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Abstract

Interpreting electron cryo-microscopy (cryo-EM) maps with atomic models requires high levels

of expertise and labour-intensive manual intervention. We present ModelAngelo, a machine-

learning approach for automated atomic model building in cryo-EM maps. By combining infor-

mation from the cryo-EM map with information from protein sequence and structure in a single

graph neural network, ModelAngelo builds atomic models for proteins that are of similar qual-

ity as those generated by human experts. For nucleotides, ModelAngelo builds backbones with

similar accuracy as humans. By using its predicted amino acid probabilities for each residue

in hidden Markov model sequence searches, ModelAngelo outperforms human experts in the

identification of proteins with unknown sequences. ModelAngelo will thus remove bottlenecks
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and increase objectivity in cryo-EM structure determination.

Introduction

Knowledge of the three-dimensional atomic structures of proteins and nucleic acids is pivotal

for our understanding of the molecular processes of life. In recent years, considerable advances

have been made in the determination of structures of biological macromolecules by electron

cryo-microscopy (cryo-EM), culminating in cryo-EM maps of proteins with sufficient resolu-

tion to resolve individual atoms (1, 2). Accordingly, the number of new cryo-EM structures in

the electron microscopy database (EMDB) (3) is growing exponentially. If this trend continues,

approximately 100,000 cryo-EM structures will be determined in the next 5 years (4).

Over two-thirds of last year’s (2022) structures had resolutions better than 4 Å. Although

individual atoms are not resolved at resolutions between 2-4 Å, reliable atomic models can

be built by exploiting prior knowledge of the chemical structures of the proteins and nucleic

acids in the sample, including their amino acid and nucleic acid sequences. Typically, atomic

model building in cryo-EM maps is performed using manual procedures in three-dimensional

computer graphics programs (5, 6). Atomic model building is often time-consuming and re-

quires substantial levels of expertise to produce accurate models. At resolutions better than 3

Å, experts can build atomic models with few errors, whereas at resolutions below 4 Å, avoiding

mistakes is challenging. It is therefore not uncommon for atomic models of biological com-

plexes to contain errors (7), with potentially grievous consequences (8).

Structure determination by cryo-EM is also an increasingly important tool for the discov-

ery of new subunits in biological complexes. Because of its relaxed requirements for sample

quantity and purity compared to other structural biology techniques, cryo-EM is capable of de-

termining structures of complexes purified from endogenous sources. Many such complexes

contain subunits of unknown identities. Without prior knowledge of the amino acid sequence,
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identifying the chemical identity of individual amino acids in cryo-EM maps is difficult, and

requires relatively high resolutions. Yet, provided one can build stretches of several consecu-

tive amino acids, database searches with the sequence fragments can lead to the identification

of the corresponding protein. Recent examples include the identification of TMEM106B in

amyloid filaments from human brains (9–11) and the detection of subunits of axonemal com-

plexes (12, 13).

Here, we introduce a machine-learning approach, called ModelAngelo, for the automated

building of atomic models and the identification of proteins in cryo-EM maps. Machine learning

approaches often require large amounts of training data. For example, recent protein language

models were trained on tens of millions of sequences (14) and AlphaFold2 was trained on

more than 200,000 structures (15). In contrast, fewer than 13,000 cryo-EM structures with

resolutions better than 4 Å have been determined to date and many of these are redundant. The

limited amount of available training data prompted us to design a multi-modal machine-learning

approach that combines local information from the cryo-EM map surrounding each protein or

nucleic acid residue with additional information from the protein sequences in the sample and

the local geometry of the structure. Similar sources of information are exploited by human

experts when manually building atomic models in cryo-EM maps.

The sudden availability of atomic models for millions of proteins from protein structure pre-

diction by AlphaFold2 (15, 16) has helped to guide and accelerate model building (17). How-

ever, previous attempts to fully automate atomic modelling (18–24) or the identification of un-

known proteins (25–27) have so far failed to become mainstream, although DeepTracer (21,24)

and findMySequence (25) have gained some traction. Still, atomic modelling remains a time-

consuming and expert-dependent process in many structure determination projects. With the

ongoing exponential growth in cryo-EM structures and the continuing influx of newcomers to

the cryo-EM field, automation will be key in removing bottlenecks and replacing the depen-
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dence on human experts with objective methods that are accessible to all. In what follows, we

demonstrate that ModelAngelo can meet this need. ModelAngelo outperforms human experts in

identifying unknown proteins and produces near-complete atomic models of comparable quality

to those obtained by human experts.

