
Model Parameter identification using 2D vs 3D experimental
data: a comparative analysis

Marilisa Cortesi1,2*, Dongli Liu1, Christine Yee3, Deborah J. Marsh3, Caroline E. Ford1*

1 Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of
Medicine and Health, University of New South Wales, Kensington, NSW, Australia
2 Laboratory of Cellular and Molecular Engineering, Department of Electrical
Electronic and Information Engineering “G. Marconi”, Alma Mater
Studiorum-University of Bologna, Cesena, Italy
3 Translational Oncology Group, School of Life Sciences, Faculty of Science, University
of Technology, Sydney, Ultimo, NSW, Australia

* m.cortesi@unsw.edu.au, caroline.ford@unsw.edu.au

Abstract

Computational models are becoming an increasingly valuable tool in biomedical
research. They enable the quantification of variables difficult to measure experimentally,
an increase in the spatio-temporal resolution of the experiments and the testing of
hypotheses.

Parameter estimation from in-vitro data, remains a challenge, due to the limited
availability of experimental datasets acquired in directly comparable conditions. While
the use of computational models to supplement laboratory results contributes to this
issue, a more extensive analysis of the effect of incomplete or inaccurate data on the
parameter optimization process and its results is warranted. To this end, we compared
the results obtained from the same in-silico model of ovarian cancer cell growth and
metastasis, calibrated with datasets acquired from two different experimental settings: a
traditional 2D monolayer, and 3D cell culture models.

The differential behaviour of these models will inform the role and importance of
experimental data in the calibration of computational models’ calibration. This work
will also provide a set of general guidelines for the comparative testing and selection of
experimental models and protocols to be used for parameter optimization in
computational models

Author summary

Parameter identification is a key step in the development of a computational model,
that is used to establish a connection between the simulated and experimental results
and verify the accuracy of the in-silico framework.

The selection of the in-vitro data to be used in this phase is fundamental, but little
attention has been paid to the role of the experimental model in this process. To bridge
this gap we present a comparative analysis of the same computational model calibrated
using experimental data acquired from cells cultured (i) in 2D monolayers, (ii) in 3D
culture models and (iii) a combination of the two.

Data acquired in different experimental settings induce changes in the optimal
parameter sets and the corresponding computational model’s behaviour. This translates
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in a varying degree of accuracy during the validation procedure, when the simulated
data are compared to experimental measurements not used during the calibration step.

Overall, our work provides a workflow and a set of guidelines to select the most
appropriate experimental setting for the calibration and validation of computational
models.

Introduction 1

Computational models (CMs) are becoming an increasingly important tool in 2

biomedical research, allowing for the study of complex phenomena in controlled 3

environments [1, 2], the prediction of a system’s behaviour in multiple conditions [3, 4], 4

and the testing of hypotheses [5, 6]. Experimental corroboration, here defined as the 5

combination of CM calibration and validation, is a key aspect in the development of 6

these tools, as it represents the connection between the in-silico and the in-vitro models. 7

Calibrating a CM consists of the identification of its parameters so as to recapitulate 8

the process of interest. Multiple search and optimisation algorithms can be used in this 9

phase [3, 7–9], although empirical parameters selection remains common when a small 10

number of well constrained parameters needs to be identified. CM validation is the 11

procedure used to determine the simulations’ information content through a 12

quantification of each simulation’s accuracy. This step is widely recognised as 13

fundamental for the development of useful and effective CMs and a wealth of resources 14

and guidelines are available from the recent scientific literature [4, 10,11]. 15

The effect of the experimental model (EM) on the results of the model’s 16

corroboration, however, remain largely unexplored. Difficulties in acquiring or accessing 17

datasets containing all the relevant information have been a major obstacle, especially 18

when relying solely on the literature. While this issue is becoming less relevant, due to 19

an increase in open access data availability and more extensive collaboration between 20

wet-lab and dry-lab researchers, the widespread use of 3D cell culture models is an 21

aspect that warrants further investigation. Indeed, changing the setup has been shown 22

extensively to affect cell behaviour and results of in-vitro experiments [12–14]. As such, 23

the corroboration of a single CM using data acquired on multiple EMs has potentially 24

deleterious effects on the accuracy and reliability of the simulated results. To test this 25

hypothesis, we here present a comparative study of the same CM corroborated with 26

datasets acquired using either a 2D monolayer culture, 3D EMs, or a combination of the 27

two. 28

As a case study, we chose to focus on transcoelomic metastasis, the major mechanism 29

of metastasis (or cancer spread) in ovarian cancer [15]. It occurs via the seeding of 30

cancer cells onto the omentum, or other tissues within the abdominal cavity, following 31

their detachment from the ovary and it is enabled by the ascites fluid which builds up in 32

this region, and by the receptiveness of the surrounding tissues to colonisation [16–22]. 33

The extensive cell-cell and cell-environment interactions involved in this process have 34

led to the development of a number of 3D cell culture models in order to research facets 35

of this phenomenon [12,23–27]. We selected a 3D organotypic model [28,29] used 36

extensively to study the invasion and adhesion capabilities of ovarian cancer 37

cells [30–34] and 3D bio-printed multi-spheroids for the quantification of proliferation. 38

Together, these EMs allow us to study both the initial phases of metastasis, when 39

cells floating within the abdominal cavity exhibit a phenotype associated with very little 40

proliferation, and the later stages of this process, when sustained cancer cell 41

proliferation is observed within the omentum [35]. In all cases, standard assays 42

performed on 2D monolayers were used as comparison. 43
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Materials and methods 44

