
A Unifying Principle for the Functional1

Organization of Visual Cortex2

Eshed Margalit 1,�, Hyodong Lee2, Dawn Finzi3,4, James J. DiCarlo 2,5,6, Kalanit Grill-Spector 3,7,*, and Daniel L. K.3

Yamins3,4,7,*
4

1Neurosciences Graduate Program, Stanford University, Stanford, CA 943055

2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 021396

3Department of Psychology, Stanford University, Stanford, CA 943057

4Department of Computer Science, Stanford University, Stanford, CA 943058

5McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 021399

6Center for Brains Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 0213910

7Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 9430511

*co-senior author12

A key feature of many cortical systems is functional organization: the arrangement of neurons with specific13

functional properties in characteristic spatial patterns across the cortical surface. However, the principles14

underlying the emergence and utility of functional organization are poorly understood. Here we develop15

the Topographic Deep Artificial Neural Network (TDANN), the first unified model to accurately predict the16

functional organization of multiple cortical areas in the primate visual system. We analyze the key factors17

responsible for the TDANN’s success and find that it strikes a balance between two specific objectives:18

achieving a task-general sensory representation that is self-supervised, and maximizing the smoothness of19

responses across the cortical sheet according to a metric that scales relative to cortical surface area. In20

turn, the representations learned by the TDANN are lower dimensional and more brain-like than those in21

models that lack a spatial smoothness constraint. Finally, we provide evidence that the TDANN’s functional22

organization balances performance with inter-area connection length, and use the resulting models for23

a proof-of-principle optimization of cortical prosthetic design. Our results thus offer a unified principle24

for understanding functional organization and a novel view of the functional role of the visual system in25

particular.26
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Introduction28

Neurons in sensory cortical systems support two kinds of measurements: their response patterns as a function29

of stimulus input and their spatial arrangement across the cortical surface. The confluence of these observations30

is referred to as functional organization, the reproducible spatial arrangement of neurons within a cortical area31

according to their response properties. Functional organization is among the most ubiquitous of neuroscience32

findings, appearing in the topographic maps of the visual system [1], and in auditory [2], parietal [3], sensorimotor [4],33

and entorhinal areas [5, 6]. These organized structures anchor our understanding of cortical development, function,34

and dysfunction, yet it remains a mystery what processes govern their emergence, and what computational function35

they serve.36

Any theory of functional organization must explain both neuronal response properties and the physical arrangement37

of neurons within a cortical area. Furthermore, a unified theory should account for the observed functional38

organization in multiple cortical areas. Prior computational models of the organization within single cortical areas39

have been developed [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], but these approaches do not40

generalize to multiple cortical areas. Moreover, many of these models operate from a hand-crafted set of stimulus41

features, and thus cannot explain how neuronal response properties are learned from realistic sensory inputs.42

On the other hand, deep artificial neural networks (DANNs) trained with large quantities of naturalistic data are43

increasingly being used to model neuronal responses in regions responsible for vision, audition, and language44

processing [23, 24, 25, 26, 27, 28, 29, 30, 31]. However, standard DANNs impose no spatial arrangement among45

model units that differ in their stimulus tuning, and thus cannot explain the observed organization of neurons across46

the cortical surface.47

Here, we introduce the Topographic Deep Artificial Neural Network (TDANN), a unified framework for predicting48

functional organization in sensory systems. The TDANN implements the hypothesis that neural systems are49

optimized to address two key goals: they must support ecologically-relevant behaviors by producing useful neural50

representations [32], and they must do so in a biophysically efficient manner, using as few resources as possible. A51

critical component of biophysical efficiency is the minimization of neuronal wiring length, which is theorized to result52

in the smooth topographic organization observed in many cortical areas [33, 19, 18]. The TDANN begins with a53

standard DANN and spatially augments it by embedding each layer’s units in a two-dimensional simulated cortical54

sheet. The TDANN then optimizes a composite objective function with two components: a functional objective55

that drives the learning of useful representations, and a spatial constraint that encourages efficiency with smooth56

response patterns across the simulated cortical sheet. We test this framework in the primate ventral visual stream,57

a cortical system in which functional organization has been extensively documented.58

The ventral stream is a hierarchical series of cortical areas that support visual recognition, beginning with primary59

visual cortex (V1) and ascending through intermediate areas (e.g., V4) to high-level regions: inferotemporal (IT)60

cortex in macaques and ventral temporal cortex (VTC) in humans. Well-known neuronal response properties in V161

include tuning to edge orientation [1, 34, 35], spatial frequency [36], and color [37, 38]. These response properties62

are coupled with topographic signatures: orientation preferences form a smooth cortical map with pinwheel-like63

discontinuities [39, 40, 41, 42, 43]; spatial frequency tuning is organized in a quasi-periodic map with isolated64

low-frequency domains [42, 43, 44]; and color-preferring neurons cluster in punctate blobs [38] across the V1 surface.65

Higher-level regions such as primate IT [45, 46, 47, 48] and the analogous human VTC contain neurons with stronger66

responses for items of specific categories vs. others (e.g., faces vs non-faces), a property known as category67

selectivity. A core characteristic of functional organization in IT [48, 49] and VTC [50, 51, 52, 53, 54, 55, 56] is that68

neurons selective for certain ecologically-relevant categories – including faces, places, limbs, and visual wordforms69

– cluster into spatial patches, with characteristic patch sizes, counts, and relative inter-patch distances.70

We find that the TDANN reproduces the functional organization of the ventral stream, including smooth orientation71

maps with pinwheels in an earlier model layer, and category-selective patches in a later layer that match the number,72

size, and relative geometry of patches in human VTC. To understand the principles underlying the emergence of the73

ventral stream’s functional organization, we then test which specific functional and spatial constraints of the TDANN74

are critical to the TDANN’s success by insantiating alternative models and measuring their capacity to predict neural75

data. We find that the specific combination of task and spatial objectives that best matches the functional organization76

of the ventral stream also makes learned representations more brain-like by constraining their intrinsic dimensionality.77

The TDANN learns these representations while minimizing the network’s inter-layer wiring length, suggesting that78

brain-like functional organization effectively balances performance with metabolic costs.79

Finally, because the the TDANN accurately predicts the functional organization of the ventral stream, it provides80

an exciting new platform for simulating experiments that are challenging to implement empirically. As a proof of81

principle, we perform in silico experiments simulating the effect of cortical microstimulation devices that vary in their82
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spatial precision and cortical coverage. Taken together, our results show that the TDANN serves both as a unified83

explanation for the functional organization of the visual system and as a platform to fuel discovery in neuroscience.84
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Results85

Instantiating models that balance task performance with spatial smoothness86

Building on optimization-based approaches in computational neuroscience [57, 58], we seek a model architecture87

and objective function that generate a neural network which matches the neuronal responses and topography of the88

primate ventral visual stream.89

Because standard DANNs have no within-area spatial structure beyond retinotopy, we must augment their90

architecture to model spatial topography. Specifically, we take the ResNet-18 architecture [59], a DANN that achieves91

strong object recognition performance and accurate prediction of neuronal responses throughout the ventral visual92

stream [30], and augment it by embedding the units of each convolutional layer into a two-dimensional simulated93

cortical sheet (Figure 1a). Given that neurons in visual cortex are organized retinotopically at birth [60], we assign94

model unit positions retinotopically, such that units responding to similar regions of the input images are nearby in95

the simulated cortical sheet. Then, prior to training, unit positions are locally shuffled to circumvent limitations of96

weight-shared convolution (see Methods). The size of the simulated cortical sheet in each layer is anchored by97

estimates of cortical surface area in the human ventral visual stream (Figure 1a). We refer to the resulting model as98

the Topographic DANN (TDANN).99
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Figure 1. Constructing a unified model of the functional and spatial constraints of ventral visual cortex. (a) TDANNs
are a family of deep artificial neural networks whose units are assigned positions in a two-dimensional simulated cortical sheet
in each layer. Position assignments are retinotopic, such that location in the cortical sheet corresponds to position in the visual
field. Each individual dot is a single model unit. The degree of overlap between a unit’s spatial receptive field (RF) and the purple
square marked on the input image is indicated by the shade of purple; RFs from gray units do not overlap the marked region at
all. The TDANN is trained to minimize the sum of a task loss and a spatial loss (SL). α is a free parameter controlling the relative
weight of the SL. (b) The SL encourages nearby units to develop strong response correlations. Plotted: pairwise similarity of unit
responses as a function of pairwise cortical distance in the final layer of a TDANN model; each dot represents one pair of units.
(c) The TDANN is evaluated on a battery of quantitative benchmarks that measure its correspondence to topographic features
throughout the ventral visual stream. Left: orientation preference map in the V1-like TDANN layer (see Figure 2 for details). Right:
category selectivity map in the VTC-like layer (see Figure 3 for details).
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Having selected the architecture, our goal is to discover the objective whose optimization yields an accurate model100

of both response properties and their topographic arrangement. The core of the TDANN approach is a composite101

objective that is a weighted sum of two components: a task objective encouraging the learning of behaviorally-useful102

functional representations, and a spatial objective driving the emergence of topographic properties. Following recent103

progress in training neural networks without explicit category labels [61, 62], we use an unsupervised algorithm that104

performs contrastive self-supervision, SimCLR [63], as the task objective. For the spatial loss (SL), we introduce an105

objective that encourages nearby pairs of units to have more correlated responses than distant pairs of units (Figure106

1b, see Methods). The SL is computed separately in each convolutional layer, then summed across layers for each107

batch of training data:108

TDANN Loss = Ltask +
∑

k∈layers
αkSLk (1)

where αk is the weight of the spatial loss in the kth layer, set to αk = 0.25 for all layers. The TDANN architecture is109

trained to optimize this objective using conventional back-propagation with stochastic gradient descent.110

Training the TDANN on ImageNet [64] resulted in successful minimization of both task and spatial losses111

(Supplementary Figure S1). We tested if adding the spatial loss interferes with visual representation learning by112

measuring the model’s object categorization performance with a linear readout. Categorization accuracy was slightly113

but significantly lower for the TDANN (median across random initialization seeds = 43.9%) than "Task Only" models114

with no spatial loss (α = 0, median = 48.5%; Mann-Whitney U = 25,p = .008). Despite the modest decrease in115

categorization performance, adding the spatial loss term had the intended effect: in each layer, the correlation116

between units’ responses increased with spatial proximity (Supplementary Figure S1c,d). To determine if this117

learned correlation structure corresponds to brain-like topographic maps, we constructed a battery of quantitative118

benchmarks comparing model predictions with neural data in primary visual cortex (V1) and ventral temporal cortex119

(VTC), (Figure 1c). To compare against these benchmarks, we needed to identify the TDANN layers that would be120

our models of V1 and VTC. As in prior work [28, 25], we find that earlier model layers best predict V1 responses and121

later layers best predict responses in higher visual cortex (Supplementary Figure S2). Accordingly, we designate the122

fourth and ninth convolutional layers as the "V1-like" and "VTC-like" layers, respectively.123

The TDANN predicts the functional organization of primary visual cortex124

Neurons in primate V1 are organized into maps of preferred stimulus orientation, spatial frequency, and color125

[38, 43, 65]. Because high-resolution data at the scale necessary to visualize these maps is not available for126

human V1, we compare the TDANN to macaque V1 data using scale-invariant metrics. We tested if the V1-like127

TDANN layer captures the functional organization of macaque V1 with three kinds of quantitative benchmarks. First,128

we evaluate functional correspondence by asking if model units in the TDANN V1-like layer have similar preferred129

orientations and orientation tuning strengths as neurons in macaque V1. Second, we assay the structure of cortical130

maps by measuring pairwise similarity of tuning for orientations, spatial frequencies, and colors as a function of131

cortical distance. Third, we measure the density of pinwheel-like discontinuities in the orientation preference map,132

a hallmark of V1 functional organization in many species [41, 66]. In addition to the TDANN, we also evaluate four133

control models on these benchmarks: the Unoptimized TDANN, in which model weights and unit positions are left134

randomly initialized, the Task Only variant in which α = 0, and two kinds of self-organizing maps (SOMs), which have135

been proposed as models of V1 functional organization [11, 10]. We refer to the traditional SOM in which feature136

dimensions are manually predetermined (as in Swindale and Bauer [11]), as the Hand-Crafted SOM, and a novel137

SOM that organizes the output of an AlexNet V1-like layer (inspired by Doshi and Konkle [13], Zhang et al. [12]) as138

the DNN-SOM.139

The TDANN matches orientation tuning in V1 We measured orientation tuning strength by presenting a set of140

oriented sine grating images to the model (Figure 2a), computing a tuning curve for each unit, and calculating141

the circular variance (CV; lower values for sharper tuning) of each tuning curve. Setting a selectivity threshold of CV142