Approach

Automated model building of proteins and nucleic acids in ModelAngelo comprises three steps

(Figure 1a). Details about the network architectures that underlie these steps and how they are

trained have been described in (28).

Graph initialisation Positions for the backbone Cα atom of amino acids and the phosphor

atom of nucleic acids are predicted using a convolutional neural network (CNN). This CNN is

a modified feature-pyramid network (30) that predicts whether each voxel in the cryo-EM map

contains the Cα atom of an amino acid, the phosphor atom of a nucleic acid residue, or neither.

A graph is then constructed, where each residue is a node, and edges are formed between each

residue and its twenty nearest neighbours.

Graph optimisation A graph neural network (GNN) is used to optimise the positions and

orientations of the residues, to predict their amino or nucleic acid identity, and to predict torsion

angles for their side chains or bases. The GNN consists of three modules: a cryo-EM module, a

sequence module, and an invariant point attention (IPA) module (Figure 1b). Each node of the

graph is associated with a residue feature vector. Each module takes the residue feature vector

as input, combines it with new information, and outputs an updated residue feature vector that

is passed to the next module. The sequential application of the three modules in eight layers

(Figure 1b) allows the gradual extraction of more information from the different inputs.
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Figure 1: Atomic modelling in ModelAngelo. a, Three steps build atomic models: 1) A
convolutional neural network (CNN) predicts protein and nucleic acid residue positions; 2) A
graph neural network (GNN) optimises these positions and orientations (panel b); 3) A post-
processed, optimised graph forms a complete atomic model. b, The GNN, arranged in eight
layers with three modules, uses a feature vector per residue passed through multi-layer percep-
trons (MLP), integrated with additional data via attention mechanisms that have query (Q), key
(K), and value (V) vectors. Stable gradient propagation is ensured by residual connections with
layer norms (Add LN) (29). Residue feature vectors update residue positions, orientations, pre-
dict torsion angles, confidence scores, and identities at the end of each layer.
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The cryo-EM module incorporates information from the cryo-EM map and comprises two

parts. Firstly, the input feature vector is passed through a multi-layer perceptron (MLP) network

to generate query and value vectors. These vectors are used for cross-attention (31) with key

vectors that are calculated from a CNN on rectangular boxes that are extracted from the cryo-

EM density map that point from the current residue to its twenty nearest neighbours. Intuitively,

the cross-attention mechanism allows mixing information from each residue with that of its

twenty nearest neighbours, depending on whether the cryo-EM density between them looks

connected. Secondly, a cubic box is extracted from the cryo-EM map around the position of the

current residue and passed through another CNN. The resulting vector is used in two ways: to

generate amino and nucleic acid identity predictions through an MLP; and after concatenation

with the vector from the cross-attention, it is passed through another MLP to generate the output

residue feature vector of the cryo-EM module.

The sequence module performs cross-attention for each residue with the user-provided

amino acid sequences, which are embedded using the pre-trained protein language model, ESM-

1b (32). This incorporates information that is learned by the language model from many amino

acid sequences, including multiple homologues. The information in protein language models

has been shown to be sufficient for protein structure prediction (14). The vector from the cross-

attention is used in two ways: a first MLP is used to generate amino and nucleic acid identity

predictions; a second MLP generates the output residue feature vector of the sequence module.

For nucleic acid residues, the sequence module is not used.

The IPA module incorporates information from the geometry of the nodes in the graph and

was inspired by the module with the same name in AlphaFold2 (15). An MLP calculates four

query points per residue and the Euclidean distance between the query points and the location

of the neighbouring nodes is used to replace the cosine similarity of the attention algorithm

between the query and key vectors. Intuitively, this allows the model to learn information about
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the topology of neighbouring residues, for example about secondary structure. In fact, dis-

abling this module in an ablation study led to atomic models with incorrect secondary structure

geometry (28).