Cell Culture 45

The high-grade serous ovarian cancer (HGSOC) cell line PEO4 was used for this 46

study [36]. This cell line is characterised by resistance to platinum treatment and can 47

be considered a good model of recurrent disease [37]. Cells were kindly gifted by Dr 48

Simon Langdon (University of Edinburgh, Edinburgh, UK) and labelled with GFP 49

(pLKO.1-Neo-CMV-tGFP vector from Sigma-Aldrich, USA) to enable their 50

identification within the 3D organotypic model. Cells were maintained in RPMI 51

medium (Thermo Fisher, Waltham, MA, USA), supplemented with 10% FBS 52

(Sigma-Aldrich, USA), 1% Pen-strep (Sigma-Aldrich, USA) and 1% GlutaMAX 53

(Thermo Fisher, Waltham, MA, USA). 54

The 3D organotypic model, chosen to evaluate adhesion and invasion, was built 55

co-culturing PEO4 cells with healthy omentum-derived fibroblasts and mesothelial cells 56

collected from patients undergoing surgery for benign or non-metastatic conditions 57

patients at the Royal Hospital for Women and Prince of Wales Private Hospital (site 58

specific approval ethics # LNR/16/POWH/236). The South Eastern Sydney Local 59

Health District Human Research Ethics Committee (SESLHD HREC approval 60

#16/108) approved the collection of these samples. The protocol for the realization of 61

the organotypic model is fully described in [38]. In brief, 100 µl of a solution of media, 62

fibroblast cells (4 ·104 cells/ml) and collagen I (5 ng/µl, Sigma-Aldrich, USA) was added 63

to the wells of a 96-well plate. After 4 hours of incubation at 37oC and 5% CO2, 50 µl 64

of media containing 20,000 mesothelial cells was added on top. The whole structure was 65

maintained in standard culturing conditions for 24 h prior to seeding of cancer cells. 66

PEO4 cells were added at a density of 1·106 cells/ml (100 µl/well) in 2% FBS media. 67

Proliferation was quantified in 3D multi-spheroids encapsulated in PEG-based 68

hydrogels created using the Rastrum 3D bioprinter (Inventia Life Science, Alexandria, 69

New South Wales) [39,40]. Three-thousands PEO4 cells per well were printed as an 70

“Imaging model” using the Px02.31P matrix, atop an inert hydrogel base, and across an 71

entire tissue culture-grade flat bottomed 96-well plate. The hydrogel matrix is 72

characterised by a 1.1 kPa stiffness and by its functionalisation with 73

arginylglycylaspartic acid (RGD), a peptide shown to promote cell adhesion [41]. 74

Printed spheroids were maintained at 37oC and 5% CO2 for a week prior to each 75

experiment. 76

Proliferation 77

Proliferation in 2D was measured via MTT assay (Thermo Fisher, Waltham, MA, 78

USA), following the manufacturer’s protocol. Briefly, PEO4 cells were seeded in 96 wells 79

plates at a density of 10,000 cells per well. After 24 h, treatment with different 80

concentrations of either cisplatin (50, 25, 12.5, 6.2, 3.1, 1.6, 0.8, 0.4, 0 µM) or paclitaxel 81

(50, 25, 12.5, 6.2, 3.1, 1.6, 0.8, 0.4, 0 nM) was administered. Following 72 h of treatment 82

a solution of 2 mg/ml of MTT was added to each well and incubated for 3 hours. The 83

media-MTT solution was then discarded, and the formazan crystals solubilized in 84

DMSO (Sigma-Aldrich, USA). Absorbance was measured at 570 nm. All data were 85

normalised with respect to the untreated condition and corrected for the absorbance of 86

RPMI medium. A total of 3 biological replicates, each comprising 3 technical replicates 87

was analysed for condition. 88

Real-time monitoring of PEO4 cell growth within the hydrogel multispheroids and in 89

the absence of treatment was conducted using an IncuCyte S3 Live Cell Analysis 90

System (Sartorius, Gottingen, Germany). Three cell densities (2000, 3000 and 4000 91

cells/well in hydrogel) were considered, and the phase count function of the device’s 92
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analysis software was used to determine the number of cells, every hour over 7 days. A 93

total of 10 wells/condition were considered for this experiment. An evaluation of 94

confluency with CellTiter-Glo 3D (Promega, Madison WI, USA) was also conducted at 95

the end of monitoring. Real-time monitoring and the end-point assays were in 96

agreement and a density of 3000 cells per well was chosen for further experiments with 97

only CellTiter-Glo 3D. 98

Treatment with cisplatin and paclitaxel, in the same concentrations used for the 2D 99

experiments, was administered 7 days after the printing, to allow for the establishment 100

of a stable 3D culture. Measurements were conducted after 72 h following the 101

manufacturer’s protocol. A total of 3 biological replicates, each comprising at least 3 102

technical replicates, was analysed for each condition. All data were corrected with 103

respect to the signal produced by the matrix devoid of cells and normalised with respect 104

to the average value measured for the untreated control. 105

Adhesion 106

Adhesion in 2D was evaluated as in [42]. Briefly the wells of a 96-well plate were coated 107

with 10 µg/ml of collagen I (Sigma-Aldrich, USA) or 3% BSA (Sigma-Aldrich, USA). 108