< 0.6, we find that the TDANN V1-like layer has a significantly greater proportion of selective units (range across143

model seeds: [20%, 31%]) than Unoptimized models ([1%, 3%]; Mann-Whitney U = 25;p = .008, Figure 2b), but144

fewer than Task Only models ([35%, 50%]; U = 25;p = .008) or macaque V1 (45%; Supplementary Figure S3c). In145

contrast, neither the Hand-Crafted SOM nor the DNN-SOM exhibited any units with sharp orientation tuning. We146

also find that TDANN and Task Only models (but not SOMs or Unoptimized models) show an over-representation of147

cardinal orientations (0 and 90 degrees) as in macaque V1 [35] (Supplementary Figure S3b, see also Henderson148

and Serences [67]).149

The TDANN predicts the arrangement of orientation-selective V1 neurons To evaluate whether the TDANN V1-like150

layer captures the topographic properties of macaque V1, we consider the spatial distribution of orientation-selective151

units – the orientation preference map (OPM) – and find a smooth progression of preferred orientations that152
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resembles macaque V1 (Figure 2c, d). Following prior work [68, 69, 70], we quantify this structure by measuring the153

absolute pairwise difference in preferred orientation as a function of cortical distance. In both the TDANN and154

macaque V1 (data from Nauhaus et al. [43]), we find that nearby units have smaller differences in orientation155

preference than distant pairs (Figure 2e). In contrast, orientation preference similarity does not vary with cortical156

distance in Task Only or Unoptimized models, and both the Hand-Crafted and DNN-SOMs exhibit OPMs with157

abnormally high orientation tuning similarity (Figure 2e, Supplementary Figure S3). We summarize these profiles158

by computing a smoothness score that measures the increase in tuning similarity for nearby unit pairs compared to159

distant unit pairs. Smoothness of TDANN OPMs ([min, max] across random initialization: [.64, .83]) was consistent160

with macaque V1 (.68); however, OPMs in the Hand-Crafted SOM ([.92, .92]) and DNN-SOMs ([.81, .86]) were161

smoother than in macaque V1. In turn, macaque V1 OPMs were smoother than Unoptimized ([.03, .04]) and162

Task Only ([.28, .39]) models. Jointly comparing each model to macaque V1 orientation tuning strength and OPM163

smoothness highlights that the TDANN is the only model class that satisfies both criteria (Figure 2j).164
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Figure 2. The TDANN reproduces V1-like topography. (a) Example sine grating stimuli used to assess tuning for orientation,
spatial frequency, and color. (b) Orientation tuning curves (top) and spatial frequency tuning curves (bottom) for four example
units in the V1-like layer. (c) Smoothed orientation preference map (OPM) in the V1-like layer of the TDANN. Box corresponds
to inset at right, where individual model units are labeled by their preferred orientation. Results for additional model seeds
shown in Supplementary Figure S10. (d) OPMs for Macaque V1 (data from Nauhaus et al. [43]), TDANN, and an Unoptimized
control model. (e) Left: Pairwise difference in preferred orientations as a function of pairwise cortical distance, normalized to the
chance level expected by random sampling of pairs. Right: Map smoothness for OPMs in macaque V1 (dashed green line, data
from Nauhaus et al. [43]) and four candidate models: the TDANN (purple), the Hand-Crafted self-organizing map (SOM, squares),
deep neural network SOM (DNN-SOM, plus signs), and Task Only (diamonds) trained without the spatial term of the loss function.
Error bar: 95% CI across random model seeds and sampling of cortical neighborhoods. (f) Spatial frequency preference, shown
for the same region of the TDANN V1-like layer and macaque V1 as in panel (d). (g) Change in preferred spatial frequency as
a function of cortical distance, normalized to chance, for macaque V1 and each model type. (h) Preference for chromatic stimuli
for the same region of the TDANN V1-like layer. Dark-colored dots: stronger responses to chromatic than achromatic gratings.
Macaque data: reconstruction of cytochrome oxidase staining data from Livingstone and Hubel [38]. (i) Fraction of units differing
in their chromatic preference as a function of cortical distance, normalized to chance. (j) Similarity of models to the distribution
of orientation tuning strengths in macaque V1 (data from Ringach et al. [34]) on the x-axis, and similarity to the smoothness of
macaque OPMs (data from Nauhaus et al. [43]) on the y-axis. Multiple markers of the same type indicate different random initial
seeds for each model. A value of 1.0 (dashed green) indicates perfect correspondence. (k) Density of pinwheels detected in
TDANNs, Hand-Crafted SOMs, Task Only models, and Unoptimized models. Error bars: CI across random model seeds. Green:
putative macaque V1 pinwheel density.
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As a more stringent test of OPM structure, we counted the number of periodic pinwheel-like discontinuities in the165

OPM [41] and compared to the expected value of ∼3.1 pinwheels / mm2 in macaque V1 [66]. Multiple pinwheels are166

apparent in both the TDANN and the Hand-Crafted SOM (Figure 2k). To facilitate quantitative comparison across167

models, we compute pinwheel density – the number of pinwheels normalized by the average spacing between168

"columns", i.e. clusters of units preferring the same orientation. We find that the TDANN has lower pinwheel density169

(range across seeds = [2.0, 2.3] pinwheels / column spacing2) than macaque V1, but significantly higher than either170

the Task Only ([0.2, 0.8]; Mann-Whitney U = 25,p = .008) or Unoptimized models (0 pinwheels; Figure 2k). The171

Hand-Crafted SOM has higher pinwheel density ([3.7, 4.5]) than the TDANN, but the DNN-SOM has no detectable172

pinwheels. Although the TDANN has pinwheel density approaching that of macaque V1, we note that the orientation173

column spacing in the TDANN (∼ 3.5mm width) does not match macaque V1 (∼ 1mm). This mismatch, caused174

in part by our commitment of the TDANN as a model of human visual cortex and not macaque visual cortex, can175

also be overcome by increasing the number of units in the network at the expense of increased computational cost176

(Supplementary Figure S5).177

The TDANN predicts maps of spatial frequency and color preference in V1 While OPMs are the best-studied feature178

of V1 functional organization, the cortical sheet simultaneously accommodates organized maps of spatial frequency179

[43] and chromatic tuning [71, 38]. An accurate model of V1 should also predict these aspects of V1 functional180

organization. We compared spatial frequency preference maps in macaque V1 (data from [43]) and in the TDANN181

V1-like layer and found a smooth progression of preferred spatial frequency in both (Figure 2f). Quantifying the182

difference in spatial frequency tuning as a function of cortical distance indicates that the TDANN map ([min, max]183

of smoothness across random initializations = [.38, .54]) is as smooth as the map in macaque V1 (0.53; Figure 2g),184

whereas maps from Task Only ([.23, .36]) and Unoptimized models ([.02, .03]) are far less smooth than macaque V1,185

and both the Hand-Crafted SOM ([.79, .81]) and the DNN-SOM ([.83, .86]) are again far smoother than the neural186

data. We observe similar results for maps of chromatic preference (Figure 2h, i), where comparisons are made187

to imaging of cytochrome oxidase (CO) uptake that is prevalent in color-tuned neurons (data from Livingstone and188

Hubel [38]). In the TDANN chromatic map, the fraction of units with opposite color-tuning increases with cortical189

distance, again exhibiting comparable smoothness to macaque V1 (TDANN smoothness: [.38, .54], macaque: .53).190

Together, our analyses demonstrate that the TDANN predicts the multifaceted functional organization of macaque191

V1, providing a stronger match to neural data than existing models such as the standard Hand-Crafted SOM.192

The TDANN reproduces the functional organization of higher visual cortex193

Because benchmarks measuring the topographic similarity between models and higher visual cortex, i.e. primate194

inferior temporal (IT) and human ventral temporal cortex (VTC), are still underdeveloped, we introduce five195

quantitative benchmarks that compare both responses and topography. Response properties are compared by196

measuring the similarity of population category selectivity patterns with representational similarity analysis (RSA;197

Kriegeskorte et al. [72]), as in Margalit et al. [73], Haxby et al. [74]). Topographic properties are then compared198

against four complementary benchmarks: 1) the smoothness of category selectivity maps, 2) the number of category199

selective patches, 3) the area occupied by those patches, and 4) the spatial overlap of units selective for different200

categories. We compute these metrics for the TDANN’s VTC-like layer and for VTC data from eight human subjects201

in the Natural Scenes Dataset (NSD) [75] (Supplementary Figure S6). We also evaluate two alternative models of202

VTC topography: an SOM trained on the outputs of a categorization-pretrained AlexNet (DNN-SOM, cf Doshi and203

Konkle [13], Zhang et al. [12]) and a variant of the Interactive Topographic Network (ITN) that is trained on the same204

dataset (ImageNet) we used (Blauch et al. [20]: Supplementary Figure S19C). Human subjects and models were all205

presented a common set of 1,440 object category images [76] composed of five categories: faces, bodies, written206

characters, places, and objects (cars and instruments). Selectivity was computed as the t-value for each category,207

for each human voxel and model unit.208

The TDANN predicts patterns of category selectivity We characterize neuronal responses in VTC by computing a209

representational similarity matrix (RSM): the similarity between pairs of distributed selectivity patterns to each of the210

five object categories. The average RSM from human VTC indicates high similarity between patterns of selectivity211

for faces and bodies, and low similarity between selectivity for faces and places (Figure 3a). The alignment between212

any two RSMs is computed as Kendall’s τ . RSMs from different subjects and hemispheres were very similar, with213

the 95% CI of Kendall’s τ = [.72, .75]. We then compute RSMs for each model and compare against the human data,214

finding that some models provide a closer match to human VTC than others (ANOVA F (4,331) = 630;p < 10−152).215

TDANN RSMs closely mirror those in human VTC (τ = [.69, .73]), significantly better than DNN-SOM (τ = [.31, .35];216

post-hoc Tukey’s HSD p < 10−13), ITN (τ = [.46, .56];p < 10−13), Task Only (τ = [.65, .68];p = .001) and Unoptimized217

(τ = [.11, .14];p < 10−13) models (Figure 3b). The similarity between human and TDANN RSMs also depends218

strongly on the training data being naturalistic. Training on artificial stimuli such as white noise and sine gratings219

yields RSMs that significantly deviate from the human data (Supplementary Figure S9b).220
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The TDANN predicts category-selectivity maps To compare models against topographic benchmarks, we generate221

selectivity maps for each of the five object categories (Figure 3c), then quantify their structure by measuring the222

pairwise difference in selectivity as a function of pairwise cortical distance (Figure 3d). We find that for all categories,223

the curve computed for TDANN is similar to human VTC, whereas the DNN-SOM and ITN are abiologically smooth,224

and maps in the Unoptimized and Task Only models lack structure. We summarize category selectivity map structure225

with the same smoothness metric used in V1 (Figure 3e), and find that TDANN maps were as smooth as those in226

human VTC (permutation test: p = .30). In contrast, VTC maps were significantly smoother than Task Only or227

Unoptimized models (ps < .001) and less smooth than the DNN-SOM (p < .001). ITN category selectivity maps were228

smoother on average than VTC, but not significantly so (p = .10).229
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Figure 3. The TDANN predicts the functional organization of higher visual cortex. (a) Representational similarity matrices
(RSMs) for the TDANN and human VTC, computed across selectivity maps of the five object categories. Diagonal is blank to
indicate trivially perfect correlation. (b) Functional similarity between the TDANN, human VTC, and alternative models, measured
as the similarity of RSMs. Green: mean of pairwise human-to-human similarity values. (c) Selectivity (t-value), for each category
plotted on the simulated cortical sheet of the VTC-like layer in an example TDANN. Black star: unit whose responses to images
in each of the five categories are plotted directly below (individual dots: single images, bar height: mean across images). Scale
bar: 1cm. (d) Difference in pairwise selectivity as a function of pairwise cortical distance for units in each of five candidate model
types: the TDANN (purple), deep neural network self-organizing map (DNN-SOM; plus markers), interactive topographic network
("ITN", Blauch et al. [20]; circles), Unoptimized ("x" markers), and Task Only (diamond markers). Curves are normalized to the
chance level obtained by random sampling of unit pairs. Green: Human data averaged over the eight subjects in the NSD data.
Shaded regions: 95% confidence interval across different subsets of units from models trained with different random initial seeds.
(e) Smoothness of selectivity maps for each category and each candidate model. Dashed green: mean of human data. (f)
Category-selective patches for an example hemisphere in human ventral temporal cortex (VTC), TDANN, a Task Only model (no
patches detected), a DNN-SOM, and a reproduction of the "ITN” simulated cortical sheet from [20]. Object categories are indexed
by color as in (a) and (c). Examples from different initial random seeds are shown in Supplementary Figure S10. (g) Number of
category-selective patches (averaged across categories) for the TDANN, DNN-SOM, and ITN. Dashed green: average of human
data. ANOVA for difference in patch count: F (5,179) = 32.7,p < 10−22. Post-hoc Tukey’s tests: significant difference between
VTC and ITN (p = 1.2 × 10−5). (h) Average surface area of category-selective patches. Same plotting conventions as in (f).
ANOVA for difference in patch area: F (5,187) = 15.4,p < 10−11. Post-hoc Tukey’s tests: significant difference between VTC
and DNN-SOM (p < 10−10). (i) Each human subject and model instance compared to the mean patch area (y-axis) and patch
number (x-axis) in the human data. (j) Overlap between face-selectivity and body-selectivity vs. overlap between face-selectivity
and place-selectivity, for each human hemisphere (green dots), each TDANN instance (purple dots), the ITN (gray dot), each
DNN-SOM (gray plus signs), and Task Only models (gray diamonds).