Post-processing Finally, the residue feature vectors are post-processed to generate an atomic

model. The residue feature vectors are used as inputs into two separate MLPs to predict new

positions and orientations for each residue, as well as torsion angles for amino acid side chains

and nucleic acid bases. In addition, the predictions for the amino or nucleic acid identities from

the cryo-EM and sequence modules are averaged to generate probabilities for each possible

identity for all residues. These vectors are converted into a hidden Markov model (HMM)

profile (see below) that is used for a search against the input sequences using HMMER (33).

Matched residues, as defined in (34), are mutated to the corresponding amino or nucleic acid

in the input sequences, and separate chains are connected based on their assigned sequences

and proximity. Finally, chains shorter than four residues are pruned from the model, and a

full atomic model is generated from the predicted positions and orientations of each residue

and their corresponding amino acid or nucleic base torsion angle predictions, using idealised

geometries.

Generating HMM profiles A profile HMM is a probabilistic model representing the multiple

sequence alignment (MSA) of a set of related sequences. The parameters of a profile HMM are

normally estimated from the MSA it strives to model, however, here, they are instead estimated

from ModelAngelo predictions. There are three types of states in the profile HMM. For each

position of the MSA’s consensus sequence, there is a match (M ), a delete (D), and an insert

(I) state with respect to the query sequences. There are two types of probabilities in a profile

HMM: transition and emission. The transition probabilities reflect the probability of a sequence

going between the M , I , and D states of one position of the profile to the next. ModelAngelo
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uses the confidence metric, c(i), that it predicts for each residue i to construct the transition

probabilities as follows:

P
(i)
M→M = max(c(i) − d, 0.5) P

(i)
D→M = 1− d P

(i)
I→M = 1− d

p
(i)
M→D =

1− p
(i)
M→M

2
P

(i)
D→D = d P

(i)
I→D = 0

p
(i)
M→I =

1− p
(i)
M→M

2
P

(i)
D→I = 0 P

(i)
I→I = d

The strategy to set P (i)
M→I = P

(i)
M→D; the constant d = 0.5; and the minimum value of P (i)

M→M =

0.5 were chosen arbitrarily and are never optimised. The emission probabilities represent the

probability of each amino acid being produced in a M or I state. For these, ModelAngelo uses

its predicted probability distribution of the amino acids for each residue. The resulting HMM

profiles are compatible with HMMER3 (35) and HHblits (36).

Recycling Inspired by AlphaFold (15), we recycle the post-processed model from one round

of the GNN as the starting point of a subsequent round of graph optimisation. For this purpose,

ModelAngelo was trained with a random number of 1-3 recycling steps. During inference, we

perform three rounds of recycling, as the performance plateaus after three rounds.

Training ModelAngelo was trained on maps deposited in the EMDB (3) before April 1st,

2022 with resolutions better than 4 Å and paired with models in the PDB (37) that cover the

entire map correctly, as detailed in (28). PDB files that included insertion codes, i.e. additional

residues relative to the reference sequence, were removed. This resulted in 3715 map-model

pairs that were used during training. All cryo-EM maps were resampled to a common pixel size

of 1 Å. As a point of comparison, findMySequence only uses 117 pairs while DeepTracer uses

approximately 1400 (21, 25).
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Figure 2: Performance of ModelAngelo for atomic modelling of proteins. a, Backbone
root-mean-square deviation (RMSD) and model completeness plotted as a function of the target
model Q-scores. b, Q-score distribution of residues in the deposited models, comparing those
built by ModelAngelo with those not built. c, Q-score comparison between ModelAngelo pre-
dicted models and the deposited models. d, Model-to-map Fourier shell correlation (FSC), as
calculated by Servalcat (38), after refining both models and using only residues present in both
ModelAngelo and deposited models.

Protein identification To allow model building for structures with unknown sequences, we

also trained a version of ModelAngelo without its sequence module. Still, for each protein

residue, ModelAngelo predicts probabilities for all twenty amino acids. Within ModelAngelo,

these probabilities are converted into HMM profiles and used for searches in HMMER3 (35)

as described above, but using a larger proteome, rather than only the sequences known to be

present in the structure.