100,000 PEO4 cells were seeded on top of each coating and incubated for 2, 3 or 4 h at 109

37oC and 5% CO2. Unattached cells were then washed away, prior to fixing with 96% 110

ethanol and staining with 1% crystal violet. Cells were then lysed with 50% acetic acid 111

and their density was quantified with an absorbance measurement (at 595 nm). A total 112

of 3 biological replicates each comprising 2 technical replicates was considered for this 113

analysis. Adhesion in 3D was quantified following the same procedure, just substituting 114

the collagen coating with the organotypic model [38]. A limitation of this approach is 115

that the measured absorbance integrates the signal from all the cell types present in the 116

organotypic model. The amount of mesothelial and fibroblast cells is however assumed 117

to be constant throughout the experiment. 118

Invasion 119

Invasion in 2D was measured using Matrigel-precoated transwell chambers (Corning Life 120

Sciences, USA). PEO4 cells were harvested with trypsin and diluted to a concentration 121

of 1·106 cells/ml in 1% FBS media. 100 µl of the cell solution was added to each 122

transwell insert and incubated for 48 h. 123

Following the incubation, transwell inserts were gently washed with PBS and fixed 124

in 4% paraformaldehyde for 10 minutes. Wells were washed again in PBS and mounted 125

on a microscope slide using DAPI mounting medium (Fluoroshield, Sigma-Aldrich, 126

USA). Slides were let dry for at least 1 h prior to imaging at the microscope (Leica DM 127

2000 LED fitted with a Leica DFC450c camera). Ten images from different regions of 128

the slide were acquired and the number of invaded cells counted using custom-made 129

software further described in the next section. A total of 3 biological replicates each 130

comprising 2 technical replicates was considered for this analysis. 131

Cancer cell invasion in 3D was measured in a substantially equivalent way, by 132

substituting the Matrigel-precoated chambers with regular transwell inserts (Corning 133

Life Sciences, USA) in which the organotypic model had been seeded [38]. Specific 134

modifications in the counting software used for the 2D analysis allowed for the 135

identification of the invaded cancer cells, which were producing a stable GFP signal. 136

Invasion quantification software 137

The number of cells in each image was quantified through custom-made software 138

written in Python (v.3.9) and freely available at 139
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https://github.com/MarilisaCortesi/cell counter. It uses the Otsu’s method to segment 140

the nuclei and a labelling routine to identify each segmented region and thus determine 141

the total number of cells ( S1 Fig a., b.).The accuracy of this method was evaluated by 142

comparing the number of cells retrieved by the software for each image, with the 143

corresponding manual count obtained by an expert user using ImageJ (S1 Fig c.). The 144

two measures are highly correlated (R2 = 0.95), and their average percentage error is 145

consistent with the inter-operator variability for this assay (about 18%, [43]). As such, 146

the automatic count was considered to be equivalent to the manual one. 147

For the images obtained during 3D experiments, two additional filters based on the 148

average fluorescence intensity and area were used to separate cancer cells from 149

fibroblasts and mesothelial cells. In particular, a cell was labelled as PEO4 if its area 150

was between 50 and 5,000 pixels and its average fluorescence intensity was higher than 151

that of the background (S1 Fig d., e., f.). 152

SALSA modeling and computational simulations 153

Computational simulations were conducted in SALSA [44–46]), a hybrid 154

continuous-discrete cellular automaton freely available at 155

https://www.mcbeng.it/en/category/software.html. A cubic 3D lattice constitutes the 156

main structure of the simulator (Fig 1a). Cells can be positioned at each of the grid’s 157

nodes and the values of the continuous variables are computed at the same locations. 158

Specifically It relies on specifically formatted configuration files (available as 159

supplementary material S1 File) are used to formalize cell behaviour and initialise the 160

experimental conditions. 161

Fig 1. Schematic representation of the SALSA model used within this work.
a. Cubic lattice representing the underlying structure of the simulator. Shaded areas
distinguish the three main layers of the omentum lining (fibroblast + ECM in green,
mesothelial in blue and cancer in red). b. Flowchart of the states (nodes) and
behaviours (arcs) formalised within the CM. Beside transitions between different states
(black solid arrows) proliferating cancer cells can duplicate (red arrow) and migrate
(purple arrow), while dead cells can degrade (dotted arrow). The equations on each arc
represent the probability of occurrence of each rule and the definition of the variables
they contain is in Tab 1.

Table 1. Variables used to formalise cell behaviour and their definition.

Variable Definition

AGE Age of the cell normalised with respect to the length of the simulation
D Local drug concentration normalised with respect to the amount added in the media
D0 Distance between the position of the current cell and the bottom of the culture (normalised between 0 and 1)
Glu Local glucose level normalised with respect to its concentration in the media
O2 Local oxygen level normalised with respect to its concentration in the media
Tc Current time point normalised with respect to the length of the simulation
Td Time at which the current cell died normalised with respect to the length of the simulation
TLD Time elapsed since the last division of the current cell normalised with respect to the length of the simulation

Modifications to the SALSA seeding procedure were implemented to replicate the 162

layered structure of the omentum (Fig 1a). Fibroblasts cells were limited to the bottom 163

half of the model, with mesothelial cells located immediately on top. Cancer cells were 164

initially positioned above the mesothelial layer and were constrained to move toward the 165

bottom, as the region above them represents the peritoneal cavity. The position of each 166
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cell, within the specific region, was randomly determined as in previous versions of 167