For the remaining topographic benchmarks, we follow the literature by thresholding selectivity maps to find230
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strongly-selective units (Supplementary Figure S6a-d). Clusters of selective units are identifiable in human VTC,231

TDANN, the SOM and ITN models, but not in Task Only or Unoptimized models. We use a data-driven approach232

to automatically identify large contiguous clusters of selective units as "patches" (Figure 3f). We find similar sets233

of patches in VTC and the TDANN: both contain a small number of patches selective for each category (except for234

object-selective patches, which are not found in VTC), and the patches are similar in size. Quantitative comparison235

supports the similarity of human VTC and TDANN: there is no significant difference in patch count (p = 0.99, Figure236

3g) or patch area (p = 0.67; Figure 3h). In contrast, we find that the ITN has more than twice as many patches as237

VTC (p = 1.2 × 10−5), although the patches are as large on average as those in VTC (p = 0.99). The DNN-SOM238

fails to match VTC in the other extreme: while the number of patches in the DNN-SOM is similar to that in VTC239

(p = 0.15), the patches are too large (p < 10−10). Joint comparison of models and humans on both patch count and240

size (Figure 3i) highlights the stronger correspondence between TDANN and human VTC than alternative models.241

An important hallmark of the functional organization of higher visual cortex is the reproducible spatial arrangement242

of units selective for different categories. A prominent example is the close proximity of face-selective and243

body-selective regions [49, 77] and the separation between face- and place-selective regions. A measure of proximity244

between face- and body-selective regions was previously introduced in Lee et al. [78]. Here we measured the245

co-occurrence of face-selective and body-selective units (and face-selective and place-selective units) in human246

VTC with an overlap score that ranges between 1 (face-selectivity perfectly predicts body-selectivity) to 0.5 (no247

relationship), to 0 (face- and body-selectivity perfectly anti-correlated). As expected, Face-Body overlap scores248

are high in human VTC (95% CI across subjects and hemispheres: [.66, .72]), whereas Face-Place overlap249

was significantly lower (95% CI: [.40, .45], Wilcoxon signed-rank test against one-sided alternative W = 136;p =250

1.5 × 10−5; Figure 3j). The same pattern is apparent in the TDANN: Face-Body Overlap ([.63, .71]) is significantly251

higher than Face-Place Overlap ([.14, .26]; W = 15;p = .03). In the ITN, the Face-Body overlap score was lower252

than in human VTC (.52), but still higher than the Face-Place overlap score (.36). Neither the the DNN-SOM nor the253

Task Only models had higher Face-Body overlap than Face-Place overlap (Figure 3j; ps > 0.5).254

To further gain intuition for the tuning profiles of model units, we synthesized images that optimally drive each region255

of the VTC-like layer. We find that the VTC-like layer smoothly maps object feature space onto the two-dimensional256

simulated cortical sheet; e.g., face-patches are optimally driven by stimuli with apparent eyes (Supplementary Figure257

S7). We also tested how the nature of the training dataset affects the accuracy of topographic maps in the TDANN258

(see Lee et al. [78], Figure 7 for a similar analysis). We find that training the TDANN on natural images (either259

ImageNet [64] or Ecoset [79]) produces accurate V1-like and VTC-like maps, whereas training on noise or simpler260

hand-crafted stimuli fails to provide a unified account of ventral stream topography (Supplementary Figure S9).261

Together, these results demonstrate that TDANN is the only model to exhibit spatially structured category selectivity262

that is consistent with a large battery of benchmarks comparing models to human VTC.263

Multiple signatures of functional organization emerge at the same spatial constraint strength264

The TDANN optimization framework requires the selection of a single free parameter, α, the weight of the spatial loss265

in the training objective. When α = 0 ("Task Only"), spatial information is ignored during training, whereas setting α266

too high may encourage pathologically strong correlations that interfere with representation learning. In the results267

above, α is set to 0.25. Here, we validate this choice by demonstrating that many benchmarks of neural similarity268

are simultaneously satisfied by low-to-intermediate values of α.269

Comparison of OPMs in the V1-like layer and category-selectivity maps in the VTC-like layer (Figure 4a) in models270

trained at 7 different levels of α shows that functional organization is absent when α = 0, structured at intermediate271

values of α, and deteriorates at the highest values of α. We quantify the dependence of functional organization272

on α with three kinds of benchmarks: functional similarity (Figure 4b), map smoothness (Figure 4c), and presence273

of topographic phenomena (i.e. pinwheels and patches; Figure 4d). First considering functional similarity, we find274

that the fraction of V1-like layer units that are orientation selective is closest to macaque V1 when α is low, and275

representational similarity between the VTC-like layer and human VTC is maximized at α = 0.25 (Figure 4b). The276

smoothness of topographic maps is most brain-like at α = 0.1 for OPMs in the V1-like layer and at α = 0.25 for277

category-selectivity maps in the VTC-like layer (Figure 4c). Finally, we find that the density of pinwheels in the278

V1-like layer and category-selectivity maps in the VTC-like layer are most similar to measurements in macaque V1279

and human VTC, respectively, at α = 0.25 (Figure 4d).280

A specific range of α values (0.1 ≤ α ≤ 0.25) thus produces experimentally-observed outcomes across a variety of281

independent functional and topographic benchmarks in multiple brain areas, suggesting that the α parameter may282

provide insights into biophysical mechanisms underlying the emergence of functional organization.283
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Figure 4. Convergence of multiple benchmarks indicates a balancing between functional and spatial constraints. (a)
Topographic maps in the V1-like (top row) and VTC-like layer (bottom row) of TDANN models trained at different levels of the
spatial weight α. Top: Orientation map structure and pinwheels become apparent at α > 0.1 and persist until α = 1.25. Dots:
estimated pinwheel locations; black: clockwise, white: counterclockwise. Bottom: Category selectivity maps, with selective units
(t > 12) colored according to their preferred category. (b) Functional correspondence to neural data as a function of α. Top:
Fraction of units strongly orientation selective (circular variance ≤ 0.6) in the V1-like layer. Dashed green: value measured in
macaque V1 (from Ringach et al. [34]). Dashed gray: mean value for Unoptimized models. Shaded regions: 95% CI across
multiple initial random seeds. Bottom: Representational similarity between the VTC-like layer and human VTC (as in Figure 3).
Error region indicates 95% CI across model seeds and human hemispheres. In both plots, the vertical line at α = 0.25 marks the
default value used in prior figures. (c) Topographic map smoothness as a function of α. Top: OPM smoothness in the V1-like
layer. Dashed green: value in macaque V1. Dashed gray: smoothness in an Unoptimized model. Bottom: Category selectivity
map smoothness in the VTC-like layer. Dashed lines indicate means across human subjects and hemispheres from the NSD
data; one line per category. (d) Density of topographic phenomena of interest as a function of α. Top: Pinwheel density in OPMs
from the V1-like layer, as a function of α. Bottom: Number of category selective patches for each category in the VTC-like layer,
as a function of α. Human data in dashed lines.

Two key factors underlying functional organization: self-supervised learning and a scalable spatial284

constraint285

Having established that specific TDANN models accurately predict the functional organization of the ventral visual286

stream, we consider what key factors enable the emergence of this functional organization. We reasoned that if287

some combinations of optimization objectives yield brain-like functional organization and others do not, it will shed288

light on the constraints underlying the observed functional organization. Thus, we train models with alternative task289

and spatial objectives, then apply our benchmarks to evaluate which models are most consistent with empirical data.290

For the “task component” of its loss function, the TDANN uses contrastive self-supervision [61, 63], a framework for291

learning representations that transfer easily to many downstream tasks. These self-supervised algorithms have been292

shown to generalize to many downstream computer vision tasks despite being trained only on a large set of unlabeled293
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Figure 5. Self-supervision and scalable spatial constraints underly the emergence of functional organization. In each
panel, TDANN shown in purple, Categorization-trained in gold, Absolute SL in red, and ventral stream measurements in green.
(a) Left: comparison of task objectives. The TDANN uses contrastive self-supervision (top) which encourages similarity between
representations of different views of the same image while increasing distance between representations of views of other images.
Categorization (bottom) compares predicted class probabilities to the human-labeled correct class. Right: comparison of spatial
objectives. Sij : response similarity of units i and j. dij : cortical distance between units i and j. TDANN uses the Relative SL
(top), which correlates the population of response similarities and pairwise inverse distances. Prior work [78] used the Absolute
SL (bottom), which directly subtracts inverse cortical distance from response similarity magnitude. (b) Smoothed orientation
preference maps (OPMs) in the V1-like layer of the TDANN (left), a Categorization trained model (middle), and a model trained
with the Absolute SL (right). Dots: detected pinwheels. α = 0.25 for models shown in each panel. (c) Category selective units in
the VTC-like layer of the TDANN (left), a categorization trained model (middle) and a model trained with the absolute SL (right).
(d) Right: Smoothness of OPMS in the V1-like layer of each model type. Green line: value computed macaque V1. (e) Density of
detected pinwheels. Green: estimated value in macaque V1. (f) Right: Smoothness of face selectivity maps in the VTC-like layer
of each model type. Green line: value from human VTC. (g) Average number of category-selective patches, in the VTC-like layer
in each model. Green: average value in human VTC.

natural images [80]. However, most studies comparing neural networks to the brain have used a supervised object294

categorization ([26, 25, 78]; Figure 5a-bottom left). Thus, we tested whether training with an object categorization295

objective produces different functional organization than self-supervision, and if so, which is more similar to the296

observed functional organization of the ventral visual stream.297

We also investigate how the form of the spatial objective function affects emergent functional organization. The298

spatial component of the TDANN loss function is generally intended to capture the constraints on unit-to-unit299

correlations within cortical neighborhoods, but the specifics of its functional form embody conceptually distinct300

mechanistic ideas about how a hypothetical cortical development circuit might measure functional correlations and301

compare them to cortical distances. In prior work, Lee et al. [78] introduced a spatial loss function that subtracts302

the inverse of pairwise cortical distances from the magnitude of pairwise response correlations (Figure 5a-bottom303

right), such that nearby units develop similar responses. That loss function was developed to match empirical304

measurements in macaque IT, but was not intended to generalize to other regions of the human ventral visual305

stream. We refer to it as the Absolute Spatial Loss (or SLAbs), because minimizing it requires an absolute match306

between response correlations and the inverse of cortical distances. While Lee et al. [78] found that training models307

with SLAbs produced clustering of category-selective units in a late model layer, we discovered a critical flaw when308

training with SLAbs in all model layers: in layers with shorter cortical distances, SLAbs can only be minimized if309

response correlations are pathologically high. The TDANN instead uses a more flexible spatial loss function that we310

term the Relative Spatial Loss (SLRel; Figure 5a-top right). This SL requires that inverse cortical distances will be311

correlated with response similarity (see Methods for mathematical details). SLRel effectively enforces response312

similarity between pairs of units that are relatively close together. Thus, the Relative SL allows the distance313
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over which local correlations extend to depend on the total size of the cortical area. Interestingly, we find that314

switching from SLAbs to SLRel slightly increased the model’s capacity for object categorization at all levels of α315

(Supplementary Figure S12). How do models trained for different objectives differ on topographic benchmarks?316

We compare the TDANN (self-supervised and Relative SL) to categorization-trained models (differing only in task317

objective) and Absolute SL models (differing only in spatial objective) on our battery of topographic and functional318

benchmarks: (i) evaluating the smoothness of OPMs and face-selectivity maps in the V1-like and VTC-like layers,319

respectively, and (ii) counting the number of pinwheel-like discontinuities and category-selective patches in those320

layers, respectively. Categorization-trained models were slightly but significantly less smooth than the TDANN (mean321

smoothness = 0.56, U = 25,p = 0.008), but with an equal density of pinwheels (2.07 pinwheels / column spacing 2;322

U = 10,p = 0.69). Absolute SL models generally resemble those in the TDANN (Figure 5b), but with significantly323

lower smoothness (TDANN mean: 0.71, Absolute SL: 0.40; U = 25,p = 0.008; Figure 5d) and slightly lower pinwheel324

density (TDANN: 2.14 pinwheels / column spacing 2, Absolute SL: 0.89; U = 21,p = 0.09; Figure 5e).325

Strikingly, however, category-selectivity maps in the VTC-like layer were much less organized in the326

Categorization-trained models than in the self-supervised TDANNs. At the same spatial weight of α = 0.25,327

clear clusters of category-selective units are observed in the self-supervised but not the categorization-trained328

model (Figure 5c). The Absolute SL models also fail to form organized category-selectivity maps at this level329

of α. Quantitative comparison reveals smoother category selectivity maps in the TDANN (mean smoothness of330

face-selectivity maps = 0.44) than in either categorization-trained models (0.09; Mann-Whitney U = 25,p = 0.008;331

