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Summary 

Gene expression is an essential step in the translation of genotypes into phenotypes. However, little is 
known about the transcriptome architecture and the underlying genetic effects at a species-level. Here, 
we generated and analyzed the pan-transcriptome of ~1,000 yeast natural isolates across 4,977 core 
and 1,468 accessory genes. We found that the accessory genome is an underappreciated driver of the 
transcriptome divergence. Global gene expression patterns combined with population structure show 
that the heritable expression variation mainly lies within subpopulation-specific signatures, for which 
the accessory genes are overrepresented. Genome-wide association analyses consistently highlight that 
the accessory genes are associated with proportionally more variants with larger effect sizes, 
illustrating the critical role of the accessory genome on the transcriptional landscape within and 
between populations.  
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Introduction 

Gene expression is the primary step of a process by which information encoded in the genome is 
converted into traits. Genetic variants affecting gene expression levels contribute to the phenotypic 
diversity1–4. The dissection of the genetic regulation of the different molecular intermediates leading to 
the final phenotypes is therefore essential for understanding many aspects of biology. Genetic variants 
or loci associated with gene expression variation (i.e., expression Quantitative Trait Loci, eQTL) have 
been identified via linkage and genome-wide association mapping in various organisms, uncovering 
general mechanisms of transcription regulation5–16. Genetic variants underlying gene expression 
variation can be located close or further to the affected gene and are hence considered as cis-acting 
(local eQTL) or trans-acting (distant eQTL), respectively. All these studies highlighted the fact that 
local eQTL have larger effects on gene expression than distant eQTL5–7. However, a gene is often 
regulated by multiple distant eQTL and this set of trans-regulatory variants tend to explain a larger 
fraction of the variance overall than its cis-eQTL6. 

In recent years, large-scale transcriptomic surveys have been initiated in multiple model and non-
model systems5,7,14,12,17, most notably the GTEx project in humans which covers gene expression data 
across 49 tissues from up to 838 individuals12. These studies were extremely insightful into the tissue-
specific gene expression regulations and extensively catalogued cis-acting variants acting across 
tissues12. However, due to the large genomes and relatively limited sample sizes, trans-eQTL 
remained difficult to detect in such settings, leaving part of the gene expression variance still 
unexplained12. Moreover, most population-level studies have focused on only a small fraction of 
genetic diversity, disregarding the wide variation in genetic content, namely the entire pangenome and 
more precisely the accessory genome. And finally, many species including humans display clear 
population structure that are often linked to the demographical, ecological and evolutionary histories 
of the subpopulations17–19. However, due to the sampling limitations, the impact of the subpopulation 
structure on gene expression remains unclear, and as a result, no unified view of the patterns of gene 
expression regulation within and among populations is currently available.  

Understanding patterns of gene expression variation at a population-scale remains a challenge but it 
should provide deeper insights into the molecular basis of phenotypic diversity as well as 
transcriptional network architecture. Here, we took advantage of a population of 1,011 yeast isolates 
we previously completely sequenced to determine and explore the transcriptomic landscape at a 
population-scale20. The budding yeast Saccharomyces cerevisiae is a key model organism for 
investigating how genetic variants influence gene expression6,7,21. This species is characterized by a 
complex population structure with domesticated as well as wild subpopulations, and presents a high 
genetic diversity20. Large-scale genome analysis of the 1,011 natural isolates also provided a 
pangenome definition of the species as well a comprehensive view of genome variation at different 
levels, including copy number variants and gene content variation20. Finally, this large sample 
increases the power of genome-wide association studies (GWAS), allowing for in-depth 
characterization of local and distant regulatory variants impacting gene expression variation. Together, 
these two genomic and transcriptomic datasets have led to the most comprehensive insight into 
genome-wide expression regulation across the species, which would be a challenge to achieve at this 
scale and at the same level of accuracy for other organisms at present. Our study advances the 
understanding of the genetic and functional architecture of transcriptional landscape as well as its 
heritability at a species-wide scale. 
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Pan-transcriptome dataset generated 
 
To gain a comprehensive overview of gene expression variation at the species level, we performed 
RNA sequencing for a collection of 1,032 S. cerevisiae natural isolates20,22 and obtained 969 high 
quality transcriptomes with at least 1 million mapped reads (Figure 1, Table S1). The genomes of all 
these isolates have been previously completely sequenced and extensively characterized, reflecting the 
broad genetic diversity of the species in terms of single nucleotide polymorphisms (SNPs), gene copy 
number variants (CNVs), genome content variation (e.g., introgressions, horizontal gene transfers) as 
well as aneuploidy and ploidy level variation (Figure 1A-B). The final set of 969 isolates are 
distributed across 26 well-defined clades that capture the ecological and geographical diversity of the 
species, including various domesticated and wild subpopulations (Figure 1A-C). Using the previously 
determined yeast pangenome20, we obtained the expression levels for 6,445 transcripts, including 
4,977 core ORFs as well as 1,468 accessory ORFs that are variably present in isolates (Figure 2A, 

Figure 1. Origin and genomic diversity of 969 isolates.  
A. Neighbour-joining tree based on biallelic single nucleotide polymorphism among 969 isolates included in 
our data. Previously defined subpopulations20 are color-coded. B. Detailed descriptions of various genomic 
features for the isolates. From the inside to the outside: circular cladogram for the 969 isolates, coloured 
branches correspond to domestication (red) and wild (green) clusters; ploidy levels for each isolate ranging 
from 1N to 5N; presence of any aneuploidy marked as a star; heterozygosity marked as a blue bar; clades and 
subclades with indicated colour codes. C. Geographical distribution of the 969 isolates. The size of the circles 
indicates the number of isolates included from a given geographical location. 
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Table S2). This dataset constitutes the most comprehensive pan-transcriptomic catalogue within a 
single species to date and is essential to better understand what are the main drivers of gene expression 
variation, and consequently the key players that shape the transcriptional landscape in a population 
(Online Datafile 1). 

 

Accessory genes have unique transcriptional behavior 

This population-scale dataset first allowed us to explore the transcriptional behavior of each of the 
6,445 genes. Within this population, each gene can be characterized by its overall expression level as 
well as its variation across the 969 isolates. We therefore defined two metrics, namely “abundance”, 
which corresponds to the average expression level for a given gene across samples; and “dispersion”, 
which describes the variance across samples. The abundance is calculated as the mean log2 of the 
normalized read counts (transcript per million, or TPM) across isolates for which the gene is present in 
their genome. For the dispersion, we used the mean absolute deviation (MAD), which is more robust 
to outliers and do not assume normality of the expression levels compared to standard deviation 
(Methods).   