SALSA. 168

The computational representation of the 3D organotypic model comprises 5 different 169

cell states: (i) fibroblasts, (ii) mesothelial cells (iii) dead PEO4 cells, (iv) quiescent 170

PEO4 cells and (v) proliferating PEO4 cells (Fig 1b). Arcs within the graph in Fig 1b 171

represent the allowed transitions between different states and are labelled with the 172

corresponding probability of occurrence (see Tab 1 for the definition of each variable). 173

These rules were determined collating multiple evidence from the scientific literature, 174

with the aim of describing the behaviour of PEO4 cells. Parameters a-e were empirically 175

estimated through the procedure described in the following section. Fibroblasts and 176

mesothelial cells don’t have a formalised behaviour and are assumed to maintain their 177

status throughout the simulation. They however consume resources (glucose and 178

oxygen), thus impacting indirectly the behaviour of the HGSOC cells. 179

Treatment with cisplatin and paclitaxel was modelled as described in [45]. A sigmoid 180

curve (S) was used to describe the probability of the drug affecting cell behaviour as a 181

function of the local drug concentration (D). The parameters of this response curve 182

were identified, using the IC50 values and assuming no effect in absence of the drug. In 183

both cases, only proliferation (PR) and the rate of cell death (CDR) were considered to 184

be affected by the treatment (see Eqs 1 2,S2 Fig and Tab 1 for definitions), in 185

accordance with the mechanism of action of these agents [47,48]. 186

PD = a · TLD + c · (Glu+O2)− f · S(D) (1)

CDR =
b ·AGE

Glu+O2
− g · S(D) (2)

Parameters Estimation 187

Initially, the parameters describing the behaviour of the culture in absence of treatment 188

(Fig. 1) were calibrated. A number of different values between 0 and 1 were considered 189

for each parameter (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1) and every possible combination 190

of these values was simulated 3 times for the equivalent of 72 h. The replicates were 191

then averaged and a score comparing simulated and in-vitro data was computed (Eq. 3). 192

S = Sp + Si + Sa (3)

Here Sp, Si and Sa are defined as in Eqs 4 5 6, where Cx is the number of simulated 193

cancer cells at T = x. DR is the experimentally measured doubling rate. It was set to 2 194

for the monolayer cultures (based on a doubling rate of 36 h [36] and to 0.87 for the 3D 195

hydrogel multispheroids. This value was obtained as the number of cells counted in 196

bright-field images obtained during a 7 day long experiment in the IncuCyte real-time 197

cell imaging instrument (S3 Fig a.). Finally, Isilico and Ivitro are the number of invaded 198

HGSOC cells and Ax the measured amount of adherent PEO4 cells at T = x. 199

Sp =
C72

C0
−DR

DR
(4)

Si =
Isilico − Ivitro

Ivitro
(5)
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Sa = Σ4
t=2

Ct

C4
− At

A4

At

A4

(6)

Sp measures the effectiveness of the computational model in recapitulating cancer 200

cell proliferation. 201

Si achieves the same purpose, but it compares the number of invaded cells measured 202

in-vitro with the average number of migration events recorded during the simulation. 203

Sa has a similar structure, but it compares the number of simulated PEO4 cells at 204

iterations 2-4 to the corresponding results of the adhesion experiments. 205

A total of 8 different computational models were identified, using every possible 206

combination of 2D and 3D data (Tab 2) and choosing the parameter set associated with 207

the best (i.e., lowest) score value. 208

Table 2. Combination of the 2D (white background) and 3D (gray background) data used for the analysis.

CM Proliferation Invasion Adhesion

1 2D 2D 2D
2 2D 2D 3D
3 2D 3D 2D
4 2D 3D 3D
5 3D 2D 2D
6 3D 2D 3D
7 3D 3D 2D
8 3D 3D 3D

The same procedure was repeated for the two parameters recapitulating the drug 209

treatment. In this case, only the IC50 values for cisplatin and paclitaxel (10.4 µM and 210

3.04 nM respectively, [49]) were used for the calibration, and the configuration 211

corresponding to a normalised cancer cell density closest to 0.5 was selected. 212

Computational model validation 213

The validation of the CMs was conducted by comparing the simulated dose response 214

curves to cisplatin and paclitaxel, with the corresponding experimental data acquired in 215

monolayer cultures and 3D multi-spheroids. No modification to the structure or 216

parameters of the model was applied, with respect to the calibration stage, and the 217

in-vitro data used for the comparison were not used to identify any of the parameters. 218