Figure 5f) or in Absolute SL models (0.13). The TDANN also has a significantly higher number of identified category332

selective patches (mean = 1.2) than either categorization-trained (mean = 0) or Absolute SL alternatives (mean333

= 0.08; U = 25,p = 0.008; Figure 5g). Thus, the nature of the training objective strongly constrains the emergent334

functional organization, with self-supervised learning and relative spatial loss objectives producing the most brain-like335

functional organization.336

Spatial constraints make learned representations more brain-like by reducing intrinsic dimensionality337

A natural question is whether training for spatial objectives also has an effect on the non-topographic properties of338

learned representations. Because the TDANN allows the network’s features to be influenced by the spatial constraint339

during training, we can directly address this question.340

A powerful way to test if spatially-constrained models learn different features than standard DANNs is to measure341

how well model unit responses can predict neural responses to large set of naturalistic images in primate visual342

cortex [30, 28, 25, 81]. A popular approach to predicting neuronal firing rates is to fit the responses of individual343

neural units with a linear combination of many hundreds or thousands of model units. Consistent with prior work344

involving non-spatial models [61], we find that models trained with different objectives are largely indistinguishable345

in their ability to predict neural firing rates when using this standard linear-regression method for mapping model346

units to neural firing rates [25, 61, 29] (Figure 6a). The linear-regression mapping is thus insensitive to the dramatic347

differences between models trained with different objectives and spatial constraint magnitudes that are apparent in348

our analysis of functional organization. A possible explanation for this apparent discrepancy is that linear regression349

is too permissive of mapping: even if a model lacks individual units that resemble recorded neurons, a combination350

of units might still allow for accurate prediction of neural responses. We tested this prediction by performing a more351

stringent one-to-one mapping, in which individual VTC-like layer model units – not a linear mixture of units – are352

assigned to individual VTC voxels in a one-to-one fashion. Intriguingly, we found that this one-to-one assignment353

resulted in much stronger matches between TDANN model units and voxels recorded in the Natural Scenes Dataset354

(NSD) [75] than models trained with other objectives (i.e. categorization or Absolute SL, Figure 6b). This correlation355

peaks at α = 0.25, the same value identified by topographic benchmarks (Figure 4), providing more evidence that356

the constraints driving brain-like functional organization also make learned representations more brain-like.357

Many factors might contribute to the differences in representation between the TDANN and those of poorer-fitting358

models. Because the TDANN’s spatial constraint encourages units to respond more similarly to one another, we359

hypothesized that the intrinsic dimensionality of the population might decrease as α increases. Relatedly, recent360

work has demonstrated that spatially unconstrained DANN responses to natural images have substantially higher361

intrinsic dimension than real macaque and rodent V1, and that models with lower dimensionality better predict362

neural responses [82]. Thus, we tested whether decreased intrinsic dimensionality might explain why the TDANN363

representations are more brain-like than representations from other models. Consistent with our hypothesis, we364

find that the addition of the spatial constraint decreases intrinsic dimensionality in the VTC-like layer regardless of365

the training objective (Figure 6c; see Supplementary Figure S13a for eigenspectra in all layers). When α = 0, all366

models have higher effective dimensionality (ED; Elmoznino and Bonner [83], Del Giudice [84]; see methods) than367

human VTC (mean across subjects = 16.7), although the dimensionality of the VTC-like layer in categorization-trained368
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models (76.8) is nearly three times higher than in the self-supervised models (TDANN and Absolute SL: 27.8). At369

the spatial weight magnitude α = 0.25, at which the TDANN best matches neural data, the TDANN’s VTC-like layer370

approaches the dimensionality of human VTC (TDANN mean = 13.2). However, the dimensionality of models trained371

with SLAbs decreases too quickly (mean = 6.5), and categorization-trained models remain higher than human VTC372

at this level of α (mean = 42.7).373

We conclude that the close match between the TDANN and human VTC, on both topographic and non-topographic374

benchmarks, may be due in part to an alignment of their intrinsic dimensionality. Similar results are observed375

when summarizing the response eigenspectrum with power law fits, as in Stringer et al. [85], Kong et al. [82]376

(Supplementary Figure S13c). Intriguingly, we find that the effective dimensionality of the TDANN roughly converges377

to a common value of approximately 15 across model layers at α = 0.25 (Figure 6d), raising the possibility that a378

similar dimension stabilization phenomenon occurs across brain areas in the ventral stream. These results provide379

new evidence that the computational constraints generating cortical topography strongly influence non-topographic380

features, making them more brain-like by virtue of decreasing the dimensionality of population responses.381
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Figure 6. Spatial constraints make learned representations more brain-like and reduce intrinsic dimensionality (a)
Variance explained under a linear regression mapping between model units and macaque IT neurons, as a function of the
spatial loss weight α and the training objective. (b) Mean correlation between model units and VTC voxels under a one-to-one
mapping as a function of α. Green: mean human-to-human correlation under the same one-to-one mapping. (c) Estimated
effective dimensionality (cf. Elmoznino and Bonner [83], Del Giudice [84]) of the population response in the VTC-like layer of
models trained at different levels of α and with different objectives. Green: mean value in human VTC from the NSD dataset. (d)
Effective dimensionality in the TDANN across all layers and levels of α. In all panels, shaded vertical bar indicates value of α

demonstrated in prior analyses to best match topographic phenomena.

The TDANN minimizes inter-layer wiring length382

Identifying the optimization paradigm that is most consistent with neural data provides insight into the constraints383

underlying neural development, but prompts a deeper question: why would these constraints be favored by384

evolutionary selection? A natural hypothesis is that cortical networks with strong functional organization also385

minimize wiring length, and thus reduce brain size, weight, and power consumption [86, 18]. We test this hypothesis386

by asking whether the optimization paradigm that generated a functional organization that best fit neural benchmarks387

– intermediate spatial weight α, self-supervised learning, and spatial costs that scale with cortical surface area –388

also reduces between-layer wiring length. In feedforward networks that lack intra-layer connectivity, such as the389

TDANN, any gains in wiring efficiency must be between layers. Accordingly, we measure inter-layer wiring length by390

identifying populations of co-activated units in adjacent layers, then estimating the length of fibers needed to connect391

those populations. We first present natural images to the network and record the locations of the most responsive392

units in each layer, then simulate fiber bundles that originate in an earlier "source" layer and terminate in the following393

"target" layer, adding inter-layer fibers until the total squared distance between each activated unit and its nearest394

fiber is below a specified threshold (see Methods, Figure 7a). The total wiring length is taken as the sum of the395

lengths of each fiber.396

Presenting the TDANN with natural images leads to clustered responses in the VTC-like layer of all models trained397

with α > 0, with multiple clusters apparent at higher levels of α (Supplementary Figure S14). Does the increase in398

clustering within layers result in shorter wiring length between layers? We find that inter-layer wiring length is indeed399

minimized at higher levels of α (Figure 7b). However, we also find that object categorization performance decreases400

as wiring efficiency improves (Figure 7c), indicating that models at low-to-intermediate levels of α optimally balance401

performance with inter-layer wiring efficiency. This coincidence of optimal α values suggests that the functional402

organization of the ventral visual stream balances inter-area wiring costs with performance. Critically, we find403

that wiring is most efficient for the optimization objectives that yield the most brain-like functional organization:404

wiring length is higher in both categorization-trained models and those trained with the Absolute SL (Figure 7d).405
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Figure 7. Minimization of inter-layer (feedforward) wiring length in models with brain-like functional organization. (a)
Example wiring length computation between adjacent layers. Units in brown are the top 5% most active units in the Source layer
for an arbitrarily-selected natural image, while units in green are the top 5% most active in the Target layer. Black dots show
the origination and termination points of fibers that would be required to connect populations of active units across layers. (b)
Wiring length between layers 4 and 5 ("V1"; left), and layer 8 and 9 ("VTC", right) as a function of α. Shaded regions: 95% CI
of measurements from different cortical neighborhoods, model seeds, and input images. (c) Accuracy on object categorization
vs total wiring length, for models trained at different levels of α. (d) Wiring length in both early and later model layers for models
trained with different task and spatial objectives (α = 0.25 for all). Error bar: 95% CI over different image presentations and model
seeds.

Thus, wiring length minimization provides a normative explanation for the superiority of self-supervised learning and406

area-normalized spatial constraints.407

Proof-of-principle: Using the TDANN as a digital twin for experimental design408

A quantitatively accurate and mechanistically grounded model of functional organization, such as the TDANN,409

enables a spectrum of applied use cases that rely on estimating the effects of spatially-modulated neural410

perturbations. Here we apply TDANN as a digital twin of visual cortex and demonstrate two novel applications:411

1) performing an in silico microstimulation experiment, and 2) proof-of-principle for prototyping a simple cortical412

prosthetic device.413

Simulated microstimulation reveals functional similarity of conneted unit populations Microstimulation experiments414

in the macaque [87] found that stimulating neurons in a face patch selectively drives activity in other face patches,415

and prior work with topographic models of macaque IT [78] found a similar result. We tested if the TDANN also416

captures this connectivity by stimulating local populations of units in the penultimate model layer and recording417

evoked responses in the following VTC-like layer. Mirroring results in macaque IT, we find that stimulating units418

in a TDANN face patch drives localized activity in a face patch in the following layer (Figure 8a). We repeat the419

stimulation for 99 other sites equally spaced on the simulated cortex, and find that the selectivity of a stimulated unit420

in the source layer strongly predicts the selectivity of activated units in the target layer (Figure 8b), especially for421

stimulation sites closer to the center of the simulated cortical tissue.422

Simulation of cortical prosthetic devices with TDANNs A unique advantage of a unified topographic model such423

as TDANN is that it can be used to prototype the effects of simultaneous stimulation of multiple cortical areas,424

experiments which are challenging to perform in vivo. Based on recent advances in machine learning and425

visual cortical prostheses [88, 89, 90], we introduce a framework using TDANNs to prototype multi-region cortical426

stimulation devices. The framework has two components (Figure 8c, d): 1) a Stimulation Simulator that transforms427

desired activity patterns on the cortical sheet into device-achievable patterns, and 2) a Percept Synthesizer that428

estimates the percept evoked by stimulation with those patterns.429

The Stimulation Simulator takes an input image, uses the TDANN to predict the precise pattern of responses in each430

layer, and then constrains that pattern into one that is physically achievable by a specific hypothetical stimulation431

device (Figure 8c). We model two kinds of physical constraints: spatial precision – the resolution at which the device432

can create activity patterns, and regional access – the subset of cortical areas that are accessible to the device.433

Spatial precision is modeled as a Gaussian blur of the desired activity pattern and regional access by restricting the434

model layers that participate in the simulation.435

To synthesize percepts from device achievable patterns, we use an approach inspired by Granley et al. [90] and436

Shahbazi et al. [91] to synthesize the input image which generates the target activity pattern – i.e., a neural437

metamer. Figure 8e illustrates predicted percepts for hypothetical cortical stimulation devices with variable precision438

and access. Unsurprisingly, a device with infinitely high spatial stimulation precision yields sharp percepts even439

when only early cortical areas are stimulated (Figure 8e, top left). However, the percepts quickly deteriorate as the440

spatial precision of the device decreases (Figure 8e lower left). Notably, our simulation suggests that, at lower spatial441
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precision, the quality of percepts can be improved by adding stimulation of higher cortical areas (Figure 8e, middle442

rows).443

While we have neglected many critical details here, including spatiotemporal processing, cortical magnification, and444

the need to validate percepts, we hope that this proof of principle motivates the use of TDANN to make testable445

predictions about the nature of percepts elicited by various cortical stimulation devices.446
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Figure 8. Using TDANNs to simulate spatial stimulation devices. (a) Stimulation of a local population of units in the second
to last convolutional layer drives spatially-localized responses in the final convolutional layer. Responses are functionally aligned,
such that stimulating face-selective units (Site 1) drives activity in face-selective units in the following layer. Right: Results for a
second stimulation site, at the intersection of place-, body-, and character-selective patches. (b) Similarity in tuning of stimulated
units in the source layer and responding units in the target layer for 100 evenly-spaced stimulation sites. Each dot compares
tuning similarity for the true distribution of activated units (x-axis) and a randomly shuffled selection of units (y-axis). Dot color:
distance of the stimulation site from the center of the cortical tissue. (c-d) Conceptual framework for applying the TDANN to the
prototyping of visual cortical prostheses. (c) Stimulation Simulator: the TDANN is used to generate predicted activity patterns
from a given visual input (top row). Patterns are then degraded according to the limitations on a hypothetical stimulation device:
reduced spatial precision results in blurring of the target activity pattern (bottom row), and limits to regional access restrict the
set of layers that participate. Here, Layer 8 is faded-out to show that this particular hypothetical device cannot reach that cortical
area. (d) Given a device-achievable stimulation pattern produced by the Stimulation Simulator in (c), we synthesize the image
that could evoke that pattern: the predicted percept. To build intuition for the fidelity of predicted percepts, we use an example
input image of the the first four lines of a Snellen eye chart. (e) Predicted percepts for 25 theoretical cortical stimulation devices
with different capabilities. Devices vary in the precision with which they are able to produce desired activity patterns (full-width
at half-maximum (FWHM) of the spread of activity on cortex increases with rows) and the number of cortical areas that can be
simultaneously simulated (columns).
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Discussion447