By looking at the pangenome, we found that the core and accessory genes display distinct patterns, 
characterized by a significantly lower abundance and higher dispersion of accessory gene expression 
compared to core genes (Figure 2B-C). Beside this genomic view, we further investigated the 
transcriptional behavior of genes from a functional perspective. We examined 62 broad- and non-
redundant biological process GO slim terms using gene set enrichment analyses (GSEA) based on 
rankings of the mean expression abundance and dispersion across all genes included in our dataset. 
Among the 62 GO slim terms, 59 are significantly enriched (FDR < 0.05) for abundance or dispersion, 
and are then grouped into three quadrants depending on the direction of the enrichments (Figure 2D, 
Table S3). Specifically, genes involved in GO terms related to growth and cellular metabolisms show 
high abundance and high dispersion. By contrast, genes involved in GO terms related to organelle 
organization, transcription regulation and protein homeostasis show high abundance but low 
dispersion. And finally, the low abundance and low dispersion quadrant is characteristic for genes 
involved in GO terms related to chromosome organization, DNA recombination and repair as well as 
cell cycle regulation (Figure 2D, Figure S1). Contrasting to accessory genes, none of the GO terms 
show a pattern of low abundance and high dispersion (Figure 2D, Figure S1), possibly suggesting that 
known biological processes that are lowly expressed tend to be more tightly regulated across different 
genetic backgrounds.  

From a genomic and functional perspective, this survey of expression abundance and dispersion at the 
population level clearly highlights different transcriptional behaviors. The expression abundance alone 
is known to be correlated with different biological functions, such as the ribosomal genes are among 
the most highly expressed and genes involved in cell cycle regulation are in general lowly expressed 
and tightly regulated23,24. Interestingly, expression dispersion, which is an added dimension here due to 
our large sample size, allows us to distinguish and identify sets of genes and pathways that are most 
likely to drive the transcriptional variation in a population. For example, genes involved in metabolism 
and growth are among the most highly abundant and dispersed biological processes, which could 
reflect the diverse metabolic states and preferences across different isolates. Remarkably, contrasting 
to genes in all known major biological processes, the accessory genes uniquely occupy the low-
abundance and high-dispersion space and represent a previously under-characterized and unknown 
driver of transcriptional landscape diversity across the species. 
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Co-expression patterns recapitulates the cellular functional network 

Although expression abundance and dispersion provide relevant global transcriptional trends, they do 
not reflect the co-expression patterns among genes across the population. Exploring the gene co-
expression network at the species-level is essential to better understand the coordination of gene 
expression of diverse cellular processes in genetically distinct isolates. This then makes it possible to 
investigate whether population structure can impact or shape such central wiring of cellular functions. 

Figure 2. Functional description of the dataset.  
A. The number and distribution of all transcripts analysed in the data, including 4,977 core genes and 1,468 
accessory genes as previously annotated based on the genomes20. B-C. Global comparison of mean gene 
expression abundance (B) and dispersion (C) between core and accessory genes. Mean expression abundance 
was calculated as the mean log2(TPM+1) across isolates and dispersion as the mean absolute deviation. For 
accessory genes, isolates that do not carry the given gene were excluded from the calculations. D. Gene set 
enrichment analyses results for expression abundance (y-axis) and dispersion (x-axis), presented as 
normalized enrichment scores (NES). A total of 62 non-redundant GO slim biological process terms and 4 
accessory gene subcategories are included. Significant enrichments are coloured in blue (abundance) and red 
(dispersion). Summary terms for each quadrant are as indicated on the plot. Detailed distribution and 
enrichment for each term are presented in Figure S1.  
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We therefore constructed a first species-wide gene co-expression network based on the pairwise 
expression profile similarities across the population (Figure 3A). Edges connect genes with similar 
expression profiles (Pearson’s r > 0.67) and genes with less than five edges were excluded. The 
resulting network consists of 1,797 genes displaying a scale-free architecture with a clear modular 
topology (Figure 3A). Using weighted correlation network analysis (WGCNA), we identified 16 co-
expression modules localized to distinct regions of the network (Figure 3A, Table S4). Each module is 
enriched for a unique set of GO terms related to a similar biological process (Table S5), with the 
largest module (432 genes) enriched for ribosome biogenesis, and the smallest module (13 genes) 
corresponding to genes involved in sulfur amino acid biosynthesis. The relative positions of modules 

Figure 3. Whole population level gene co-
expression network. 

A.  Co-expression network based on pairwise 
gene expression profile similarities across 969 
isolates. Nodes are coloured according to the 
16 co-expression modules detected using 
weighted gene co-expression network analysis 
(WGCNA) method. The modules are 
annotated according to biological process GO 
term enrichment and are labelled in grey. 
Enriched cellular compartments are annotated 
and indicated in coloured shades. B. Pairwise 
similarity matrix based on eigengene 
expressions across the 16 modules. The 
modules are numbered according to 
descending order of their sizes. C. Principal 
component analysis (PCA) based on module 
eigengene expression across isolates. The first 
two principal components are plotted. The 
density boundaries are drawn for each 
subpopulation and are coloured according to 
the “domestication”, “wild” and “unassigned” 
clade annotations. The Euclid centres for each 
subpopulation-based density boundary are as 
indicated. 
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on the network also reflect broader functional relationship and shared cellular localizations (Figure 
3A, Table S5). This hierarchical organization is further illustrated by examining the pairwise 
correlations between module eigengenes, which show that modules involved in distinct but related 
biological processes are clustered together (Figure 3B). Overall, these results clearly show that the 
defined co-expression patterns recap the cellular functional network. 

Using module eigengene expressions, we performed principal component analysis (PCA) and focused 
on potential signatures related the subpopulation structures (Figure 3C). Globally, there is no clear 
delineation among different subpopulations based on the first two principal components (Figure 3C). 
This lack of strong subpopulation impact is corroborated by the general absence of differential 
subpopulation specific co-expression (Figure S2), indicating that the co-expression network is robust 
to genetic variation across the population.  

Overall, this population-scale co-expression network captures the topological organization of the cell 
by displaying the hierarchical relationships between functionally defined modules. The network is 
globally robust to the population structure, highlighting the part of the transcriptional landscape that is 
coordinated, hierarchical and functionally conserved at the species level.  

 

Transcriptional signatures related to specific subpopulations and domestication processes 

To identify subpopulation-specific transcriptional signatures, we performed differential gene 
expression analyses by comparing each clade to the rest of the population (Methods). We filtered out 
genes for which the expressions were not detected in over half of the population, resulting in an input 
set of 6,116 genes. We found 2,209 unique differentially expressed genes across clades (Table S4). 
The number of significant differentially expressed genes detected in a given clade does not necessarily 
correlate to the size of the subpopulation (Figure S3A, Table S4). On average, each subpopulation 
show ~130 differentially expressed genes, ranging from 390 for the French dairy clade (5. F, 30 
isolates) to 0 for the CHNII clade (15. C, 2 isolates) (Figure S3A, Table S4). 