Statistical analysis 219

The Kolmogorov-Smirnov test was used, whenever appropriate, to evaluate whether the 220

distribution underlying the two sets of samples was the same. This method was chosen 221

as it does not make any assumption on the shape of the underlying distribution. A 222

p-value of 0.05 was chosen as the threshold for significance. 223

Results 224

Our analysis is schematically described in Fig 2. We considered three EMs: 3D hydrogel 225

multi-spheroids, a 3D organotypic model and standard monolayer culture. The use of 226

two 3D EMs was required as the CMs describe both the first phases of metastasis, when 227

cancer cells exhibit limited proliferation but readily adhere and invade and the later 228
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stages of disease progression when cells proliferate within the invaded tissue. The 229

organotypic model is an accurate representation of the adhesion/invasion phase, but 230

constraints on the length of the experiments and difficulties in separating the 231

contribution of the different cell types limit its usefulness for the evaluation of 232

proliferation. Hydrogel multi-spheroids, on the other hand, yield accurate proliferation 233

measurements, but lack the multilayer structure useful for the study of invasion. As 234

such, we decided to exploit the strengths of both systems and evaluate adhesion and 235

invasion in the organotypic model and proliferation and drug response in the 3D 236

hydrogel multi-spheroids. The same measures were also obtained in standard 2D cell 237

cultures. 238

Fig 2. Flowchart of the analysis presented in this work. Different combinations
of experimental data from 2D monolayers and 2 3D EMs (hydrogel multi-spheroids and
an organotypic model) were used to calibrate the same computational simulator of
transcoelomic metastasis. These CMs were then used to simulate the response to either
cisplatin or paclitaxel. The comparison between the simulated and measured dose
response curves enabled the validation of the CMs and thus the determination of which
CM yields the results more closely matching experimental data.

Adhesion, invasion and proliferation data were used to calibrate the CMs (right end 239

side of Fig 2). To test the effect of using different EMs on the simulated results we 240

considered all possible combinations of 2D and 3D data. The calibrated CMs allowed 241

study of the in-silico behaviour of PEO4 cells both in absence and presence of 242

treatment. The simulated dose response curves were compared with their experimental 243

counterpart, acquired both in 2D monolayers and in the 3D hydrogel multi-spheroids, to 244

determine which combination of calibration data yielded the CM better replicating the 245

treatment response of PEO4 cells (left end side of Fig 2). 246

in-vitro quantification of adhesion and invasion 247

Fig 3a reports the results of the adhesion time course conducted in both 2D monolayers 248

and the organotypic model. Very similar absorbance values were obtained for the two 249

conditions, even though a 3D setting was associated with increased variability. 250

Additionally, the number of adherent cells remained approximately constant within the 251

considered timeframe, even though a slight trend appears to be present for the 3D 252

setting. 253

Fig 3. Experimentally measured adhesion and invasion in both 2D and 3D
EMs a. Adhesion measurements at 2, 3 and 4 h post seeding. In 2D a collagen coating
was used as substrate while in 3D HGSOC cells were seeded on the organotypic model.
b. Average number of invaded PEO4 cells in 2D and 3D (Kolmogorov Smirnov p value
= 0.005). In both panels error bars represent the standard deviation (n = 3).

Changing the EM had a more pronounced effect when quantifying invasion (Fig 3b). 254

Here the use of the organotypic model resulted in a noticeable increase in the number of 255

invading cells (Kolmogorov-Smirnov test p = 0.005). 256

These results, together with the doubling time for PEO4 cells [36] and their 257

confluency measurement obtained with the IncuCyte (S3 Fig), were used to calibrate 258

the CMs, that is to identify which parameter sets better approximate the different 259

combination of experimental data. 260
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Computational models calibration 261

To determine the role of the EM in the identification of the CM parameters we 262

calibrated eight different CMs, each corresponding to a different combination of 263

experimental data (Tab 2). As described in the methods section, a score was computed 264

for each simulated parameters configuration (Eq 3), and the one associated with the 265

lowest value was selected. 266

Fig 4 reports the results of this analysis both as individual score components (panels 267

a. to c.) and overall score value (panel d.). For each CM the score values are reported 268

as average and standard deviation (computed over 50 simulations). No statistical 269

analysis was conducted on these data, as the accuracy of each CM in reproducing the 270

experimental results was assessed independently. 271

Fig 4. Score values associated with the best parameter configuration for
each CM Panels a-c refer to one of the three score components (a. Sp, b. Si, c. Sa),
while panel d. shows each configuration overall score. As-per their definition (see Eqs 3,
4, 5, 6) low score values are associated with higher accuracy of the CM. Scores were
computed independently for each simulation and then averaged (error bars represent the
standard deviation). The experimental data used to calibrate each CM are summarised
in Tab. 2 and the corresponding colour coding is reported in Tab 3

The use of experimental data acquired in 3D seems to be associated with an overall 272

lower score (1.7 for CM 8 vs 2.8 for CM 1), but the main result of this analysis is the 273

low relevance of the EM used to evaluate adhesion. Indeed, in most cases, both 2D and 274

3D experimental data yield the same parameter set (Tab 3). The only exceptions are 275

CMs 3 and 4, which are however associated with very similar configurations (Tab 3) and 276

overall score (Fig 4). 277

Table 3. Optimal parameter configurations for each CM in Tab. 2 CMs with identical parameters values (e.g.
1 and 2) will be considered as one condition (1/2) for the rest of the analysis. Each CM has also been
color-coded (last column of the table) throughout the analysis.

CM Parameters Colour
a b c d e

1
1/2 1 0.1 0.1 0.01 0.1

2
3 1 0.5 0.1 0.01 0.1
4 1 0.5 0.1 0.1 0.1

5
5/6 1 0.1 0.05 0.001 0.5

6
7

7/8 1 0.5 0.05 1 0.5
8

The parameters describing drug response were determined in the same way. Tab 4 278

reports the values of f and g (Eqs 1 2) for each CM and the corresponding score value. 279

Again, the error associated with the use of 3D data is generally lower, even though no 280

general association between use of specific EMs and parameter values was observed. 281

Computational model validation 282

Following the identification of the CMs, we compared the simulated response to 283

treatment with either cisplatin (Fig 5) or paclitaxel (Fig. 6) to the experimentally 284

measured values in a 2D or 3D setting. Most of the CMs showed limited response to 285

treatment and a statistically significant difference between the simulated and 286
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Table 4. Optimal parameter configurations for treatment response simulation for each CM.