Results

ModelAngelo builds protein models of comparable quality to those built by humans To

test ModelAngelo, we considered all cryo-EM structures determined to at least 4 Å resolution

and released from the EMDB between the cutoff date for training, April 1st, 2022, and February

9th, 2023. To reduce computational costs, we excluded structures with more than 30,000 protein

residues. We also removed viruses with icosahedral symmetry, for which typically only the

asymmetric unit was built. To ensure none of the sequences were seen before during training,
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we removed structures that had protein chains with more than 10% sequence identity to any of

the proteins in the training set. Finally, we removed structures with insertion codes and other

irregularities. This resulted in a test set of 177 structures, on which we ran ModelAngelo. Using

a single A100 GPU, the smallest structure (PDB ID: 8DWI, with a molecular weight of 54.7

kDa) took 2 minutes; the largest structure (PDB ID: 7UMS, with a molecular weight of 1.85

MDa) took 53 minutes. The output coordinates from ModelAngelo were refined against the

cryo-EM map using Servalcat (38), and the refined models were compared to the deposited

ones.

To assess the quality of the models generated by ModelAngelo, we analyzed the Q-scores

(39) of all structures in the test set. The Q-score measures the resolvability of individual atoms

in cryo-EM maps, thus reflecting the quality of the built model. Provided the model is built

well, Q-scores also correlate with the local resolution, which can vary in cryo-EM maps: Q-

scores of 0.4 are typical for cryo-EM maps at 4 Å resolution, values of 0.6 for maps at 3 Å,

and values better than 0.7 for maps beyond 2 Å resolution (39). We implemented Q-score

calculation in ModelAngelo and calculated average Q-scores for all atoms in each residue of

both the deposited models and those built by ModelAngelo. Next, we calculated backbone root

mean squared deviations (RMSDs) between the protein models built by ModelAngelo and those

deposited, and plotted these against the Q-scores of the deposited residues (Figure 2a; pink line).

As expected, ModelAngelo builds models with lower RMSDs for residues with higher (better)

Q-scores. Even for residues with Q-scores as low as 0.4, ModelAngelo builds models with

backbone RMSDs lower than 1.0 Å. We also measured the completeness of the models built by

ModelAngelo. We define completeness as the fraction of residues that are built with their Cα

atom within 3 Å of the deposited model and with the correct amino acid assignment. As with

backbone RMSD, completeness improves for residues with higher Q-scores (Figure 2a; blue

line). Overall, ModelAngelo built 77% of all 410,585 residues in the test set. Analysis of the
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deposited Q-scores shows that those residues not built by ModelAngelo have lower Q-scores

than those that are built (Figure 2b). In the deposited models, many of the residues with the

lowest Q-scores were probably obtained by rigid-body docking of protein domains into poorly

resolved regions of the cryo-EM maps. Excluding the 51,446 residues with Q-scores below 0.4,

ModelAngelo built 85% of the residues in the test set. A comparison of Q-scores calculated

for the models built by ModelAngelo with those calculated for the deposited models shows that

models from ModelAngelo are as good as the deposited ones (Figure 2c). The same is also true

for overall Fourier shell correlation values between the cryo-EM maps and those parts of the

models that were both built by ModelAngelo and present in the deposited models (Figure 2d).

ModelAngelo builds good nucleic acid backbones The test set described above contained

only 103 nucleic acid chains, many with just a few nucleotides. Therefore, instead of conduct-

ing a systematic analysis as done for the proteins, we present a few test cases to illustrate the

quality of nucleotide building (Figure 3). We applied ModelAngelo to 11 different ribosome

structures that were determined to resolutions ranging from 1.98 to 3.80 Å (Figures 3a,b), as

well as a CRISPR-associated transpososome from Scytonema hofmanni (Figures 3c,d) (41).