While the co-expression network reflects globally coordinated cellular processes at the population 
level, the differential expression set reveals variability in subpopulation-specific gene expression. To 
further characterize this aspect, we looked at the clustering of the individual isolates based on the 
expressions across the co-expression set (1,797 genes) and the differential expression set (2,209 
genes), using t-distributed stochastic neighbor embedding (t-SNE) (Figure 4A-B). As expected, no 
structure related to the subpopulations is defined using t-SNE on the co-expression genes (Figure 4A). 
By contrast, a clear delineation of subpopulations, including multiple domesticated clades, can be 
observed using t-SNE on the differential expression genes (Figure 4B). Specifically, domesticated 
clades such as Wine/European (1. W), French dairy (5. F), African beer (6. A), Ale beer (11. A) and 
Sake (25. S), all show a clear and distinctive delineation, suggesting independent transcriptional 
signatures that are unique to each domestication process (Figure 4B). The mosaic subpopulations (M1 
to M3 and unclustered) and the Brazilian bioethanol clade (3. B) show a more scattered pattern, which 
is consistent with their admixed genome structure. Interestingly, all the wild subpopulations, despite 
their high genetic divergence, show little transcriptomic differentiation and are all closely clustered 
together (Figure 4B). The West African cocoa (12. W) and the African palm wine (13. A) clades, 
although involved in human-related fermentative processes, are known to be derived directly from 
wild lineages and cluster more closely to the wild subpopulations (Figure 4C). The t-SNE clustering is 
further corroborated by the topologies of the neighbor-joining trees (Figure S4) based on Euclidean 
distances among isolates using either the co-expression (Figure S4B) or differential expression gene  
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Figure 4. Subpopulation-specific differential gene expression.  
A-B. Isolate-level clustering using t-distributed stochastic neighbour embedding (t-SNE) based on the 
expressions of 1,797 co-expression genes (A) and 2,209 differential expression genes (B). Isolates belonging 
to each annotated subpopulation are colour coded. C-K. Examples of subpopulation-specific domestication 
signatures. Three examples are shown for signatures in 5. French dairy (C-E), 11. Ale beer (F-H) and 1. 
Wine/European (I-K). Volcano plots (C, F & I) present up- (orange) and down-regulated (blue) genes and 
biological processes, with x-axis showing the log2 fold-change comparing the subpopulation to the rest of 
the isolates, and y-axis showing the -log10 of Benjamini-Hochberg adjusted P-value (FDR). Dot sizes are 
scaled according to the FDR. The variance stabilized expression levels for specific up- (D, G & J) and 
down-regulated (E, H & K) genes are overlapped to the t-SNE plot, with the expression levels scaled as 
different colour intensities. The colour scales are included on the side of the plots.  
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sets (Figure S4C). These observations show that the wild populations do not display differentiated 
expression patterns despite their high genetic divergence, and suggest that the differential expression 
landscape is mainly driven by multiple distinctive domestication processes.  

To further characterize these transcriptional signatures, we performed GSEA based on the ranked log2 
fold-change of the differential expression genes in each subpopulation (Figure S5, Table S8). 
Significant enrichments for various biological processes were found across different clades, the 
majority of which were known to be adaptive in specific domestication processes (Figure S3C). For 
example, genes in the GAL pathway, involved in the metabolism of galactose, are significantly up-
regulated in the French dairy clade (5. F) (Figure 4C). In this subpopulation, the GAL pathway 
underwent from a tightly regulated glucose-repressed/galactose-induced system to constitutive 
expression even in the presence of glucose. Such switch was previously found in several lineages 
involved in spontaneous milk fermentation and was linked to adaptation to lactose rich medium25,26. In 
addition to the GAL genes (Figure 4C-D), the French dairy clade also shows down-regulation of 
multiple putative integral membrane proteins in the DUP240 family (e.g., MST27/28 and UIP3) that 
are involved in the COPI/COPII related vesicle organization27 (Figure 4C-E). Such changes in cell 
secretion could also be adaptive to certain cheese making processes28. In various types of alcohol 
fermentations, adaptive transcriptional signatures are also prevalent (Figure 4F-H, Figure S3C, Table 
S8). For example, the MAL genes involved in maltose catabolism are up-regulated in the Ale beer 
clade (11. A), a signature to malt fermentation environment in beer making29 (Figure 4F-G). At the 
same time, the expression of multiple aldehyde dehydrogenases genes (such as AAD6 and AAD10) is 
down-regulated in the Ale beer cluster (Figure 4F-H). Similarly, down-regulation of another aldehyde 
dehydrogenase gene, ADH7, is seen in the Sake (25. S) cluster, along with a pathway-level up-
regulation of genes involved in the thiamine metabolism (Figure S5, Table S8). Both these down- and 
up-regulation signatures are known to ensure high ethanol yield during sake production30. Another 
well-known adaptive trait in certain wine isolates was several translocations that lead to the 
overexpression of SSU1, a sulfite pump that confers resistance to sulfur dioxide, a commonly used 
compound in wine making31,32. The overexpression of SSU1 is indeed seen in the Wine/European 
clade (1. W) in our dataset (Figure 4I-K). 

Differential expression analyses highlight transcriptional signatures that are specific to different 
subpopulations. Interestingly, wild subpopulations appeared to be less differentiated in terms of the 
transcriptional diversity despite the high level of genetic divergence among these clades. In contrast, 
domesticated subpopulations exhibit clear signatures that correspond to distinct adaptive processes, 
notably in various metabolic pathways uniquely selected in different domestication events. 

 

Introgression, horizontal gene transfers and gene expression variation 

The recently established S. cerevisiae pangenome revealed numerous horizontally transmitted 
evolutionary events, such as introgressions and horizontal gene transfers (HGT), as part of the 
accessory genome20. This part of the pangenome is also more specific to certain subpopulations. For 
example, the presence of Saccharomyces paradoxus introgression events is a main characteristic of the 
Alpechin (2. A), Mexican agave (9. M) and French Guiana (10. F) clades20. By contrast, the 
Wine/European (1. W) clade features many HGT events coming from Torulaspora and 
Zygosaccharomyces species20. 

Overall, the accessory genome is globally characterized by a low abundance and high dispersion of 
gene expression, as shown above. However, even though this is a strong general trend, a difference 
can be observed between the expression of introgressed genes and those originating from HGTs 
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(Figure 2D, Figure 5A). In fact, while the gene expression abundance is higher, the gene expression 
dispersion is lower for introgressed genes compared to HGTs (Figure 5A). By looking at the gene 
expression level according to the species of origin, it is possible to explain the observed variation in 
terms of dispersion between introgression and HGT (Figure 5B). Regardless of the origin of the 
introgressed genes (Saccharomyces paradoxus, Saccharomyces mikatae or unknown Saccharomyces 
species), the level of gene expression is globally similar (Figure 5B). In contrast, there is a large 
disparity in gene expression level according to the species for the HGT events, leading to a higher 
dispersion (Figure 5B). 