CM Cisplatin Paclitaxel
f g score f g score

1/2 0.5 0.01 1.2 0.05 0.001 1.42
3 0.5 0.5 0.16 0.005 0.5 0.05
4 1 0.005 0.26 1 0.01 0.37
5/6 0.05 0.001 0.16 0.005 0.01 0.16
7/8 1 0.01 0.05 0.01 0.005 0.05

experimental data (Kolmogorov-Smirnov test, * p <0.05, ** p<0.01), especially at the 287

higher drug concentrations. 288

Fig 5. Comparison between the simulated cisplatin response (colour coded
for each model as in Table 3) and the experimental data acquired in 2D (red
bars) and 3D (purple bars) EMs. In all cases, the cell density is normalised with
respect to untreated condition and data are reported as mean +/- standard deviation
(n=3 for the experimental data, n=50 for the simulated results) Statistical testing
conducted using the Kolmogorov-Smirnov test and reported in black when comparing
simulated and 2D data and in grey for simulated and 3D data, * p<0.05, **p<0.01.

Fig 6. Comparison between the simulated paclitaxel response (colour coded
for each model as in Table 3) and the experimental data acquired in 2D (red
bars) and 3D (purple bars) EMs. In all cases, the cell density is normalised with
respect to untreated condition and data are reported as mean +/- standard deviation
(n=3 for the experimental data, n=50 for the simulated results) Statistical testing
conducted using the Kolmogorov-Smirnov test and reported in black when comparing
simulated and 2D data and in grey for simulated and 3D data, * p<0.05, **p<0.01.

Only CM 4 recapitulated the dose response curve accurately. It corresponds to using 289

3D data for both invasion and adhesion measurements and 2D measurements for 290

proliferation (Tab. 2). This result is also confirmed by relative error between 291

experimental and simulated data (Tab. 5). In this case the relative change between 292

experimental and simulated results was computed for each drug concentration, and then 293

summed to provide an indication of how well the model captures the entire dose 294

response curve. 295

Table 5. Optimal parameter configurations for treatment response simulation for each CM.

CM
Cisplatin Paclitaxel

2D 3D 2D 3D

1/2 59.29 4.88 21.42 7.21
3 60.89 5.61 17.84 6.78
4 24.81 2.13 7.33 1.85
5/6 71.34 6.36 24.70 8.59
7/8 51.82 4.14 18.71 4.92

3D data tend to be better approximated by the computational model, as the error is 296

lower. This might be partly due to the more limited growth rate and response to 297

treatment observed in 3D, which might be simpler to capture with the simulator. At the 298

same time, this difference between treatment in 2D and 3D settings is commonly 299

observed, both in terms of increased IC50 and reduced overall response [50,51]. 300
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High resolution analysis of simulated cell behaviour 301

A key feature of SALSA is that it retains information on the position of each cell at 302

each iteration. This enables study of the dynamic distribution of each population with 303

sub-organoid resolution. In particular, the distribution of the average cell density for 304

each simulated cell type was computed as a function of time (x axis) and z coordinate 305

(y axis). Cell density was obtained, for each simulation, normalising the number of cells 306

at each depth by the initial population cardinality. Averaging over the simulation 307

yielded the heatmaps in Figs. 7, 8, 9. 308

Fig 7. Analysis of the dynamic behaviour of simulated cell types with
sub-organoid resolution. Each column corresponds to a different CM, while each row
is associated to a cell type. Every panel shows the average density of that cell type
(over 50 simulations) over time and as a function of the z coordinate. Colour shading in
each block represents cell density (refer to scale on right end side), with dark blue and
bright red representing the lower and higher cell densities. All values have been
normalised with respect to total initial cell number.

Fig 8. Analysis of the dynamic behaviour of simulated cell types with
sub-organoid resolution following treatment with cisplatin at IC50 levels.
Each column corresponds to a different CM, while each row is associated to a cell type.
Every panel shows the average density of that cell type (over 50 simulations) over time
and as a function of the z coordinate. Colour shading in each block represents cell
density (refer to scale on right end side), with dark blue and bright red representing the
lower and higher cell densities. All values have been normalised with respect to total
initial cell number.

Fig 9. Analysis of the dynamic behaviour of simulated cell types with
sub-organoid resolution following treatment with paclitaxel at IC50 levels.
Each column corresponds to a different CM, while each row is associated to a cell type.
Every panel shows the average density of that cell type (over 50 simulations) over time
and as a function of the z coordinate. Colour shading in each block represents cell
density (refer to scale on right end side), with dark blue and bright red representing the
lower and higher cell densities. All values have been normalised with respect to total
initial cell number.