In this work, we leveraged the neural network modeling framework to seek the principles of functional organization448

in the primate ventral visual stream. We found that training a spatially-augmented deep neural network for a specific449

combination of objectives results in a model, the TDANN, that captures topographic properties throughout the ventral450

stream, from the pinwheels of V1 to the category-selective patches of higher-level visual cortex.451

We identified two specific factors critical to the emergence of brain-like functional organization. First, we found452

that self-supervised learning of task-general representations yields better organization than the more common453

alternative of supervising on the singular task of visual object recognition. Recent work has suggested that functional454

specialization in the brain – e.g., one population of units responsible for discrimination of different faces and another455

for recognition of different objects – arises under joint training for two different supervised recognition tasks, one for456

faces and one for objects [92]. Our results demonstrate that functional specialization can emerge under a single457

unsupervised learning objective on a single training set, suggesting that general mechanisms can produce the458

kinds of functional specialization that is typically assumed to require multiple objectives or multiple distinct datasets.459

Second, we found that the spatial constraint in our model should compare response similarity and physical similarity460

according to a metric that scales with the size of each cortical area, rather than being fixed for all cortical areas.461

This finding suggests that the actual circuits responsible for shaping the structure of local response correlation in462

cortical neighborhoods should scale with the surface area of each cortical region. Our identification of these two463

critical factors demonstrates that a goal-driven modeling approach to understanding neural sensory systems can464

yield concrete and specific insights into their underlying principles.465

Critically, the two factors that we found are essential for brain-like functional organization in the visual system are466

not specific to the visual modality, and might extend to predict the abundant, yet largely unexplained, functional467

organization in other sensory systems. For example, neurons in primary auditory cortex are arranged according468

to the frequency they respond most strongly to (tonotopy [2]), and in secondary auditory areas, neurons cluster469

according to their preference for speech and music [23, 93]. It is possible that the representations carried by these470

neurons are also learned by contrastive self-supervision, and that their topographic organization is explained by471

scalable spatial constraints of the forms described here. Likewise, the functional organization of somatosensory [4],472

entorhinal [6, 5] and parietal cortices [3] may be explained by the specific yet general principles for representation473

learning and spatial smoothness that we have identified. Under this hypothesis, it is only the structure of the input474

data (e.g., auditory experience, somatosensory input) that changes, but the cortical mechanisms for learning and475

organization remain universal across cortical systems. Future work can directly test that hypothesis by training476

TDANN variants to learn spatially-organized representations specific to each system.477

The TDANN is the first model to predict functional organization in multiple cortical areas by learning features and478

topography, from scratch, in and end-to-end optimization framework trained directly on image inputs. As such, it479

represents an improvement over a number of related prior approaches. For example, hand-crafted self-organizing480

maps (SOMs) [94, 8, 10, 11, 9] have simplified the problem of topographic map formation by modeling a limited set481

of fixed feature dimensions (e.g., orientation preference and spatial frequency tuning), then modifying the tuning of482

model units along these dimensions such that nearby units develop similar selectivity. While such SOMs produce483

qualitatively smooth V1-like orientation maps, we find that they fail to quantitatively predict the topographic properties484

of V1 orientation maps (Figure 2). Recent attempts to abandon hand-crafted feature dimensions have trained485

SOMs to smoothly map the outputs of categorization-pretrained DCNNs [12, 13]. While these DNN-SOMs have486

the advantage of operating on images rather than predefined features, we find that they are quantitatively less487

accurate than the TDANN (Figure 3) at explaining the functional organization of VTC, and fail to reproduce the488

topography of V1 (Figure 2). Another recent approach, the ITN [20], appended topographic layers to a pretrained489

DCNN backbone and trained for supervised categorization under an additional wiring length minimization constraint.490

While the ITN reproduces many features of VTC topography, it does not predict the size, number, and geometry491

of category-selective patches as accurately as the TDANN, and cannot predict the functional organization of areas492

outside VTC. Prior work from our groups also followed the TDANN optimization framework, but used a supervised493

categorization task, a spatial constraint that did not scale with cortical area, and applied only to the VTC-like layer494

[78]. While this model was able to predict many properties of the functional organization of macaque IT, it incapable of495

predicting the organization of other ventral stream regions. Our present results (Figure 5) demonstrate that different496

spatial and task objectives are required for a TDANN to accurately match the functional organization of multiple areas497

of the ventral visual stream.498

That the TDANN is trained end-to-end provides two interesting opportunities for understanding the interaction499

between learned representations and functional organization during development. First, our preliminary analyses500

suggest that trajectories of TDANN functional architecture throughout training roughly match the faster development501
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of earlier vs higher cortical regions (Figure S17) and the emergence of V1-like topography from retinal wave-like502

stimuli (Figure S18). Rigorously testing those predictions would be most interesting when the TDANN is optimized503

using naturalistic movie streams that match the visual statistics and acuity limitations of human development [95, 96].504

Second, we found that the presence of the spatial constraint during training modulated the nature of learned505

representations, making them more brain-like and stabilizing their intrinsic dimensionality (Figure 6).506

While the TDANN is the first unified model of ventral stream functional organization, it has a number of important507

limitations. Because the core DCNN architecture used in this work is strictly feedforward, there are no direct508

connections between different units in the same layer. Thus, we are only able to draw inferences about how the509

spatial constraint affects wiring length between layers. A more complex architecture could include both intra-layer510

recurrence and long-range feedback connections [97], although our results demonstrate that explicitly modeling511

these recurrent connections is not necessary to produce accurate topographic maps (see Figure 6 of Blauch et al.512

[20]), raising the possibility that minimization of the length of long-range fibers may be the key determinant of the513

functional organization of visual cortex.514

We also note that our model, like all convolutional neural networks, uses the same filter weights across the entire515

visual field (termed "weight sharing"). This short-cut makes large-scale network training feasible; however, it is516

biologically implausible and potentially interferes with topographic map formation, since changing input weights to a517

unit in one part of the cortical sheet will also change the weights of many other distant units in a non-local fashion.518

Some topographic models avoid this issue by forgoing the use of convolutional layers altogether, but in doing so519

forfeit the ability to model retinotopically-organized cortical areas. In contrast, our approach is to pre-optimize unit520

positions (see Methods) in a way that allows the learning of locally-smooth topographic maps even with convolutional521

layers (see Methods). In the brain, a similar pre-optimization may be achieved by chemical gradients [98] and522

experience-independent refinement of neural circuits during embryonic development[99, 100, 101, 102].523

Finally, an exciting application of the TDANN is the simulation of experiments with spatial manipulations and readouts524

(Figure 8). Virtually every experiment that uses topographic structure as a dependent variable, including controlled525

rearing and task learning paradigms, could first prototype experiments with TDANNs. In addition, experiments that526

involve inactivation or stimulation of local populations of neurons (e.g. Rajalingham and DiCarlo [103], Shahbazi527

et al. [91]) could use the TDANN to predict the downstream behavioral impact of those manipulations prior to528

collecting data. The tools to perform stimulation or inactivation of neural populations have become commonplace in529

systems neuroscience in the past decade, but their engagement with the strongest models of neuronal function –530

task-optimized neural networks – has been limited due to the lack of image-computable models that not only explain531

the responses of individual neurons [104, 105, 106, 25] but that are also mapped to cortical tissue. As a unified532

model of functional organization, the TDANN is well-suited to bridge this gap.533
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Methods534

Code and data availability535

Code for model training and analyses is available at https://github.com/neuroailab/TDANN.536

Neural network architecture and training537

Model training. We build off of the torchvision implementation of ResNet-18 [59] and train models with modifications538

to the VISSL framework [107]. All models were trained for 200 epochs of the ILSVRC-2012 (ImageNet Large-Scale539

Visual Recognition Challenge; Deng et al. [64]) training set. Unless otherwise indicated, models were each trained540

from five different random initial seeds. Network parameters were optimized with stochastic gradient descent with541

momentum (γ = 0.9), a batch size of 512, and a learning rate initialized to 0.6 then decaying according to a542

cosine learning schedule [108]. Models were trained either for supervised 1000-way object categorization or on the543

self-supervised contrastive objective "SimCLR" [63]. Following training, categorization accuracy for self-supervised544

models was assessed by freezing the parameters of the model and training a linear readout from the outputs of the545

final layer. The linear readout is trained for 28 epochs with a batch size of 1,024 and a learning rate initialized to 0.04546

and decreasing by a factor of 10 every eight epochs.547

Initialization of model unit positions. Prior to training, model units in each layer are assigned fixed positions in a548

two-dimensional cortical sheet that is specific to that layer. For efficiency, we do not embed the units of the very549

first convolutional layer. The size of the cortical sheet in each layer depends on a mapping between model layers550

and regions in the human ventral visual pathway, as well as a commitment to the extent of the visual field being551

modeled. For example, because we map model Layer 4 to human V1, the surface area of the cortical sheet in that552

layer is set to 13cm2: the mean value reported by Benson et al. [109] for the surface area of the section of human553

V1 that is sensitive to the central 7 degrees of visual angle. Another critical parameter in our framework is the size554

of a "cortical neighborhood": during training, computation of the spatial loss is restricted to units within the same555

cortical neighborhood. We set the neighborhood width to match measurements made of the spatial extent of lateral556

connections in different cortical areas of the macaque (from Yoshioka et al. [110]), then scale up to achieve estimates557

that might match the human ventral visual pathway. Table 1 details the sizes of simulated cortical sheets and cortical558

neighborhoods in all layers.559

Layer # Units Size of Cortical sheet Neighborhood Size Region

Layer 2 200704 5.7mm2 47µm Retina

Layer 3 200704 5.7mm2 47µm Retina

Layer 4 100352 13.5cm2 1.6mm* V1

Layer 5 100352 13.5cm2 1.6mm* V1

Layer 6 50176 12cm2 4mm V2

Layer 7 50176 5cm2 2.5mm V4

Layer 8 25088 49cm2 31mm VTC

Layer 9 25088 49cm2 31mm VTC

Table 1. Parameters for layer positions. *the value of 1.6mm used in the V1-like layer is known to be inaccurate, but matching the
proper value yields too few units in each cortical neighborhood to compute pairwise distances. See Supplementary Figure S5 for
a solution to this problem.

Positions are assigned in a two-stage process:560

Stage 1: Naive Retinotopic Initialization Because each layer performs a convolution over the previous layer’s561

outputs, responses are organized into spatial grids. We preserve this intrinsic organization by assigning each model562

unit to a region of the simulated cortical sheet that corresponds to its spatial receptive field.563
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Stage 2: Pre-optimization of positions Convolutional networks share filter weights between units at different564

locations; thus, local updates to a single unit entail updates to all units with the same filter weights. It is highly565

unlikely that an arbitrary configuration of unit positions will permit local smoothness under this global coordination566

constraint. Thus, we perform pre-optimization of unit positions to identify a set of unit positions for which learning567

smooth cortical maps is possible. Specifically, we spatially shuffle the units of a pre-trained DCNN on the cortical568

sheet such that nearby units have correlated responses to a set of sine grating images. The choice of sine gratings569

here is inspired by observations that edge-like propagating retinal waves drive experience-independent organization570

of the visual system in primates and other mammals [99, 100, 101, 102].571

The spatial shuffling works as follows: 1) Select a cortical neighborhood at random. 2) Compute the pairwise572

response correlations of all units in the neighborhood. 3) Choose a random pair of units, and swap their locations573

in the cortical sheet. 4) If swapping positions decreases local correlations (measured as an increase in the Spatial574

Loss function described below), undo the swap. 5) Repeat steps 3-4 500 times. 6) Repeat steps 1-5 10,000 times.575

Loss functions. We use two kinds of loss functions: spatial losses that encourage topographic structure, and task576

losses that encourage the learning of visual representations. We detail each in turn below:577

Spatial loss The spatial loss (SL) function encourages nearby pairs of units to have response profiles that are578

more correlated with one another than those of distant of units. Consider a neighborhood with N units. The vector of579

pairwise Pearson’s response correlations, r⃗, has length M =
(N

2
)
, the number of unique pairs. Let the corresponding580

vector of pairwise Euclidean cortical distances be denoted d⃗.581

We define two SL variants:582

SLAbs = 1
M

M∑
i=1

|ri −Di| , (2)

SLRel = 1−Corr(r⃗, D⃗), (3)

where Corr is the Pearson’s correlation function and D⃗ is the inverse distance:583

Di = 1
di +1 (4)