Although ribosome structures were included in ModelAngelo’s training set, the nucleotide se-

quences were not. When plotting backbone RMSDs and backbone completeness against the

Q-scores of the deposited nucleotide coordinates (Figure 3e), we observed similar trends as for

the protein chains. Backbone RMSDs range from 2 Å in the worst regions of the map to values

better than 0.5 Å in the best regions. Likewise, near-complete backbones are built in the best

regions, while backbone completeness drops to below 80 % for the worst regions. However,

ModelAngelo struggles to distinguish between the two purines or the two pyrimidines, echo-

ing the difficulty humans face in building nucleotide sequences based solely on the cryo-EM

density, if the resolution does not extend beyond 2.5 Å. Consequently, when considering only
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Figure 3: Performance of ModelAngelo for atomic modelling of nucleic acids. a, Es-
cherichia coli ribosome built by ModelAngelo (with ribosomal RNA in green and proteins in
blue) compared with the deposited model (PDB ID: 7S1G, black outline) (40). b, Zoomed-in
view with nucleotide bases showing high accuracy compared to the deposited model (orange).
c, ModelAngelo model of the V-K CAST transpososome from Scytonema hofmanni compared
with the deposited model (PDB ID: 8EA4) (41). Sections not built by ModelAngelo (black out-
line) are in regions of low Q-score (see panel g). d, Zoomed-in view comparing the nucleotide
bases of both models showing a sequence incorrectly identified by ModelAngelo. e, Backbone
RMSD, backbone completeness, and sequence completeness plotted against the deposited Q-
score for six ribosome structures. f, g, Deposited models for the structures in a and c, coloured
by Q-score, with low Q-score regions boxed.

correctly built sequences, the completeness of the models built by ModelAngelo drops to 80 %

for the best parts of the map, and to as low as 20 % for the worst parts (Fig 3E). Users should

therefore carefully validate the nucleotide chains of models built by ModelAngelo, for example

by using nucleotide secondary structure predictors (42–46). Nonetheless, ModelAngelo con-

siderably accelerates the process of building the nucleotide backbone. Subsequent nucleotide
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base changes can be made with minimal manual intervention.

ModelAngelo identifies protein chains that were not built by human experts To illustrate

the performance of ModelAngelo in identifying protein chains in cryo-EM maps, we applied

ModelAngelo to two examples of large cryo-EM structures that were recently determined from

endogenous sources. The first example is a structure of the supercomplex of the phycobil-

isome (PBS), photosystem I and II (PSI and PSII), and the transmembrane light-harvesting

complexes (LHCs) that was imaged in situ in the red alga Porphyridium purpureum (47). The

second example is a structure of the ciliary central apparatus and radial spokes of the green alga

Chlamydomonas reinhardtii that was obtained by single-particle analysis following purification

from cilia (12, 13).

At 16.7 MDa, the PBS-PSII-PSI-LHC supercomplex is one of the largest complexes deter-

mined by single-particle cryo-EM. The deposited model (PDB ID: 7Y5E) consists of 158,730

residues in 81 unique protein chains, including six chains for which the authors were unable

to identify the corresponding protein. The unidentified chains were termed LPP1 (linker of

PBS–PSII 1); CNT (for “connector”); PsbW and Psb34 (two of the core subunits of PSII);

LRH (a linker protein); and LPS1 (photosystem linker protein 1). To identify these chains,

we ran ModelAngelo without using its sequence module (using the build no seq option)

to calculate an initial atomic model with HMM profiles for all chains, and we searched these

profiles against the proteome constructed in (48) (using the hmm search option). Because

of local pseudo-symmetry, all six unidentified proteins occur more than once in the cryo-EM

map. This allows us to bootstrap weaker individual hits by cross-referencing their matches to

the other instances. Specifically, the same six protein chains were identified for all instances,

with E-values in the range of 5.8e-66 to 6.4e-2. For comparison, using the backbone traces in

the deposited model as inputs to findMySequence (25) identified only two of the unassigned
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proteins (Psb34 and PsbW). We then constructed an input sequence file that included all chains

in the deposited model plus the six newly identified chains and ran ModelAngelo again. This

calculation took 23 hours on an A100 GPU. The resulting model, containing 110,742 residues,

is shown in Figure 4a. For most sections of the unidentified chains, ModelAngelo built better

models than those in the deposited structure, most notably for LRH and CNT. ModelAngelo

did not build models for parts of the unidentified proteins that were in regions of poor cryo-EM

density. Besides excellent agreement between side chain densities in the cryo-EM map and the

predicted sequences (Extended Data Figure 1), the structures built by ModelAngelo were also

highly similar to AlphaFold2 predictions for the unidentified chains (15, 49) (Extended Data

Figure 2).