The difference between them is the treatment condition: Fig. 7 outlines the 309

behaviour of the different CMs in the absence of treatment while Figs. 8 and 9 refer to 310

treatment with cisplatin and paclitaxel at a concentration equal to the simulated IC50. 311

Fibroblast and mesothelial cells are concentrated in very specific regions of the virtual 312

organoid, in accordance with the definition of the experimental model [28, 29] and their 313

density is constant throughout the experiment, as per CM definition (Fig. 1). Any 314

variation in the colour shade is due to the fact that virtual cells are randomly assigned a 315

position within the allowed area, and this will result in a non-uniform distribution even 316

when the average density is computed. Additionally, as virtual PEO4 cells move through 317

the organoid they have the power of displacing fibroblasts and mesothelial cells, hence 318

producing the slight decrease in the density of these cells observed as time progresses. 319

The behaviour of virtual PEO4 cells is conceptually the same in all models: their 320

initial location is on top of the mesothelial cells, and they progressively infiltrate the 321

underlying layers. The different CMs are however characterised by varying degrees of 322

infiltration and proliferation within the organoid. 323
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Configurations calibrated with the 3D invasion data (CMs 3, 4, 7/8) result in a more 324

extensive infiltration (i.e., cancer cells present at lower depth values) while 2D 325

proliferation (CMs 1/2, 3 and 4) is associated with an overall higher number of cancer 326

cells. 3D invasion is also connected with a higher rate of PEO4 cell death especially in 327

the shallower layers of the organoid and the second half of the simulation. This might 328

be connected to the dependence of cell death on the age of the cancer cells, which is 329

likely to be higher toward the end of the simulation and in the region where this type of 330

cells was initially located. 331

Comparing Fig. 7 with Figs. 8 and 9 highlights the effect of the treatments on the 332

behaviours of the different cell types. 333

Simulated fibroblasts and mesothelial cells are not affected by the treatment, as their 334

interaction with cisplatin and paclitaxel has not been formalised. PEO4 cells, on the 335

other hand, have a generally reduced growth and more limited infiltration within the 336

virtual organotypic model. This seems to be connected to a delay in both these 337

processes, whose probability increases as the effective drug concentration decreases due 338

to degradation. 339

Cell death is also increased in the presence of treatment and this process seems to be 340

more sustained over time. Surprisingly however, the number of dead cells becomes 341

relevant at about the same time as in the untreated condition, suggesting that, in our 342

simulations, treatment alone is not sufficient to induce cell quiescence and death. This 343

is consistent with the treatment resistant nature of PEO4 cells but might also reflect 344

the need for a more detailed modelling of drug response. 345

1 Discussion 346

Computational modelling has acquired great relevance in biomedical and cancer 347

research, both as a tool for fundamental research [52–54] and as an aid for clinical 348

decision making [55]. As such, an in-depth analysis of the calibration and validation 349

procedures is necessary to maximise the utility and accuracy of these models. 350

The focus of this work has been the effect of using different EMs to calibrate and/or 351

validate the computational simulator and how this choice affects the in-silico results. To 352

this end, we measured ovarian cancer cell proliferation, adhesion and invasion in both 353

2D monolayers and 3D cultures and evaluated the consequences of using distinct 354

combinations of these data for the corroboration of the same computational system, a 355

virtual representation of transcoelomic metastasis realised in SALSA (Fig 1). This 356

biological process was chosen as it is highly dependent on the 3D interaction between 357

different kinds of the cells and their environment, a feature expected to magnify the 358

difference between more accurate experimental models and simplified systems. 359

The use of different datasets led to the identification of CMs characterised by 360

distinct parameters (Tabs 3, 4) and a varying degree of accuracy when compared with 361

the experimental data (Fig 4, Tab. 4). From these results, the use of at least some of 362

data acquired in a 3D setting tends to be associated with a lower error, underscoring 363

the importance of accurate in-vitro models for the corroboration of in-silico systems. 364

It is also worth noticing the dependence of some rates on specific experimental data. 365

The value of the b parameter, which modulates the death rate and the transition 366

between proliferative and quiescent states (Tab. 3), is strictly associated with the 367

experimental model used to evaluate invasion, suggesting that culture in the 368

organotypic model increases the likelihood of both these phenomena. On the other 369

hand, the values of c and e (Tab. 3) are mainly determined by the setting used to 370

measure proliferation. As such, 2D monolayer seems to favour proliferation, while 371

growing in 3D promotes migration and invasion. This is qualitatively coherent with 372

with evidence from the literature [35] and is also confirmed by our experimental data, as 373
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the average number of cells able to invade through the organotypic model is almost 374

double that measured in the 2D setting (Fig. 3b). These considerations are also 375

supported by the results presented in Fig 7, where simulated dynamic evolution of the 376

density of the different cell types is presented as a function of their position within the 377

organotypic model. CMs calibrated with 3D invasion data (CMs 3, 4, 7 / 8) are 378

associated with a deeper infiltration of cancer cells and a higher density of dead cells. 379

3D proliferation (CMs 5/6 and 7/8), on the other hand results in an overall lower 380

number of cancer cells, in agreement with the in-vitro data used for the calibration. 381