Task loss The task loss is computed from the output of the final model layer. We use two task losses: the584

object categorization cross-entropy loss used in supervised object recognition (e.g. Krizhevsky et al. [111]) and585

the self-supervised SimCLR objective [63].586

Combination of losses during training On each batch, model weights are updated to minimize a weighted sum of587

the task loss and the spatial loss contributed by each layer:588

TDANN Loss = Ltask +
∑

k∈layers
αkSLk (5)

where α is the weight of the spatial loss.589

Overview of Training In summary, models are trained in 6 steps:590

1. ResNet-18 is trained on the task loss only.591

2. Positions in each layer are initialized to preserve coarse retinotopy (Stage 1).592

3. Positions are further pre-optimized in an iterative process that preserves retinotopy while bringing together593

units with correlated responses to sine gratings images (Stage 2).594

4. Positions are frozen and never again modified.595

5. All network weights are randomly re-initialized.596

6. The network is trained to minimize a weighted combination of the spatial and task loss components.597

Benchmarks comparing macaque V1 to model V1-like layers598

Stimuli and Tuning Curves.599
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Sine Grating Images Tuning to low-level image properties such as orientation, spatial frequency, and chromaticity600

was assessed by constructing 224 × 224 pixel sine grating images that span 8 orientations evenly spaced between601

0 and 180 degrees, 8 spatial frequencies between 0.5 and 12 cycles per degree, 5 spatial phases, and two602

chromaticities: black/white gratings and red/cyan gratings.603

Tuning Curves We evaluated tuning for orientations and spatial frequencies by constructing tuning curves for each604

unit. Color-responsiveness is assessed by comparing the mean response to all black and white gratings to the mean605

response to all red/cyan gratings. The distribution of model unit activations for a given layer was rescaled to match606

the minimum and maximum firing rates reported in [34]. We quantify the orientation tuning strength of model units607

using circular variance (CV), where values closer to 0 correspond to sharper tuning. As in Ringach et al. [34], CV is608

defined as:609

CV = 1−
∣∣∣∣∑

k rkei2θk∑
k rk

∣∣∣∣ (6)

Where θk is the kth orientation, in radians, and rk is the scaled response to that orientation. Orientation tuning610

curves are additionally fit with a von Mises function whose peak is taken as the preferred orientation.611

Models.612

Hand-Crafted Self-Organizing Map Our hand-crafted self-organizing map (SOM) implementation uses the MiniSom613

library [112], with parameters adapted from Swindale and Bauer [11]. We instantiate the SOM as a 128 x 128 grid614

of model units.615

10,000 training samples were randomly constructed by selecting a random (x, y) location, orientation ([0, π], spatial616

frequency ([0, 1]), and chromaticity (black/white, colorful).617

As in Swindale and Bauer [11], SOM weights were initialized retinotopically with randomly-selected initial preferred618

orientations.619

The SOM is trained by presenting training examples for a total of 700,000 updates. After each example, the "winning"620

unit (i.e. the one with the highest response) is updated with a learning rate of ϵ = 0.02 to be more strongly aligned621

with the input stimulus, and its neighbors are updated in proportion to their proximity to the winner, as determined by622

a Gaussian neighborhood function parameterized by σ = 2.5.623

Following training, each sine grating in the set of probe stimuli is presented to the SOM by projecting it into the624

six-dimensional space of SOM unit tuning and computing the response of each SOM unit to the stimulus. Once625

responses to each stimulus are obtained, tuning curves are constructed as usual.626

DNN-SOM The DNN-SOM is identical to the hand-crafted SOM, except that 1) the inputs are derived from the627

outputs of the first layer of an AlexNet model pretrained for ImageNet object categorization and 2) the learning rate is628

increased, which we found helps convergence. Following the approach of Zhang et al. [12], we take the responses of629

the first AlexNet layer to all 50,000 natural images in the ImageNet dataset, reduce their dimensionality with principal630

components analysis, and train the SOM on those examples.631

Response Benchmarks. Model responses are compared to macaque V1 by considering preferred orientations and632

orientation tuning strength. Orientation tuning strength is computed as circular variance (CV) and compared633

between the population of model units and the empirical distribution provided by Ringach et al. [34] with the634

Kolmogorov-Smirnov distance. To filter out noisy units, we compute CV for model units with a mean response635

magnitude of at least 1.0. The distribution of preferred orientations is also compared to empirical data collected by636

De Valois et al. [35] by counting the number of units preferring each of four orientations: 0, 45, 90, and 135 degrees.637

In Figure S3b we compute a "Cardinality Index": the fraction of preferred orientations that include, 0, 90, and 180638

degrees.639

Topographic Benchmarks. Orientation preference maps (OPMs) are compared to empirical measurements in two640

ways: counting pinwheels and quantifying map smoothness.641

Pinwheel Detection We interpolate the OPM onto a two-dimensional grid by computing the circular mean of the642

preferred orientation of units near a given location. If the population of model units near a grid location has643

high heterogeneity in preferred orientation, we disqualify that pixel for having an unreliable estimate of preferred644

orientation. Each grid location is assigned a "winding number" [17], computed by considering the preferred645

orientations of the eight pixels directly bordering the pixel under consideration. Moving clockwise around the646

bordering eight pixels, the change in preferred orientation from pixel to pixel is summed. A high winding number647

indicates a clockwise pinwheel, and a low winding number indicates a counterclockwise pinwheel, where the648

thresholds for "high" and "low" are selected to be consistent with manual annotation of clear pinwheels.649
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Pairwise Tuning Difference We compute the smoothness of orientation preference maps by constructing a curve650

relating pairwise difference in preferred orientation to pairwise cortical distance. First, we restrict the population of651

model units to those with the highest 25% peak-to-peak tuning curve magnitudes. This filtering step removes units652

with weak responses or responses that would be indistinguishable from a "cocktail blank" background activity level,653

and we consider it equivalent to neuron selection in electrophysiological and optical imaging studies [34, 43]. As in654

similar approaches to quantifying OPM structure (e.g. Chang et al. [68]), pairs of units are binned according to their655

distance, and the average absolute different in preferred orientation is plotted for each distance bin. Because there656

can be hundreds of thousands of units in a given layer, we restrict this analysis to randomly-selected neighborhoods657

of a fixed width, then sample many neighborhoods from each map. Finally, we divide the pairwise distance by the658

chance value obtained by random resampling of unit pairs, such that a values < 1 indicate more similar tuning than659

would be expected by chance.660

The OPM curves are compared to reconstructed macaque V1 data from Nauhaus et al. [43].661

We adopt an identical approach for the construction of a neural spatial frequency preference map, where data are662

also provided for the same imaging window in Nauhaus et al. [43]. A similar strategy was used to recover data on663

cytochrome oxidase (CO) uptake from Livingstone and Hubel [38].664

Smoothness We define a smoothness score for a given map by comparing the tuning similarity for the nearest665

model unit pairs to the tuning similarity of the least similar pairs. Concretely, given a vector x of pairwise tuning666

similarity values, sorted in order of increasing cortical distance:667

S(x) = max(x)−x0
x0

(7)

Benchmarks comparing human VTC to model VTC-like layers668

Stimuli. We evaluate the selectivity of neurons and model units to visual object categories using the “fLoc” functional669

localizer stimulus set [76]. fLoc contains five categories, each with two subcategories consisting of 144 images670

each. The categories are faces (adult and child faces), bodies (headless bodies and limbs), written characters671

(pseudowords and numbers), places (houses and corridors), and objects (string instruments and cars). Selectivity672

was assessed by computing the t-statistic over the set of functional localizer stimuli and defining a threshold above673

which units were considered selective.674

t = µon −µoff√
σ2

on
Non

+ σ2
off

Noff

, (8)

where µon and µoff are the mean responses to the "on" categories (e.g., adult and child faces) and "off" categories675

(e.g., all non-face categories), respectively, σ2 are the associated variances of responses to exemplars from those676

categories, and N is the number of exemplars being averaged over.677

Human Data. We compare models to human data from the Natural Scenes Dataset (NSD) [75], a high-resolution678

fMRI dataset of responses to 10,000 natural images in each of eight individuals (see Allen et al. for details). Models679

are compared to two aspects of this dataset: single-trial responses to the main set of natural images per participant680

(see "One-to-one mapping") and selectivity in response to the "fLoc" stimuli. Single-trial responses were z-scored681

across images for each voxel and session and then averaged across three trial repeats. Selectivity was computed682

on the "fLoc" experiment as described in the previous section, generating t-maps for each of the five categories for683

each individual subject.684

The VTC region of interest (ROI) was drawn based on anatomical landmarks to follow the convention in the literature685

[113] and is provided in the NSD data release as the "Ventral" ROI in the "streams" parcellation.686

Models.687

Interactive Topographic Network (ITN) We reconstruct maps from a variant of the ITN in Blauch et al. [20] that was688

trained and evaluated on the same images as the remaining models.689

DNN-SOM Two related approaches for building SOM models of higher visual cortex have recently been published690

[12, 13]. Because neither paper evaluates the resulting topographic maps with the fLoc stimuli, we reimplement691

the approach of Zhang et al. [12] as follows. We extract the responses of each unit in the final layer of a pretrained692

AlexNet to all 50,000 images in the ImageNet validation set. The responses are then reduced to the first four principal693

components. The SOM is initialized as a 200 x 200 grid of model units with a Gaussian neighborhood function set694

to σ = 6.2. The learning rate is set to 1.0 and the SOM is trained for 200,000 total iterations. The fLoc images are695
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presented to the pretrained AlexNet model and projected into the space spanned by the four principal components696

computed previously. The response of each model unit to each fLoc image is computed by taking the dot product of697

the unit weight matrix with the projected fLoc images. The SOM is then treated identically to the VTC-like layer of698

TDANN.699

Response Benchmarks.700

Representational similarity analysis We compare functional properties of human VTC and models with701

representational similarity analysis (RSA) [72]. For any given model or human hemisphere, we compute a702

representational similarity matrix (RSM) as the pairwise Pearson’s correlation between patterns of selectivity for703

each of the five fLoc categories. The diagonal of the RSM is trivially 1.0 and is ignored in further analysis. The704

similarity of two RSMs is computed as Kendall’s τ .705

Topographic Benchmarks.706

Pairwise Tuning Difference We measure pairwise difference in VTC-like layer unit tuning as a function of cortical707

distance. We draw 25 randoms samples of 500 units each. Each sample is filtered to include only units with a mean708

response of at least 0.5 a.u.. For each fLoc category, the absolute pairwise difference in selectivity is computed709

for pairs of units separated by different cortical distances. Curves are normalized by the chance value obtained by710

randomly shuffling unit positions. Smoothness of maps is computed from these curves, same as in our analysis of V1.711

To compare a model to a human hemisphere, we compute the mean category-by-category difference in smoothness,712

e.g. comparing model face map smoothness to human face map smoothness, model body map smoothness to713

human body map smoothness, etc. Permutation tests randomly assigning category-by-category smoothness profiles714

to either "model" or "human" were used to assess the statistical significance of the mean difference in smoothness.715

Patch Count and Size Patches are automatically detected in maps of category selectivity by identifying contiguous716

regions of highly-selective units (or voxels, for human VTC). Patch identification has a small number of parameters717

that can be adjusted for maps of different sizes and with different dynamic ranges of selectivity values. The first step718

in identifying patches is to smooth and interpolate discrete selectivity maps. The selectivity map is then thresholded,719

and contiguous islands surviving the threshold are retained as candidate patches. Each candidate patch is further720

filtered for reasonable size: patches must be at least 100mm2 and no larger than 45cm2. Finally, the 2D geometry721

of the patch is constructed by fitting the concave hull of the points within the patch.722

The following table identifies the relevant parameters for patch identification in human VTC and for each candidate723

model class.