Figure 5. Global expression patterns for accessory gene subcategories.  
A. Mean expression abundance and dispersion for introgression (570) and horizontal transferred (HGT) 
genes (143). Dotted line indicates the median value observed in core genes. B. Expression abundance per 
event for the introgression and HGT subcategories by donor species. Expression abundance is calculated as 
log2(TPM+1). C. Expression correlation between the S. paradoxus and S. cerevisiae alleles in the 
introgression subcategory. Only heterozygous introgression events are presented, with the x-axis 
presenting the log10 scaled reads count for the S. cerevisiae version and the y-axis presenting the 
corresponding counts for the S. paradoxus version. Dotted lines indicate the one-to-one ratio. Panels 
correspond to subpopulations with large numbers of such introgression events. D. Expression abundance 
for the GAL1 xenolog originated from an introgression event from an unknown Saccharomyces species. 
Expression abundance per isolate is presented on the y-axis and the origin of the GAL1 alleles on the x-
axis. Isolates from the 5. French dairy clade are highlighted.  
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The vast majority of introgressed ORFs examined here comes from S. paradoxus, a S. cerevisiae sister 
species. In most cases, these genes substitute their S. cerevisiae ortholog, either partially, resulting in a 
heterozygous state (one allele from each species), or completely, resulting in a homozygous state. To 
study the gene expression variation and adaptation of introgressed alleles, we first focused on the 
homozygous cases. We examined the expression of 437 homozygous genes for the allelic version of S. 
cerevisiae or S. paradoxus in different strains, and found that their expressions are well correlated 
(Figure 5C and Figure S6A). We next asked whether introgression events could impact expression 
level when they result in heterozygous states with S. cerevisiae native alleles. To do this, we 
performed Allele Specific Expression (ASE) analysis, minimizing the mapping bias towards the 
reference allele (Methods). Again, we found no significant difference in expression between S. 
cerevisiae and S. paradoxus versions, suggesting similar regulation of both alleles (Figure S6B). 
Overall, S. paradoxus introgressed alleles are therefore expressed at a level similar to those of S. 
cerevisiae, suggesting that they are well integrated in the transcriptional network. 

Nevertheless, we also found some exceptions and a notable example corresponding to a gene whose 
donor species was identified as an unknown Saccharomyces species (Figure 5B). This set of alleles is 
characterized by the overexpression of the GAL1 xenolog, involved in galactose metabolism. This 
allele is found in 31 isolates, 27 of which are dairy associated strains. In these strains, the GAL1 gene 
is highly expressed compared to the non-dairy associated strains (Figure 5D). This gene was already 
identified in the differential expressed gene analysis as a signature of the French dairy clade (5. F). As 
mentioned previously, this is related to a rewiring of the GAL network with a constitutive expression 
of the GAL genes in the dairy related isolates25. 

 

Genetic basis underlying the pan-transcriptome variation  

To further understand the relationship between the pangenome variation and the transcriptional 
landscape, we performed genome-wide association studies (GWAS) by considering both SNPs and 
CNVs that were previously characterized in the population20. Across the 969 isolates, 84,682 SNPs 
and 1,100 CNVs were included, with a minor allele frequency (MAF) higher than 5%. A total of 9,470 
significant expression Quantitative Trait Loci (eQTL) were detected (Methods). In total, significant 
eQTL are associated with the expression variation of 3,471 genes. Among the detected eQTL, 7,273 
are associated with SNPs and 2,197 are associated with CNVs, corresponding to 4,393 and 497 unique 
loci, respectively (Figure 6A-B, Datafile 2). 

On the SNP-eQTL side, a total of 1,901 were found as local eQTL, with sites located in the upstream 
of the transcription start site (TSS) or within the open reading frame (ORF) of the target gene 
displaying the largest effect sizes (Figure S7A-B). The remaining 5,372 SNP-eQTL are distant and 
trans-acting. Overall, local SNP-eQTL are less frequent, representing ~26% of the total set of eQTL 
detected, which is consistent with previous findings based on linkage mapping across a large segregant 
panel in a yeast biparental cross6. The trans eQTL detected are uniformly distributed across the 
genome, with ~41% of eQTL (2,206 out of 5,372) impacting only one trait (Figure 6A). The most 
significant eQTL hotspot was mapped to the CTT1 gene, encoding for a cytosolic catalase T, which is 
associated with 251 expression traits and was previously found to be an eQTL hotspot in stress 
conditions33 (Figure S7C). Contrasting to previous observations in a yeast cross6 and recent findings in 
a C. elegans population5, the set of trans eQTL detected in our large dataset are not biased toward a 
few hotspots with extreme pleiotropic effects (Figure S7C). 
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Contrasting to SNPs, the effect of CNVs on gene expression variation has never been systematically 
explored at the species scale. Compared to SNPs, CNVs are not randomly distributed along the 
genome and tends to be located towards the subtelomeric regions, except for chromosomes 1 and 9 
due to the presence of aneuploidies that passed the 5% MAF filter (Figure 6B). In addition, 
chromosomes 3, 8 and 11 are also impacted by aneuploidies at a lower frequency (~3%), resulting in a 
larger number of CNV eQTL in those regions (Figure S7D). These aneuploid chromosomes artificially 
inflates the trans hotspots for CNV-eQTL (Figure S7D). We only considered CNV-eQTL to be local 
when the CNV is directly associated with the same gene expression trait, and distant CNV-eQTL that 
correspond to single linkage groups. This results in a total of 305 local CNV-eQTL versus 1,892 
distant CNV-eQTL. On average, each CNV-eQTL impacts about eight expression traits.  

Consistent with previous observations, local SNP-eQTL display larger effect sizes compared to the 
distant ones, with a 1.3-fold higher absolute effect sizes and 2.4-fold higher variance explained on 
average (Wilcoxon p-value <2.2e-16) (Figure 6C, Figure S7E). While the same trend holds true for 
CNV-eQTL for absolute effect sizes (1.2-fold higher absolute effect sizes, local vs. distant, Wilcoxon 
p-value <2.2e-16) (Figure 6C), the variance explained by local or distant CNV-eQTL are low and not 
significantly different due to an overall lower minor allele frequency of CNVs compared to SNPs 
(Figure S7E). Overall, CNV-eQTL display smaller effect sizes compared to SNP-eQTL across the 
board. This first direct comparison of eQTL effect sizes indicate that SNPs display significantly larger 
impact than CNVs for gene expression variation at the population level.  