The EM used to evaluate cell adhesion seems to be less relevant with 6 out of 8 382

models being invariant with respect to this property. This could be due to the similarity 383

between the measurements obtained in the two experimental setups (Fig. 3a) but is also 384

a reflection of the mainly surface nature of this phenomenon, which might resent less 385

from the simplification in the experimental setting. 386

Another key difference between the experimental data measured in 2D and 3D is the 387

increase in variability in the latter (Figs. 3, 5, 6). This is a phenomenon frequently 388

observed when transitioning from monolayer cultures to more complex setups which has 389

been linked to differences in the microenvironments experienced by each cell and have 390

been shown to improve resilience and adaptability [56]. 391

The validation of these CMs was conducted by comparing the simulated dose 392

response curves to cisplatin and paclitaxel with the corresponding experimental results 393

obtained in 2D monolayers and 3D hydrogel models (Figs 5, 6). Data acquired in the 394

multi-spheroid model are associated with a reduced response to the treatments (gray vs 395

black bars in Figs 5, 6) and with an increase in variability. Most CMs are also 396

associated with a limited response to treatment and a low sensitivity to the change in 397

drug concentration. This is likely dependent on the formalization of cancer cell 398

behaviour and response to treatment used within this work, and further analysis on how 399

changing the CM structure and probabilities affects the simulated results is warranted. 400

Beside potentially improving the simulated drug response, this perspective study would 401

also shed light on the role of each simulated variable (e.g., nutrients availability, cell age) 402

in determining cell behaviour, and could provide useful insights on the biology of 403

HGSOC cells. One of the simulated CMs (CM 4), however, was able to effectively 404

recapitulate 2D and 3D dose response curves. It was calibrated using 2D proliferation 405

data and 3D invasion and adhesion measurements. Furthermore, the drug response 406

parameters for this configuration feature a high rate of proliferation inhibition and a 407

comparatively low induction of cell death. Overall, these characteristics produce a 408

response comparable to model 8, which was calibrated using only 3D data, at low and 409

mid drug levels (Figs 5, 6, 8, 9). It however produces a better response when higher 410

concentrations of treatment are simulated. Particularly relevant is the comparison with 411

CM 3, which exhibited a substantially equivalent behaviour in absence of treatment 412

(Fig. 4) but a much more drug-resistant phenotype (Figs 5, 6). The values of parameters 413

f and g for these configurations suggest that, at least in this configuration, inhibiting 414

cell proliferation might be a more effective treatment strategy than inducing cell death. 415

Conclusion 416

Overall, while the results of this work might not be directly transferrable to different 417

experimental and computational models, this analysis allows to draw three conclusions 418

with general applicability. 419

Firstly, the interaction of multiple phenomena can result in different datasets 420

producing similar results. This can be observed in Figs 8, 9, where CMs 4 and 7 / 8 421

yield comparable cancer cells densities, despite having been calibrated with different 422

datasets. In this case, a higher number of dead cells in CM 4 compensates for the faster 423
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proliferation of this configuration. The comparative analysis presented in this work can 424

be a useful tool for the identification of these compensatory mechanisms, thus enabling 425

a deeper understanding of the computational models and their mechanisms. 426

Secondly, maximising the similarity between the simulated and experimental setups 427

is associated with a low error throughout all the analysis. Indeed, while a combination 428

of 2D and 3D data most accurately captured the response to cisplatin and paclitaxel, 429

exclusively using data measured in 3D settings scored the lowest in the calibration stage 430

(Fig 3) and second lowest in the drug response (Tab 4, 5). 431

Thirdly, behaviours more strictly connected with the interaction between the cells 432

and the 3D environment seem to be affected more deeply by simplifications of the 433

experimental model. In our experiments, the number of invaded cells almost doubled 434

shifting from a 2D to a 3D setting (Fig 3b.) and the behaviour of models corroborated 435

with 3D invasion data was markedly different from their 2D counterpart. On the other 436

hand, quantifying adhesion in a 2D or 3D setting had little effect on the CM’s results. 437

As such, should it not be possible to use exclusively 3D EMs, properties characterised 438

by limited cell-cell and cell-environment interactions are expected to be the less affected 439

by the simplification of the EM. 440

Overall, many obstacles are still in the way of a complete integration of in-silico and 441

in-vitro analyses, but this and other works provide important insights on how these 442

issues can be addressed and workflows adapted to reap the benefits of computational 443

analysis for the study of complex biological processes. 444

Supporting information 445

S1 Fig. Quantification of the number of invaded cells a. Representative image 446

of the DAPI stained nuclei of cancer cells during a 2D invasion assay. b. Segmentation 447

of the image in a., individual cells are represented with different colours to distinguish 448

them. c. Comparison between automatic and manual counts for all the images acquired 449

during the 2D experiments (R2 =0.95). d. Representative image of the DAPI stained 450

nuclei during a 3D invasion assay. e. Segmentation of the image in d.. In this case, 451

additional filters on the area and the GFP intensity are applied to isolate only the 452

cancer cells (colour overlays). f. GFP intensity for the image in d. . 453

S2 Fig. Flowchart showing the modifications introduced in the 454

computational model to describe treatment with cisplatin and paclitaxel. As 455

mentioned in the text, only the probability of cell doubling and that of cell death are 456

affected. 457

S3 Fig. PEO4 cells growth within 3D printed hydrogels. a. Dynamic 458

evolution of the number of cells over the course of 7 days. For this experiment 3 459

different initial cell densities were considered (2000, 3000 and 4000 cells/spheroid) and 460

their growth was monitored with a time resolution of 1 h with an IncuCyte device. The 461

time course starts at T = 72 h to avoid any artefact from bubbles released from the 462

hydrogel. b. Cell density in the same samples was also evaluated with a Cell-titer Glo 463

3D assay at the end of the experiment. As further detailed in the method section, the 464

two methods produce equivalent results. 465

S1 File. Configuration file used to describe the organotypic model in 466

SALSA. 467
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