Model Selectivity Threshold Smoothing σ Minimum Size square mm Maximum Size square mm

Human VTC 4 None 100 None

TDANN 2 2.4 100 4500

ITN 8 0.7 100 4500

DNN-SOM 10 2.4 100 4500

Table 2. Patch detection parameters for human VTC and each model.
724

Selectivity Overlap We determine if units (or voxels, for human VTC) that are selective for a pair of categories725

overlap with one another as follows. First, we bin the cortical sheet into discrete square neighborhoods of width726

10mm. In each neighborhood, the fraction of units selective for Category X and Category Y are recorded. We727

consider two populations as overlapping if there is a strong correlation between the proportions recorded across728

neighborhoods, i.e., if the frequency of Category 1 selectivity is predictive of Category Y selectivity and vice-a-versa.729

The X-Y Overlap score is computed as730

Overlap = 1−RankCorr(X,Y )
2 , (9)

where RankCorr is the Spearman’s rank correlation coefficient and X⃗ is the proportion of units selective for Category731

X in each cortical neighborhood. The category selectivity threshold was set at t > 4.732
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Linear regression. Neural predictivity is computed against a given dataset as the mean variance explained across733

neurons and splits of the data. In practice we follow the parameters and design decisions made by the BrainScore734

team [30]; they are repeated here for completeness. We use partial least squares (PLS) regression to predict the735

activity of a given neuron as a linear weighted sum of model units in a given layer. Model activations are preprocessed736

by first projecting unit responses to ImageNet images onto the first 1000 principal components, i.e. each component737

is a linear mixture of model units. This projection is used when fitting on the stimuli that were shown to the animal.738

When fitting IT, we use data from Majaj, Hong, et al., 2015 [32], which consists of multi-electrode array data in739

responses to quasi-naturalistic scenes with a variety of objects on a variety of backgrounds. Variance explained is740

corrected by dividing raw predictivity by the internal noise ceiling, a measure of the consistency of each recorded741

neuron.742

One-to-one mapping of visual cortical responses743

A direct, one-to-one mapping between units and voxels is computed by assigning each unit in a layer of the network744

to a single voxel based on responses to a given dataset. In practice, we correlate individual model unit activations to745

the natural images from the Natural Scenes Dataset [75] with responses to these same images on the single voxel746

level for a given subject. Unit-to-voxel assignments are determined using a polynomial-time optimal assignment747

algorithm [114] which maximizes the overall average correlation between unit and voxel pairs, on a given training748

set. The 515 shared images that all eight subjects viewed three times were held out as a test set and all reported749

one-to-one correlations are calculated on this test set, using the unit-to-voxel assignments determined from training.750

Each unit-to-voxel correlation is normalized by the individual voxel noise ceiling of that assigned voxel (see Allen et al.751

for information on the calculation of the intra-individual voxel noise ceilings in NSD). One-to-one correlations were752

calculated on an individual subject basis for each of the self-supervised and supervised models trained at each level753

of the spatial weight α. The inter-individual, or subject-to-subject, noise ceiling, was calculated in the same manner,754

this time assigning voxels from one subject to voxels from another subject based on how correlated responses to755

the shared 515 images were for each potential voxel pair. For the subject-to-subject assignment, we used an 80/20756

train/test split and averaged results for each subject combination across 5 splits. A similar analysis will appear in a757

forthcoming publication by Finzi et al.758

Wiring Length759

We measure the functional wiring length between two adjacent layers, the "source" layer and the "target" layer by760

first identifying the units with the highest responses in each layer, then computing the length of inter-layer fibers that761

would be required to connect them. First, for a given natural image input, we identify the top p% most responsive762

units in each of two adjacent layers. We set p to 5% in the V1-like layers and 1% in the VTC-like layers. We note763

that for computational tractability, we restrict our analysis to small neighborhoods in the V1-like layers and average764

results across many random neighborhood selections.765

Next, inter-layer fibers are added one by one, until all activated units in the earlier "source" layer are sufficiently766

close to the location at which a fiber originates. In practice, we find the optimal fiber origination sites using the767

k-means clustering algorithm, and continue adding fibers until the total "inertia" of the k-means clustering falls below768

a specified threshold, kthresh. Inertia is computed as the sum of the squared distances between each activated unit769

and its nearest fiber, and kthresh is set such that the mean distance from each unit to its nearest fiber is not greater770

than dthresh. dthresh is set to 10.0mm in the VTC-like layer pairs, and is reduced to 0.9mm in the V1-like layer pairs771

to reflect the smaller cortical neighborhood. Having established the number of inter-layer fibers required and their772

origination sites in the "source" layer, we identify optimal termination sites for those fibers in the "target" layer as773

follows. The set of target layer termination sites is identified as the centroids from k-means clustering, with k set to774

the number of fibers. Finally, fibers are assigned between origination sites and termination sites with the linear sum775

assignment algorithm, and the total wiring length is computed as the sum of the lengths of each individual inter-layer776

fiber.777

A critical decision when measuring wiring length in this way is how to situate units from two layers in a common778

physical space. By design, each TDANN layer occupies a unique two-dimensional sheet, leaving the spatial779

relationships between units in different cortical sheets undefined. Here, we assume that the "source" cortical sheet780

and "target" cortical sheet lie in the same 2D plane, joined at one edge. Concretely, we can position the "target"781

sheet to the left, right, above, or below the "source" layer. Without reason to choose one of these strategies, we782

compute the optimal wiring length for each of the four options and report the average across all shift directions.783
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Dimensionality784

In our analyses of dimensionality, we consider the responses of the full population of model units in each layer785

to a set of 10,112 natural images from the NSD [75]. Following [83], we perform spatial max-pooling on the786

convolutional feature maps, then compute the eigenspectrum of these responses. We summarize the dimensionality787

of the responses by their effective dimensionality (ED; Del Giudice [84]):788

ED =

(∑N
i=1 λi

)2

∑N
i=1 λ2

i

, (10)

where λi is the ith eigenvalue, and N is the number of eigenvectors.789

Microstimulation of model units on the simulated cortical sheet790

We simulate the microstimulation of local populations of model units to 1) gain insight into the functional properties of791

local populations, and 2) measure effective connectivity between groups of units in adjacent layers. In all analyses,792

stimulation is performed by fixing the activity of units to values determined by a 2D Gaussian function. Units near793

the center of the Gaussian have their activity set to the maximal value, and activity falls off with distance from the794

center. We consider the top 5% of units, ranked by activity level, as being responsive in either the “Source” layer,795

where activity is set according to the 2D Gaussian, or in the following “Target” layer, where unit activity is determined796

by the network architecture and learned weights.797

Functional Alignment In VTC-like layers, we measure functional alignment between layers by comparing the798

category selectivity of activated units in the Source layer (Layer 8) with the selectivity of responsive units in the799

Target layer (Layer 9). For each stimulation site, we compute the mean selectivity (t-statistic) of the top 5% most800

activated units for each of the following categories: faces, bodies, characters, cars, and places. This five-element801

"selectivity profile" can then be compared to the profile of the top 5% most strongly responding units in the Target802

layer by computing χ2 distance between selectivity profiles. Similarity is then taken as the negative log distance and803

compared to a shuffle-control in which a random subset of units is compared instead of the top 5% most active units.804

Simulation of a Visual Cortical Prosthesis805

In Figure 8, we demonstrate a proof of concept for using topographic DCNNs to prototype visual cortical prosthetic806

devices. This proof of concept consists of two distinct stages: 1) generating device-achievable stimulation patterns807

with a Stimulation Simulator, and 2) generating the estimated percept (Percept Synthesizer) that would result808

by stimulating cortical areas with those patterns. To generate stimulation patterns, we feed a target image into809

TDANN and record the precise activation magnitude of each model unit in each layer. If an infinitely high-precision810

stimulation device with absolute coverage of the cortical sheet in all cortical areas were available, we would stimulate811

cortex with this set of precise activation patterns. However, real stimulation devices are limited in many ways,812

including limits to their spatial precision and the set of cortical areas they can access. Thus, we use TDANN813

to produce device-achievable stimulation patterns, i.e., those that are consistent with the limitations of cortical814

stimulation devices. Here we take a simple approach by considering degradation of high-precision patterns into815

device-achievable patterns by Gaussian blurring. In each layer, we first interpolate the precise activity patterns onto816

a high-resolution grid (2500×2500 px), then blur the resulting pattern with a 2D Gaussian kernel whose σ parameter817

is set according to the desired blur level. Because different layers have different cortical sheet sizes (e.g. 70mm818

on an edge in the VTC-like layer and 37mm on an edge in the V1-like layer), the width of the Gaussian in pixels is819

variable, even though the width of the Gaussian in mm is constant. Finally, we perform a nearest-neighbor lookup820

such that each model unit adopts the activity level of the pixel closest to its location. This set of activity patterns is the821

final "device-achievable" pattern. The Stimulation Simulator also allows any specific subset of layers to be included;822

e.g. the first two layers only, or all eight layers. We consider this restriction comparable to the limited access a neural823

stimulation device might be restricted to.824

Given a set of device-achievable activity patterns, we seek to determine the estimated percept that would be evoked825

if that pattern were written into cortex, i.e., the visual input that is most consistent with those patterns. To this end, we826

follow the example of Granley et al. [90] and use gradient-ascent image optimization methods to synthesize an image827

such that the activity pattern produced by presenting that image is as close as possible to the device-achievable828

target pattern. We use the lucent Python package to iteratively optimize an image to minimize the total mean squared829

error, summed across layers, between the target activity patterns and the current evoked patterns at that iteration.830

We optimize the image for 3000 steps at a learning rate of 0.05; further optimization has little effect on reducing the831

mean squared error. The optimized result is the predicted percept for a given input image and theoretical cortical832

stimulation device.833

Margalit et al. | Topographic deep artificial neural networks | 24

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.18.541361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541361
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author Contributions834

E.M. and D.F. performed analyses. E.M., K.G.-S., and D.L.K.Y. wrote the paper. H.L., J.J.D., and D.L.K.Y. originally835

conceived the approach.836

Margalit et al. | Topographic deep artificial neural networks | 25

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.18.541361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541361
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements837

This work was supported by a National Science Foundation Graduate Research Fellowship awarded to E.M., a838

National Institutes of Health grant (RO1 EY 022318) awarded to K.G.-S., a Simons Foundation grant (543061)839

awarded to D.L.K.Y., a National Science Foundation CAREER grant (1844724) awarded to D.L.K.Y., and an Office840

of Naval Research grant (S5122) awarded to D.L.K.Y. We also thank the NVIDIA corporation and the Google TPU841

Research Cloud group for hardware grants. We are grateful to Ben Sorscher for helpful discussions.842

Margalit et al. | Topographic deep artificial neural networks | 26

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.18.541361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541361
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

References843

1. D H Hubel and T N Wiesel. Receptive fields, binocular interaction and functional architecture in the cat’s visual844

cortex. J. Physiol., 160:106–154, January 1962.845

2. Colin Humphries, Einat Liebenthal, and Jeffrey R Binder. Tonotopic organization of human auditory cortex.846

Neuroimage, 50(3):1202–1211, April 2010.847

3. B M Harvey, B P Klein, N Petridou, and S O Dumoulin. Topographic representation of numerosity in the human848

parietal cortex. Science, 341(6150):1123–1126, September 2013.849

4. Y C Wong, H C Kwan, W A MacKay, and J T Murphy. Spatial organization of precentral cortex in awake850

primates. I. Somatosensory inputs. J. Neurophysiol., 41(5):1107–1119, September 1978.851

5. Horst A Obenhaus, Weijian Zong, R Irene Jacobsen, Tobias Rose, Flavio Donato, Liangyi Chen, Heping852

Cheng, Tobias Bonhoeffer, May-Britt Moser, and Edvard I Moser. Functional network topography of the medial853

entorhinal cortex. Proc. Natl. Acad. Sci. U. S. A., 119(7), February 2022.854

6. Yi Gu, Sam Lewallen, Amina A Kinkhabwala, Cristina Domnisoru, Kijung Yoon, Jeffrey L Gauthier, Ila R Fiete,855

and David W Tank. A Map-like Micro-Organization of Grid Cells in the Medial Entorhinal Cortex. Cell, 175(3):856

736–750.e30, October 2018.857

7. Harry G Barrow, Alistair J Bray, and Julian M L Budd. A Self-Organizing Model of “Color Blob” Formation.858

Neural Comput., 8(7):1427–1448, October 1996.859

8. Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biol. Cybern., 43(1):59–69,860

1982.861

9. K Obermayer, H Ritter, and K Schulten. A principle for the formation of the spatial structure of cortical feature862

maps. Proc. Natl. Acad. Sci. U. S. A., 87(21):8345–8349, November 1990.863

10. Richard Durbin and Graeme Mitchison. A dimensionality reduction framework for understanding cortical maps.864

Letters to nature, 343:644–647, 1990.865

11. N V Swindale and H Bauer. Application of Kohonen’s self–organizing feature map algorithm to cortical maps866

of orientation and direction preference. Proceedings of the Royal Society of London B: Biological Sciences,867

265(1398):827–838, May 1998.868

12. Yiyuan Zhang, Ke Zhou, Pinglei Bao, and Jia Liu. Principles governing the topological organization of object869

selectivities in ventral temporal cortex. September 2021.870

13. Fenil R Doshi and Talia Konkle. Visual object topographic motifs emerge from self-organization of a unified871

representational space. September 2022.872

14. R Linsker. From basic network principles to neural architecture: emergence of orientation columns. Proc. Natl.873

Acad. Sci. U. S. A., 83(22):8779–8783, November 1986.874

15. K D Miller, J B Keller, and M P Stryker. Ocular dominance column development: analysis and simulation.875

Science, 245(4918):605–615, August 1989.876

16. K D Miller. A model for the development of simple cell receptive fields and the ordered arrangement of877

orientation columns through activity-dependent competition between ON- and OFF-center inputs. J. Neurosci.,878

14(1):409–441, January 1994.879

17. Miguel A Carreira-Perpiñán, Richard J Lister, and Geoffrey J Goodhill. A computational model for the880

development of multiple maps in primary visual cortex. Cereb. Cortex, 15(8):1222–1233, August 2005.881

18. R A Jacobs and M I Jordan. Computational Consequences of a Bias toward Short Connections. J. Cogn.882

Neurosci., 4(4):323–336, 1992.883

19. A A Koulakov and D B Chklovskii. Orientation preference patterns in mammalian visual cortex: a wire length884

minimization approach. Neuron, 29(2):519–527, February 2001.885

20. Nicholas M Blauch, Marlene Behrmann, and David C Plaut. A connectivity-constrained computational account886

of topographic organization in primate high-level visual cortex. Proc. Natl. Acad. Sci. U. S. A., 119(3), January887