From a functional perspective, trans eQTL uncovered coherent associations that link causal SNPs and 
gene expression traits within the same biological process (Figure S7F). The top 5 trans eQTL hotspots 
collectively impact the expression of 356 genes, of which 276 belongs to the ribosome biogenesis 
module on the co-expression network (Figure S7F). The causal SNPs mapped to CTT1 (251 eQTL, 
chromosome 7, position 655,851), SRD1 (84 eQTL, chromosome 3, position 148,921), DHR2 (82 
eQTL, chromosome 11, position 290,740), RAD52 (71 eQTL, chromosome 13, position 213,896) and 
RPS17A (62 eQTL, chromosome 13, position 225,572) (Figure 6B), of which SRD1 and DHR2 are 
involved in rRNA processing and synthesis, and RPS17A is a ribosomal protein, all of which are 

Figure 6. Genome-wide association identified SNP and CNV associated eQTL.  
A. Locations of local and distance SNP eQTL along the genome. SNP variant associated with an expression 
trait are on the x-axis and the position of the genes are on the y-axis. Local eQTL are coloured in red and 
distant eQTL in blue. B. Locations of local and distant CNV eQTL. Local eQTL correspond to associations 
between the CNV and expression trait of the same gene and are coloured in red. Distant eQTL are coloured in 
solid blue. C. Comparison of the absolute effect sizes for local and distant eQTL for SNP and CNV eQTL 
types. Significant differences are indicated with stars. See also Figure S7. 
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directly related to ribosomal biogenesis. Furthermore, trans eQTL hotspots appeared to affect 
disproportionally more genes on the co-expression network. Among the eQTL hotspots that are 
associated with more than 20 traits, 648 gene expressions are affected and of which 404 belongs to the 
co-expression network vs. 105 that belong to the differential expression genes (Table S9).  

By integrating the eQTL results with the global transcriptome structure, we uncovered distinctive 
patterns regarding the genetic basis underlying the co-expression and differential expression genes 
(Figure S8A-C). Overall, differential expression genes are significantly more likely to be controlled by 
any eQTL compared to the total set (Odds ratio 1.1, two-sided Fisher test p-value = 0.01) (Figure 
S8A), while co-expression genes are slightly depleted (Odds ratio 0.92, Fisher test p-value = 0.08). 
However, the types of eQTL involved showed more drastic differences, with a 0.38-fold depletion of 
local eQTL (two-sided Fisher test p-value < 2.2e-16) for co-expression genes and a 1.42-fold 
enrichment of local eQTL in the differential expression genes (two-sided Fisher test p-value = 1.921e-
08) (Figure S8B). CNV-eQTL are also significantly depleted in co-expression genes (Odds ratio = 
0.62, two-sided Fisher test p-value = 4.553e-07) (Figure S8C). 

From the perspective of the pangenome, accessory genes are significantly more likely to be controlled 
by at least one eQTL compared to the core genes (Figure 7A). Accessory genes are also significantly 
more likely to be controlled by local eQTL (Odds ratio = 1.33, two-sided Fisher test p-value = 
0.0002676) (Figure S8D-E). Most remarkably, the effect size for eQTL associated with accessory 
genes is globally higher compared to core genes (Figure 7B), and the same trend holds true for the 
fraction of variance explained (Figure S8F). These differences are not biased toward accessory genes 
with a low occurrence in the population (Figure S9). Overall, these observations clearly show that the 
accessory genome is a key component of gene expression variation regulation at a population-scale. 

 
 
 
 
 
 

Figure 7. Accessory genes show proportionally more eQTL with higher effect sizes. A. The number and 
proportion of genes that are impacted by at least one eQTL for accessory genes (inner ring), core genes 
(middle ring) and the combined set (outer ring). Fold-enrichment for core and accessory genes on the 
proportion of genes impacted compared to the combined set are presented as bars (odds ratio). Significant 
enrichment based on the two-sided Fisher test is indicated with stars. B. Comparison of the absolute effect 
size for eQTL associated with accessory or core gene expression traits. See also Figure S8. 
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Discussion 
 
The species-wide pan-transcriptomic analysis presented here has led to a precise characterization of 
the functional organization and the genetic basis underlying the transcriptional landscape at a scale 
that is not yet achieved in any other species. Our results revealed the accessory genome as a key driver 
of the transcriptional diversity, contributing proportionally more to heritable expression variation than 
the core genome.  
Natural population of S. cerevisiae is highly diverse and displays clear population structure, with 
defined subpopulations assigned to specific domesticated and wild lineages25,34,35. Such population 
structure is commonly observed in various species, including humans18, however, the impact of 
population structure on the transcriptional landscape remains largely unclear. We characterized gene 
expression patterns both at the whole population level using co-expression analysis, and at the 
subpopulation level using differential expression analysis. Our results show that the global 
transcriptional landscape is consistent with a two-tier architecture, characterized by a tightly 
interconnected central network (i.e. co-expression) and an auxiliary structure related to differentiated 
gene expression patterns (i.e. differential expression). These two architectural levels are not equally 
impacted by the population structure. On one hand, the co-expression network captures the main 
biological functions, reflects the topological organization of the cell and is globally conserved across 
the subpopulations. On the other hand, differential expression reveals subpopulation-specific, 
functionally coherent up- and down-regulations that can be associated with distinct domestication 
signatures. 
From the pangenomic perspective, the accessory genome, including ancestrally segregating genes in 
the S. cerevisiae species and horizontally acquired genes from close (introgression) or distant (HGT) 
relatives, all exhibit higher expression dynamics compared to the core genome. The core and 
accessory gene features roughly echo the two-tier transcriptomic landscape, with accessory genes 
more likely to be involved in the auxiliary network than in the central network. In addition, expression 
patterns suggest that the accessory genes, despite being variable across the population, can also be 
important to certain adaptive processes and represent an integral part of the functional genome. 
The large population size and the fully catalogued genetic variants allowed us to systematically 
explore the genetic basis underlying transcriptional variation at the species level. By performing 
genome-wide association studies with both SNPs and CNVs, we uncovered local and distant eQTL for 
over 56% of the expression traits, with SNP-eQTL explaining a significantly higher fraction of 
variance compared to CNV-eQTL. Overall, local eQTL explain a higher fraction of variance, which is 
consistent with previous observations5,6. However, distant eQTL are mostly randomly distributed 
along the genome and are not biased toward a few extreme hotspots, unlike the previous observation 
in a single cross6. Considering that these hotspots were possibly related to large effect rare variants 
with extreme pleiotropy, it is not surprising that such a pattern is not conserved in a large natural 
population where the genomic constitution is much more complex. Finally, accessory genes are 
significantly more likely to be associated with eQTL than the core genes. Moreover, eQTL associated 
with accessory genes also explain a higher fraction of the expression variance.  
Taken together, our analyses at all levels collectively show the surprisingly high impact of the 
accessory genes on the transcriptional landscape within a species. While the accessory genome likely 
explains some of the missing heritability, the understanding of genetic effects on cellular phenotypes 
is far from complete. Dissecting the genetic regulation of an additional set of molecular phenotypes or 
intermediates, such as proteomes, will most likely yield additional insights. 
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Methods 
 