Like the PBS-PSII-PSI-LHC supercomplex, the central apparatus (CA) and radial spoke

complexes isolated from C. reinhardtii ciliary axonemes are large complexes with poorly char-

acterized subunit compositions. Although recent cryo-EM structures had identified 23 different

radial spoke proteins (RSPs) and 48 different CA proteins (12, 13), the deposited maps (EMD-

22475, EMD-24481, and EMD-25381) contained densities that were left unassigned despite

considerable manual effort. To identify these proteins, we applied ModelAngelo without using

its sequence module to the deposited maps and searched the resulting HMM profiles against

the latest version of the C. reinhardtii predicted proteome (50) (Figure 4b and Supplemen-

tary Information). This approach identified four additional radial spoke proteins: FAP109,

Cre05.g240450, Cre08.g800895, Cre17.g802036), which we rename to RSP24, RSP25, RSP26

and RSP27, respectively, and two additional CA proteins (FAP92 and FAP374) (Extended Data

Table 1). Neither RSP24 (Cre08.g800895) nor RSP26 (Cre17.g802036) were annotated in ear-

lier versions of the C. reinhardtii genome, explaining their absence from proteomic studies,

and demonstrating the importance of high-quality genome annotations for de novo identifica-

tion of proteins by cryo-EM. RSP27 (Cre05.g240450) was identified from a fragment of just 33
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Figure 4: Examples of protein identification by ModelAngelo. a, The ModelAngelo model
of the single-PBS-PSII-PSI-LHC’s supercomplex (gray) showing the positions, models, and
map densities of six newly identified proteins (green). Backbone traces in the deposited model
(PDB ID: 7Y5E) are shown in orange. b, Atomic model of the central apparatus microtubule
C1 showing the positions, models, and map densities of two newly identified proteins: FAP92
and FAP374. Orange cartoons represent poly(UNK) chains deposited in the original model
(PDB ID: 7SQC). c, An atomic model of radial spokes 1 and 2 (RS1 and RS2) bound to a
doublet microtubule (gray) showing the positions, models, and map densities of four proteins
(RSP24-27, green) newly identified by ModelAngelo. Only RSP27 had a backbone trace in the
deposited model (orange).
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residues, demonstrating the power of ModelAngelo to identify proteins from small sections of

well-resolved density. Both CA proteins (FAP92 and FAP374) bind directly to the microtubule

surface and have tertiary structures poorly predicted by AlphaFold2 (Extended Data Figure 3);

sidechain density was, therefore, essential for their successful identification (Extended Data

Figure 4). The identification of these proteins will allow their functional relevance to the regu-

lation of ciliary motility to be investigated through targeted genetic manipulation.

Discussion

ModelAngelo automates atomic modelling in cryo-EM maps, building protein models of com-

parable quality to those built by human experts and nucleic acid models with near-complete and

accurate backbones. ModelAngelo outperforms existing approaches like DeepTracer for the

automated modelling of both proteins (28) and nucleotides (Extended Data Figure 5). Further-

more, ModelAngelo builds these models within hours on a modern GPU, thereby removing an

important bottleneck in cryo-EM structure determination. Future incorporation of ModelAn-

gelo into automated cryo-EM image processing pipelines (51–57), will enable users to go from

data acquisition to atomic models in a single automated procedure.

