions for each CpG of the form 
methylation ~ age. A CpG was considered age-associated if the adjusted R-squared value 
from this regression was greater than 0.1. The methylation rate of each CpG was defined as 
the slope from these regressions. In the case of datasets with multiple measurements for 
individuals, linear mixed-effects models were used with random intercepts for individuals and 
the marginal R2 value was used. 
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Our initial approach was to find age-related CpGs common to all species and compare the 
average slope. However, very few CpGs satisfied this criterion, resulting in unstable estimates. 
Additionally, this method would extend poorly to additional animals as the number of common 
CpGs would decrease with each addition. 
 
To overcome this issue, we instead used one species as a baseline. Zebra (Equus quagga 
burchellii) was chosen as the baseline species in blood and the big brown bat (Eptesicus 
fuscus) for skin samples as they a) had a relatively large sample size (n=96 and n=115, 
respectively), b) had an intermediate maximum lifespan, and c) methylation levels were 
assessed using the Mammalian Methylation Array23, as were most of the other species, 
allowing a large crossover of common CpGs.   
 
We then compared each species to these baseline species in a pairwise manner. For each 
comparison we:  
1) Selected the set of conserved and age-related CpGs common to both species. Age-related 
methylation changes had to have the same direction in both species. 
2) For each CpG in this set, calculated the absolute methylation rate for each species 
3) Calculated the methylation rate ratio of the comparison species compared to the baseline 
species for each CpG. That is, for each CpG, methylation rate ratio = absolute rate of 
comparison species/absolute rate of baseline species. For example, a ratio of 2 would mean 
that the methylation rate of the species in question is twice as fast as the methylation rate of 
the baseline species in a particular CpG.  
4) Calculated the median and interquartile range (IQR) of the resulting values across all CpGs 
included in the analysis. Use of the median was chosen over the mean as the mean was 
severely affected by large outliers. 
 
This method ensured that the number of CpGs analysed in each comparison was large 
(usually hundreds to a few thousand) and could in theory be extended to any number of 
animals. 

Scaling and power laws 
Mathematically, scaling can generally be described as a power law relationship of the form: 

𝑦 = 	𝑎𝑥# 
in which 𝑥 and 𝑦 are the variables of interest, and 𝑎 and 𝑏 are constants.  
 
By taking the logarithm of both the x and y axes, power law relationships can be represented 
as a linear relationship in which the slope is equal to the original power: 

→ 𝑙𝑜𝑔(𝑦) 	= 	𝑙𝑜𝑔(𝑎𝑥#) 
→ 	𝑙𝑜𝑔(𝑦) 	= 	𝑙𝑜𝑔(𝑎) 	+ 𝑏 ∗ 𝑙𝑜𝑔(𝑥) 

→ 	𝑌	 = 	𝐶	 + 𝑏𝑋 
in which 𝑌 = 𝑙𝑜𝑔(𝑦), 𝐶 = 𝑙𝑜𝑔(𝑎)	and 𝑋 = 𝑙𝑜𝑔(𝑥). 
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Data availability 
All datasets used are publicly available. Pre-processed datasets were used without further 
adjustment, except in the case of the mouse (Mus musculus) dataset, which was processed 
as outlined in Simpson et al. 202324. The yellow-bellied marmot (Marmota flaviventris) dataset 
is available on the Gene Expression Omnibus at GSE17454425; human (Homo sapiens) blood 
dataset at GSE402796; mole rat (Heterocephalus glaber) dataset at GSE17477726; deer 
(Capreolus capreolus) dataset at GSE18421627; zebra (Equus quagga burchellii) dataset at 
GSE18422328; chimpanzee (Pan troglodytes) dataset at GSE13629629, mouse (Mus 
musculus) dataset at GSE8067230, bat (various species) dataset at GSE16412710, beluga 
whale (Delphinapterus leucas) dataset at GSE16446531, and human (Homo sapiens) skin 
dataset from the EWAS datahub Download page (“tissue_methylation_v1.zip” file)32. 
 
Data on maximum lifespan and mass were taken from the AnAge database15 where possible, 
or taken from other estimates used in the original paper in the case of the bat dataset10. 
 
In the case of the bat dataset10, only species with more than 15 samples were included in the 
analysis. 

Code availability 
Code used for the analysis (conducted in R version 4.2.1) is available at 
https://github.com/samuel-crofts/methylation_scaling.  
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Extended data 

 

Extended Data Figure 1: Log(Methylation rate ratio) vs log(adult mass) in blood samples, 
using rates in the zebra as a baseline. Each point is the median value.  Regression line from 
simple linear regressions of the form y~x. Shaded region represents the 95% confidence 
interval. Error bars show the interquartile range of values. From left to right, species are: house 
mouse (Mus musculus), naked mole rat (Heterocephalus glaber), yellow-bellied marmot 
(Marmota flaviventris), roe deer (Capreolus capreolus), chimpanzee (Pan troglodytes), human 
(Homo sapiens), plains zebra (Equus quagga burchellii).  

 
Extended Data Figure 2: Example of a CpG (ELOVL2) that is strongly age-related in some 
species but age-invariant in others. Regression lines from simple linear regressions of the 
form methylation ~ age. 
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