Description of the isolates and sample preparation 

A collection of 1,032 isolates was compiled from the 1,011 strains collection20 and 22, along with the 
lab reference strain S288C (FY4-6). We measured the growth for all strains using 96-well liquid 
growth in standard synthetic complete (SC) media with 2% glucose as the carbon source. The growth 
rates were then extracted based on continuous OD measurements during 48 hours at 30°C in a 
microplate reader (Tecan Infinite F200 Pro). The strains were reorganized and grouped in 96-well 
plates according to their growth rates and then grown in 1 ml of liquid SC media using deep well 
blocks until reaching the mid-log phase (OD ~0.3). For each sample, 750 µl of the culture was 
collected and then transferred to a sterile 0.45µM 96-well filter plates (Norgen, #40008) on a vacuum 
manifold (VWR, #16003-836). We applied vacuum to remove all the SC medium, sealed with 
aluminium foil seals, and flash froze the entire plate in liquid N2 to store the plate at -80°C before 
mRNA extraction. A final set of 969 isolates were included in our dataset after controlling for the final 
OD reading at the culture collection step as well as the quality of the RNA sequencing data. Detailed 
description of the isolates can be found in Table S1.  

RNA extraction, library preparation and sequencing 

For each filter plates, mRNA was extracted using the Dynabeads® mRNA Direct Kit (ThermoFisher, 
#61012) based on an optimized protocol for high-throughput RNA sequencing6. Cells were lysed 
using glass beads and lysis buffer, then incubated for 2 minutes at 65°C. After RNA precipitation, two 
rounds of cleaning were performed using magnetic beads coupled to oligo (dT)25 residues which can 
hybridize to the polyA tails of the mRNA. A final volume of 10 µl of purified mRNA was obtained to 
prepare the sequencing library.  

Sequencing libraries were prepared with the NEBNext® Ultra™ II Directional RNA Library Prep Kit 
for Illumina (NEB, #E7765L) in 96-well plates. We used 5 µl of purified mRNA for the library prep, 
corresponding to ~10 ng of RNA molecules per sample. We generated cDNA libraries using reverse 
transcription. The resulting cDNA libraries were then purified using NEBNext sample purification 
magnetic beads and eluted in 50µl of 0.1X Tris-EDTA buffer. Dual index duplex adapters were added 
to the cDNA by ligation. In total, 96 combinations of TS HT dual index duplex mixed adapters from 
IDT® (Integrated DNA Technologies®) were used and each prepped DNA was assembled to a unique 
barcode combination. The adaptor ligated cDNA was purified using NEBNext sample purification 
magnetic beads and eluted in 15 µl of 0.1X Tris-EDTA buffer. A final PCR enrichment of the 
barcoded DNA were performed in a 9-cycle amplification using Illumina P5 and P7 universal primers 
(P5 IDT: 5’-AATGATACGGCGACCACCGA-3’; P7 IDT: 5’-CAAGCAGAAGACGGCATACGA-
3’). 21 µl of final barcoded DNA were purified and eluted in 0.1X Tris-EDTA buffer. 

For each sample, the final barcoded DNA was quantified using the Qubit™ dsDNA HS Assay Kit 
(Invitrogen™) in 96-well plate with a microplate reader (Tecan Infinite F200 Pro), excitation laser set 
at 485nm and emission laser at 528nm. All the samples from the 96-well plate with a concentration 
higher than 1 ng/µl were grouped and 20 ng of cDNA were collected and pooled from each sample. 
The DNA integrity of the pool was controlled on 1% agarose gel and quantified on Nanodrop and 
Qubit using the Qubit™ dsDNA HS Assay Kit (Invitrogen™). 

The final pool of DNA was sequenced on Nextseq 550 high-output at the EMBL Genomics Core 
Facilities. In total, 1,046 samples were sequenced, including duplicates for some of the isolates. On 
average, 6.45 millions of 75 bp single-end reads was obtained for each sample after demultiplexing 
(Table S1).  
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Reads cleaning and data processing 

Raw reads were cleaned with cutadapt36 to remove adapters as well as low quality reads that were 
trimmed on the basis of a Phred score threshold of 30 and discarded if less than 40 nt long after this 
trimming step. 

For each of the 1,046 samples, clean reads were mapped to the S. cerevisiae reference sequence using 
TopHat (v2.0.13)37. The resulting bam files were sorted and indexed using SAMtools (v1.9)38. 
Duplicated reads were marked using Picard (v2.18.14) in GATK (v4.1.0.0)39. HaplotypeCaller was 
used to call variants in each individual sample. The variant calling files (VCFs) were merged and the 
rare SNPs, defined as having a Minor Allele Frequency (MAF) less than 5% were extracted and 
intersected with SNP data from Peter et al. 2018 using bcftools isec.  

The 1,046 samples were ranked based on the number of shared rare SNPs with each relevant strain 
described in the SNP matrix. This allows to automatically validate 940 unique isolates for which the 
expected strain was among the top 3 ranking strains. The remaining samples were manually 
investigated: 24 samples that were part of a large cluster of closely related strains could be validated as 
the expected strain and 19 samples could be unambiguously reassigned to the top 1 ranking strain. 14 
samples out of the 1,046 could not be validated or reassigned and were discarded from the remaining 
analyses. After this step, a final set of 987 unique isolates was retained.  

Gene expression quantification 

For each validated sample, reads were mapped to the S. cerevisiae reference sequence in which the 
SNPs of the corresponding strains were inferred (as described in Peter et al. 2018) plus the accessory 
genes that were not classified as ancestral or S. paradoxus orthologs in Peter et al. 2018 (n = 395). The 
mapping was achieved using STAR40 with the following parameters: 
--outReadsUnmapped Fastx \ 

--outSAMtype BAM SortedByCoordinate   \ 

--outFilterType BySJout  \ 

--outFilterMultimapNmax 20  \ 

--outFilterMismatchNmax 4  \ 

--alignIntronMin 20  \ 

--alignIntronMax 2000  \ 

--alignSJoverhangMin 8  \ 

--alignSJDBoverhangMin 1 

Isolates with more than 1 million reads mapped were kept for analysis, resulting in a final set 
constituted of 969 strains (Table S1).  
Mapped reads counts were then obtained using the featureCounts function from the Subread package41 
with the genes described in the S. cerevisiae reference annotation (n = 6,285) and accessory genes (n = 
395) as features. The following options were used in order to get multi-mapped reads counted as a 
fraction of the sites they mapped to: 
-M \ 

--fraction  

Finally, Transcripts Per Million (TPM) were calculated as a measure of transcription abundance for 
each of those features and a log2(TPM+1) transformation was applied. From the set of 6,285 reference 
genes, 196 were filtered out because log2(TPM+1) was lower than 1 in 50% of the isolates. The read 
counts for 39 accessory features with a known homolog in S. cerevisiae according to the pangenome 
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annotations were merged with the corresponding homolog. The final set is thus constituted of 6,445 
ORFs which were used for downstream analyses (Table S2).  