By introducing objectivity in the model-building process, ModelAngelo also informs which

parts of the map can be confidently interpreted with an atomic model and which should be left

uninterpreted. In this way, ModelAngelo will not only reduce the number of errors in atomic

models but also play a role in making cryo-EM structure determination more accessible to the

large numbers of newcomers that the field has experienced in recent years. Still, some degree of

human supervision and intervention will remain necessary, particularly for (parts of) cryo-EM

maps with resolutions worse than 3.5-4.0 Å. For example, rigid body fitting of a known domain

in lower-resolution map regions to obtain a more complete model falls outside the scope of

ModelAngelo.
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Besides accelerating cryo-EM structure determination and providing objectivity in atomic

modelling, ModelAngelo also identifies protein chains in cryo-EM maps better than human ex-

perts. The reason why ModelAngelo outperforms the human expert in this task likely lies in

the implementation of its sequence searches. While human experts typically base their iden-

tifications on discrete assignments of individual amino acids to various residues in unknown

chains, ModelAngelo exploits predicted probabilities for all twenty amino acids for every pro-

tein residue and combines this information with its predicted confidence in each residue in a

full HMM search. This not only allows better identification of unknown chains but also helps

ModelAngelo during the building of atomic models with known sequences, where it may po-

tentially outperform human experts in placing protein chains for which ambiguity exists, for

example when multiple homologous chains coexist in a single structure. The ability to identify

proteins in cryo-EM maps will increase in importance as ongoing advances in sample prepara-

tion, microscopy, and image processing allow ever more structures to be determined for samples

purified from native sources or visualised in situ by electron tomography of frozen cells or thin

tissue sections.
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Extended Data Figure 1: Identified proteins in the phycobilisome Atomic models built by
ModelAngelo (green) for the six proteins that were identified by ModelAngelo. Side chain
densities in the cryo-EM map (transparent grey) are in agreement with those of the atomic
models.
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Extended Data Figure 2: Models by ModelAngelo and AlphaFold for identified proteins
in the phycobilisome. Models built by ModelAngelo (green) are shown next to predictions
of the corresponding sequences by AlphaFold (15) (coloured by AlphaFold’s confidence from
high in blue, to low in red).
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Extended Data Figure 3: Models by ModelAngelo and AlphaFold for identified proteins
in the ciliary axoneme. Models built by ModelAngelo (green) are shown next to predictions
of the corresponding sequences by AlphaFold (15) (coloured by AlphaFold’s confidence from
high in blue, to low in red). These are split between a, the radial spoke proteins, and b, the
central apparatus microtubule proteins.
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Extended Data Figure 4: Identified proteins in the ciliary axoneme Atomic models built
by ModelAngelo (green) for the six proteins that were identified by ModelAngelo. Side chain
densities in the cryo-EM map (transparent grey) are in agreement with those of the atomic
models. These are split between a, the radial spoke proteins, and b, the central apparatus
microtubule proteins.
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Extended Data Figure 5: Performance of DeepTracer for building nucleotides. a, Protein
(blue) and nucleotide (green) chains built by DeepTracer for the V-K CAST transpososome from
S. hofmanni compared with the deposited model (in black outlines, PDB ID: 8EA4). Only one
nucleotide chain is built, in an incorrect position. b, DeepTracer model of the E. coli ribosome
(PDB ID: 7S1G), depicted as in panel a. c, For the ribosome, DeepTracer only positioned
phosphor atoms for the nucleotides. Errors in the nucleotide phosphor atoms led to incorrect
nucleotide chains, as evidenced by comparison with the deposited model (orange).
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Protein Phytozome ID Nr. of Built EMDB Map res. Location
residues residues entry (Å)

RSP24 Cre08.g800895 226 1-187 22481 3.4 RS2 stalk

RSP25 Cre01.g034550 176 18-176 22475 3.2 RS1 neck∗

RSP26 Cre17.g802036 128 2-125 22475 3.2 RS1 neck∗

RSP27 Cre05.g240450 91 36-78 22475 3.2 RS1 stalk

FAP92 Cre13.g562250 1471 1138-1471 25381 3.8
C1 microtubule/
Protofilaments 3-4

FAP374 Cre03.g176600 400 308-386 25381 3.8
C1 microtubule/
Protofilaments 7-9

Extended Data Table 1: Proteins identified in the C. reinhardtii axoneme using ModelAn-
gelo.

∗RSP25 and RSP26 are also expected to occur in the neck of RS2, which is thought to be identical to the neck of
RS1 (12).
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