Neighbor joining tree 

The variant calling files of the 969 final strains were combined using GenotypeGVCFs in GATK. The 
biallelic segregating sites were used to construct a neighbour-joining tree with the R packages ape42 
and SNPrelate43. Briefly, the .gvcf matrix was converted into a .gds file for individual dissimilarities to 
be estimated for each pair of individuals with the snpgdsDiss function. The bionj algorithm was then 
run on the obtained distance matrix. 

Calculating mean expression abundance and dispersion 

In total, 944 out of the 969 isolates in the final dataset were present in 1,011 isolates characterized 
previously20. For these isolates, the pangenome annotations in terms of the presence and absence of a 
given gene in each isolate are available. We used this set of isolates and their expression levels to 
calculate the mean expression abundance and dispersion. The abundance corresponds to the mean 
expression levels for all isolates where the gene is annotated as present. The dispersion is calculated as 
the mean absolute deviation using the following formula:  

1
𝑛
#|𝑥! − 𝑥|
"

!#$

 

Where 𝑛 is the number of strains that carries the gene, 𝑥! is the expression level in log2(TPM+1) for 
the ith isolate and 𝑥 is the mean log2(TPM+1) for all samples for a given gene. Genes that are present 
in only one isolate were excluded. Genes that are not expressed in any isolates were also excluded. In 
total, 6,138 genes passed the filters and were included in the analysis, including 1,291 accessory and 
4,847 core genes. All annotations can be found in Datafile S1.    

Variance stabilizing transformation 

We performed variance stabilizing transformation using raw counts for each gene across the 969 
isolates. We excluded genes that were not expressed in over half of the samples, which eliminated the 
majority of accessory genes originated from HGT. The remaining 6,119 genes were normalized using 
the vst() function in the R package DEseq244. The variance stabilized expression values were 
subsequently used for co-expression and differential expression analyses.  

Gene co-expression analysis and module detection 

We calculated Pearson’s correlation between all pairwise combinations in the 6,119 variance stabilized 
gene expressions. We generated an adjacency matrix by removing any gene pairs with an absolute 
correlation coefficient less than 0.67, then created an undirected network graph using the igraph 
package in R. We calculated the connectivity for each node and recursively removed nodes that are 
connected by less than 5 edges. This resulted in a final graph that contains 1,797 nodes and 181,954 
edges. Graphic representation of the network was calculated using the fruchterman-reingold layout in 
the sna package in R45. 

To detect co-expression modules, variance stabilized expression for the 1,797 node genes were used to 
generate Topological Overlap Matrix (TOM) using the R package WGCNA46. We performed scale 
independence test and determined the soft-threshold beta value, also known as the power value. At a 
beta of 5, the scale-free topology model fit was stabilized at a R2 of 0.9. The TOM is therefore 
calculated based on the signed adjacency matrix with the power of 5, using the TOMsimilarity() 
function in WGCNA. The dissimilarity matrix is then calculated as 1-TOM.  
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A distance matrix based on the TOM dissimilarity was calculated using the as.dist() function. 
Clustering was performed using hclust() in the fastcluster package, with the “average” method47. We 
used the cutreeDynamic() function in the dynamicTreeCut package48 to determine topologically 
independent clusters, with the options cutHeight = 0.95 and minClusterSize = 5. These clusters were 
treated as pre-modules, for which the module eigengene expressions were determined using 
WGCNA46. These pre-module eigengene expressions were clustered based on the dissimilarity of the 
pairwise correlation matrix, again using hclust() with method = “average”. Based on this, eigengenes 
with a dissimilarity < 0.2 were merged, forming a final set of 16 modules (Table S4). GO term 
enrichment analyses were performed using annotations for both the biological process (BP) and the 
cellular compartment (CC) standards49, using the mod_ora() function in the CEMiTool package50. 
Detailed enrichment results are in Table S5.  

For the final 16 modules, eigengene expression was calculated using the function moduleEigengenes() 
in WGCNA. Principle component analysis (PCA) based on the eigengene expressions were performed 
using the prcomp() function in the stats package.  

Subpopulation specific differential expression analyses 

The variance stabilized expression dataset comprised of 6,116 genes was used to perform 
subpopulation specific differential expression analyses using DEseq244. Each subpopulation was 
compared to the remaining isolates using the expression matrix and annotated isolate information. 
Around 10% of the isolates in our dataset were haploids with defined mating types. To eliminated the 
effect of mating type specific expression signature, we incorporated the mating type information in the 
design model as a covariate. Significant differential expressions were determined using the Benjamini-
Hochberg adjusted P-value less than 5%, corresponding to a 5% false discovery rate (FDR).  

Due to the imbalanced subpopulation sizes, the FDR cutoff alone is biased toward detecting more 
differential expression with small effect sized in larger subpopulations. To remove this bias, we 
repeated the analyses by setting a cutoff on the absolute log2 fold-change ranging between 0 to 1 with 
an increment of 0.05. We counted the number of significant hits based on each cutoff and evaluated its 
relationship with the subpopulation size. We found that the dependency between the number of 
significant hits and the subpopulation size was removed around a cutoff of absolute log2 fold-change 
of 0.2 to 0.3. We therefore chose absolute log2 fold-change > 0.3 and adjusted P-value less than 5% as 
the final criteria for significant hits. All significant differential expression hits are presented in Table 
S6. Hits that overlapped with the co-expression genes were mainly associated with the Ecuadorean 
(21. E) and the French Guiana human (10. F) subpopulations, and were not included in the differential 
expression gene set for subsequent analyses. 

Gene set enrichment analyses 

Gene set enrichment analyses (GSEA) were performed for gene-level abundance and dispersion 
analyses (Figure S1), co-expression module over-representation (Figure S3B) and for differential 
expression sets (Figure S3C).  

GSEA on expression abundance/dispersion was performed using the fgsea R package51. Annotation of 
the GO slim terms was obtained from the SGD database. To reduce redundancy, we used the rrvgo R 
package and calculated the similarities between each annotated term in a pairwise manner using the 
“Resnik” method, and removed terms that are at least 70% overlapping with another term. We then 
performed GSEA using the fgsea() function, the pathways corresponding to the reduced GO slim 
terms and a size limit on the terms between 50 and 600. In total, 100,000 permulations were 
performed. The results are found in Table S3.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.17.541122doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.17.541122
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

We performed GSEA based module over-respresentation test using the mod_gsea() function in 
CEMiTools50, to test for subpopulation related differential co-expression. Subpopulations with less 
than 10 isolates were removed to ensure statistical power. The results are found in Table S7.  

Finally, GSEA was performed to identify GO term enrichments for subpopulation-specific differential 
expressions. For each subpopulation, significant hits were ranked by the log2 fold-change and then 
tested for enrichment in standard GO terms for annotated biological processes (BP), with term size 
limits between 5 and 500. For each test 10,000 permutations were performed. The results are shown in 
Table S8.  

Allele specific expression (ASE) 

We selected all the isolates previously described as diploid, euploid and heterozygous20 in order to 
perform ASE analysis on this population (n = 289). We quantified the biallelic expression of each of 
these isolates using the GATK tool ASEReadcounter52 by providing it for each isolate a BAM file 
resulting from an alignment of RNA-seq read on the reference genome and a VCF file containing all 
heterozygous positions of the corresponding isolate. Heterozygous sites displaying a risk of allelic 
mapping bias were detected using their 75 bp mappability from GenMap53. We used the allele count to 
calculate an alternative allele ratio (AAR):  

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑎𝑙𝑙𝑒𝑙𝑒	𝑐𝑜𝑢𝑛𝑡𝑠
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑎𝑙𝑙𝑒𝑙𝑒	𝑐𝑜𝑢𝑛𝑡𝑠 + 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒	𝑎𝑙𝑙𝑒𝑙𝑒	𝑐𝑜𝑢𝑛𝑡𝑠

 

We finally excluded sites which did not have their heterozygosity supported by their alternative allele 
ratio (AAR = 0 or 1).  
We detected imbalance in the allele expression using a simple binomial test corrected by FDR. In 
order to further compensate residual mapping bias in our results, we set the probability value of the 
binomial test to the mean of the alternative allele ratio in all our 289 isolates instead of 0.5.  Moreover, 
we performed the previous test on sites that were covered more than 29X in order to ensure enough 
statistical power to our binomial test. Finally, we limited our explorations of ASE to the heterozygous 
sites located in CDS. In total, a list of 214,551 heterozygous sites distributed in 3,570 unique gene was 
analyzed across our 289 isolates (median = 464 sites per isolate.  
Besides homozygous S. paradoxus introgression, heterozygous cases of S. cerevisiae and S. paradoxus 
alleles were also identified in the species. The unfiltered VCF files from Peter et al. 2018 were 
corrected for coverage and mapping bias, allowing to get 3,338 sites related to heterozygous 
introgressed genes. A significant difference was found in terms of AAR between these 3,338 
introgressed sites and the non-introgressed toward low values for introgression. However, among 
those sites, some were displaying aberrant genetic allele balance (AB tag in the VCF file) due soft 
filtration. Thus, we iteratively performed several filtration steps of the genetic allele balance. In brief, 
at each step, the filtration value was set to exclude extreme genetic allele balance: for example, with a 
filtration value of 0.1, the site with a genetic allele balance higher than 0.9 or lower than 0.1 were 
discarded, for 0.2 the threshold was 0.8 and 0.2. Ultimately, this led to selecting sites with genetic 
allele balance narrowed to 0.5 but also resulted in an important decrease in the number of sites. In 
addition, at each filtration step, we compared the AAR between heterozygous introgressed sites and 
non-introgressed sites and found that the AAR difference between introgression related sites and the 
other sites decreased as the filtration value increased. Because extreme genetic allele balance could be 
related to difference in term of allele copy number and since our goal was to compare the allele 
balance in gene with similar genetic organization in their allele, we finally selected sites with a genetic 
allele balance between 0.33 and 0.66. This resulted in 356 sites distributed in 43 heterozygous 
introgressed genes. 
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Genome-wide association studies (GWAS)  

Genome-wide association studies based on mixed-model association analysis were performed as 
described in Peter et al., 2018 using FaST-LMM54. For SNP-eQTL detections, we removed the sub-
telomeric regions corresponding to 20kb each side of the chromosomes from the SNPs matrix. A total 
of 84,682 SNP sites, and 1,100 CNVs between 969 strains with a minor allele frequency (MAF) 
higher than 5% were tested. For CNV-eQTL, as most variants were located in the subtelomeric 
regions, all expression traits were included. In total, the expression variation (in TPM) of 6,119 genes 
were tested. The SNP matrix was used for kinship for both SNP and CNV GWAS in order to account 
for population structure. Trait-specific p-value threshold was established for each gene by permuting 
phenotypic values between individuals 100 times. The significance threshold was the 5% quantile (the 
5th lowest p-value from the permutations) in each set, then Benjamini-Hochberg adjusted to account 
for multiple test bias. The effect size and variance explained by each variant was computed with FaST-
LMM, with the effect sizes corresponding to the absolute value of “SnpWeight”, and variance 
explained corresponding to “EffectSize” from the raw output. The significance thresholds were scaled 
to account for the different sizes of the SNP and CNV matrices.  Genomic inflation factor was 
calculated for each trait and the P-value was corrected when the genomic inflation factor is higher than 
1. To account for linkage disequilibrium among SNP and/or CNV loci, we grouped significant variants 
with an R2 > 0.6 and collided them into a single linkage group. Within each associated linkage group, 
the variant with the most significant association was kept. Prior to filtering, 12,058 SNP-eQTL and 
47082 CNV-eQTL were detected as significant. After colliding the linkage groups, these numbers 
were reduced to 7,273 and 2,197 for SNP- and CNV-eQTL, respectively. For SNP-eQTL, local and 
distant eQTL were distinguished according to the distance from the considered gene: local eQTL can 
be located 25 kb each side around the gene, all other being considered as distant eQTL. For CNV-
eQTL, we considered them local only when the variant and the associated trait are the same ORF. 
Significant associations can be found in Datafile S2 and are summarized in Table S9. 

 
Data availability 
All sequencing reads are available in the European Nucleotide Archive (ENA) under the accession 
number PRJEB52153.  
The 1002 Yeast Genome website - http://1002genomes.u-strasbg.fr/files/ - (RNAseq) provides access 
to:  
- Datafile S1: final_data_annotated_merged_04052022.tab 
- Datafile S2: GWAS_combined_lgcCorr_ldPruned_noBonferroni_20221207.tab 
 
Code availability 
All custom scripts used in this study are available upon request.  
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