2022.888

Margalit et al. | Topographic deep artificial neural networks | 27

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.18.541361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541361
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

21. A Hyvärinen, P O Hoyer, and M Inki. Topographic independent component analysis. Neural Comput., 13(7):889

1527–1558, July 2001.890

22. T Anderson Keller, Qinghe Gao, and Max Welling. Modeling Category-Selective Cortical Regions with891

Topographic Variational Autoencoders. October 2021.892

23. Alexander J E Kell, Daniel L K Yamins, Erica N Shook, Sam V Norman-Haignere, and Josh H McDermott. A893

Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals894

a Cortical Processing Hierarchy. Neuron, 98(3):630–644.e16, May 2018.895

24. Daniel L Yamins, Ha Hong, Charles Cadieu, and James J DiCarlo. Hierarchical modular optimization of896

convolutional networks achieves representations similar to macaque IT and human ventral stream. Adv. Neural897

Inf. Process. Syst., 26, 2013.898

25. Daniel L K Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J DiCarlo.899

Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl. Acad.900

Sci. U. S. A., 111(23):8619–8624, 2014.901

26. Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not unsupervised, models may902

explain IT cortical representation. PLoS Comput. Biol., 10(11):e1003915, November 2014.903

27. Umut Güçlü and Marcel A J van Gerven. Deep Neural Networks Reveal a Gradient in the Complexity of Neural904

Representations across the Ventral Stream. J. Neurosci., 35(27):10005–10014, July 2015.905

28. Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias, Matthias Bethge,906

and Alexander S Ecker. Deep convolutional models improve predictions of macaque V1 responses to natural907

images. PLoS Comput. Biol., 15(4):e1006897, April 2019.908

29. Jonas Kubilius, Martin Schrimpf, Kohitij Kar, Rishi Rajalingham, Ha Hong, Najib Majaj, Elias Issa, Pouya909

Bashivan, Jonathan Prescott-Roy, Kailyn Schmidt, Aran Nayebi, Daniel Bear, Daniel L Yamins, and James J910

DiCarlo. Brain-Like Object Recognition with High-Performing Shallow Recurrent ANNs. In H Wallach,911

H Larochelle, A Beygelzimer, F Alche-Buc, E Fox, and R Garnett, editors, Advances in Neural Information912

Processing Systems 32, pages 12805–12816. Curran Associates, Inc., 2019.913

30. Martin Schrimpf, Jonas Kubilius, Michael J Lee, N Apurva Ratan Murty, Robert Ajemian, and James J DiCarlo.914

Integrative Benchmarking to Advance Neurally Mechanistic Models of Human Intelligence. Neuron, September915

2020.916

31. Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kanwisher,917

Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: Integrative modeling918

converges on predictive processing. Proc. Natl. Acad. Sci. U. S. A., 118(45), November 2021.919

32. N J Majaj, H Hong, E A Solomon, and J J DiCarlo. Simple Learned Weighted Sums of Inferior Temporal920

Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance. Journal of921

Neuroscience, 35(39):13402–13418, 2015.922

33. Beth L Chen, David H Hall, and Dmitri B Chklovskii. Wiring optimization can relate neuronal structure and923

function. Proc. Natl. Acad. Sci. U. S. A., 103(12):4723–4728, March 2006.924

34. Dario L Ringach, Robert M Shapley, and Michael J Hawken. Orientation selectivity in macaque V1: diversity925

and laminar dependence. J. Neurosci., 22(13):5639–5651, July 2002.926

35. R L De Valois, E W Yund, and N Hepler. The orientation and direction selectivity of cells in macaque visual927

cortex. Vision Res., 22(5):531–544, 1982.928

36. R L De Valois, D G Albrecht, and L G Thorell. Spatial frequency selectivity of cells in macaque visual cortex.929

Vision Res., 22(5):545–559, 1982.930

37. S Zeki. Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and931

colours. Neuroscience, 9(4):741–765, August 1983.932

38. M S Livingstone and D H Hubel. Anatomy and physiology of a color system in the primate visual cortex. J.933

Neurosci., 4(1):309–356, January 1984.934

Margalit et al. | Topographic deep artificial neural networks | 28

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.18.541361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541361
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

39. G G Blasdel and G Salama. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex.935

Nature, 321(6070):579–585, 1986.936

40. A Grinvald, E Lieke, R D Frostig, C D Gilbert, and T N Wiesel. Functional architecture of cortex revealed by937

optical imaging of intrinsic signals. Nature, 324(6095):361–364, 1986.938

41. Tobias Bonhoeffer and Amiram Grinvald. Iso-orientation domains in cat visual cortex are arranged in939

pinwheel-like patterns. Nature, 353(6343):429–431, 1991.940

42. M Hübener, D Shoham, A Grinvald, and T Bonhoeffer. Spatial relationships among three columnar systems941

in cat area 17. J. Neurosci., 17(23):9270–9284, December 1997.942

43. Ian Nauhaus, Kristina J Nielsen, Anita A Disney, and Edward M Callaway. Orthogonal micro-organization943

of orientation and spatial frequency in primate primary visual cortex. Nat. Neurosci., 15(12):1683–1690,944

December 2012.945

44. Shu-Chen Guan, Nian-Sheng Ju, Louis Tao, Shi-Ming Tang, and Cong Yu. Functional organization of spatial946

frequency tuning in macaque V1 revealed with two-photon calcium imaging. Prog. Neurobiol., 205:102120,947

October 2021.948

45. R Desimone, T D Albright, C G Gross, and C Bruce. Stimulus-selective properties of inferior temporal neurons949

in the macaque. J. Neurosci., 4(8):2051–2062, August 1984.950

46. C G Gross, C E Rocha-Miranda, and D B Bender. Visual properties of neurons in inferotemporal cortex of the951

Macaque. J. Neurophysiol., 35(1):96–111, January 1972.952

47. Mark A Pinsk, Kevin DeSimone, Tirin Moore, Charles G Gross, and Sabine Kastner. Representations of faces953

and body parts in macaque temporal cortex: a functional MRI study. Proc. Natl. Acad. Sci. U. S. A., 102(19):954

6996–7001, May 2005.955

48. Doris Y Tsao, Winrich A Freiwald, Roger B H Tootell, and Margaret S Livingstone. A Cortical Region Consisting956

Entirely of Face-Selective Cells. Science, 311(5761):670–674, February 2006.957

49. Mark A Pinsk, Michael Arcaro, Kevin S Weiner, Jan F Kalkus, Souheil J Inati, Charles G Gross, and Sabine958

Kastner. Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI959

study. J. Neurophysiol., 101(5):2581–2600, May 2009.960

50. N Kanwisher, J McDermott, and M M Chun. The fusiform face area: a module in human extrastriate cortex961

specialized for face perception. J. Neurosci., 17(11):4302–4311, June 1997.962

51. R Epstein and N Kanwisher. A cortical representation of the local visual environment. Nature, 392(6676):963

598–601, April 1998.964

52. P E Downing, Y Jiang, M Shuman, and N Kanwisher. A cortical area selective for visual processing of the965

human body. Science, 293(5539):2470–2473, September 2001.966

53. Bruce D McCandliss, Laurent Cohen, and Stanislas Dehaene. The visual word form area: expertise for reading967

in the fusiform gyrus. Trends Cogn. Sci., 7(7):293–299, July 2003.968

54. Tanya Orlov, Tamar R Makin, and Ehud Zohary. Topographic representation of the human body in the969

occipitotemporal cortex. Neuron, 68(3):586–600, November 2010.970

55. Kevin S Weiner and Kalanit Grill-Spector. Not one extrastriate body area: using anatomical landmarks,971

hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex.972

Neuroimage, 56(4):2183–2199, June 2011.973

56. Kalanit Grill-Spector and Kevin S Weiner. The functional architecture of the ventral temporal cortex and its role974

in categorization. Nat. Rev. Neurosci., 15(8):536–548, August 2014.975

57. Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia Christensen,976

Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, Colleen J Gillon, Danijar Hafner,977

Adam Kepecs, Nikolaus Kriegeskorte, Peter Latham, Grace W Lindsay, Kenneth D Miller, Richard Naud,978

Christopher C Pack, Panayiota Poirazi, Pieter Roelfsema, João Sacramento, Andrew Saxe, Benjamin Scellier,979

Anna C Schapiro, Walter Senn, Greg Wayne, Daniel Yamins, Friedemann Zenke, Joel Zylberberg, Denis980

Therien, and Konrad P Kording. A deep learning framework for neuroscience. Nat. Neurosci., 22(11):981

1761–1770, November 2019.982

Margalit et al. | Topographic deep artificial neural networks | 29

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.18.541361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541361
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

58. Daniel L K Yamins and James J DiCarlo. Using goal-driven deep learning models to understand sensory983

cortex. Nat. Neurosci., 19(3):356–365, 2016.984

59. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In985

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.986

60. Michael J Arcaro and Margaret S Livingstone. A hierarchical, retinotopic proto-organization of the primate987

visual system at birth. Elife, 6, July 2017.988

61. Chengxu Zhuang, Siming Yan, Aran Nayebi, Martin Schrimpf, Michael C Frank, James J DiCarlo, and Daniel989

L K Yamins. Unsupervised neural network models of the ventral visual stream. Proc. Natl. Acad. Sci. U. S. A.,990

118(3), January 2021.991

62. Talia Konkle and George A Alvarez. A self-supervised domain-general learning framework for human ventral992

stream representation. Nat. Commun., 13(1):491, January 2022.993

63. Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for Contrastive994

Learning of Visual Representations. February 2020.995

64. J Deng, W Dong, R Socher, L J Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database.996

In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255, June 2009.997

65. Soumya Chatterjee, Kenichi Ohki, and R Clay Reid. Chromatic micromaps in primary visual cortex. Nat.998

Commun., 12(1):2315, April 2021.999

66. Matthias Kaschube, Michael Schnabel, Siegrid Löwel, David M Coppola, Leonard E White, and Fred Wolf.1000

Universality in the evolution of orientation columns in the visual cortex. Science, 330(6007):1113–1116,1001

November 2010.1002

67. Margaret Henderson and John T Serences. Biased orientation representations can be explained by experience1003

with nonuniform training set statistics. J. Vis., 21(8):10, August 2021.1004

68. Jeremy T Chang, David Whitney, and David Fitzpatrick. Experience-Dependent Reorganization Drives1005

Development of a Binocularly Unified Cortical Representation of Orientation. Neuron, May 2020.1006

69. Dardo N Ferreiro, Sergio A Conde-Ocazionez, João H N Patriota, Luã C Souza, Moacir F Oliveira, Fred Wolf,1007

and Kerstin E Schmidt. Spatial clustering of orientation preference in primary visual cortex of the large rodent1008

agouti. iScience, 24(1):101882, January 2021.1009

70. Dario L Ringach, Patrick J Mineault, Elaine Tring, Nicholas D Olivas, Pablo Garcia-Junco-Clemente, and1010

Joshua T Trachtenberg. Spatial clustering of tuning in mouse primary visual cortex. Nat. Commun., 7:12270,1011

August 2016.1012

71. Anupam K Garg, Peichao Li, Mohammad S Rashid, and Edward M Callaway. Color and orientation are jointly1013

coded and spatially organized in primate primary visual cortex, 2019.1014

72. Nikolaus Kriegeskorte, Marieke Mur, and Peter Bandettini. Representational similarity analysis - connecting1015

the branches of systems neuroscience. Front. Syst. Neurosci., 2(November):4, 2008.1016

73. Eshed Margalit, Keith W Jamison, Kevin S Weiner, Luca Vizioli, Ru-Yuan Zhang, Kendrick N Kay, and1017

Kalanit Grill-Spector. Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential1018

Representation of Categories and Domains, 2020.1019

74. J V Haxby, M I Gobbini, M L Furey, A Ishai, J L Schouten, and P Pietrini. Distributed and overlapping1020

representations of faces and objects in ventral temporal cortex. Science, 293(5539):2425–2430, September1021

2001.1022

75. Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle, Matthias1023

Nau, Brad Caron, Franco Pestilli, Ian Charest, J Benjamin Hutchinson, Thomas Naselaris, and Kendrick Kay.1024

A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nat. Neurosci., 25(1):1025

116–126, January 2022.1026

76. Anthony Stigliani, Kevin S Weiner, and Kalanit Grill-Spector. Temporal Processing Capacity in High-Level1027

Visual Cortex Is Domain Specific. J. Neurosci., 35(36):12412–12424, September 2015.1028

Margalit et al. | Topographic deep artificial neural networks | 30

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.18.541361doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.18.541361
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES

77. Kevin S Weiner and Kalanit Grill-Spector. Sparsely-distributed organization of face and limb activations in1029

human ventral temporal cortex. Neuroimage, 52(4):1559–1573, 2010.1030

78. Hyodong Lee, Eshed Margalit, Kamila M Jozwik, Michael A Cohen, Nancy Kanwisher, Daniel L K Yamins, and1031

James J DiCarlo. Topographic deep artificial neural networks reproduce the hallmarks of the primate inferior1032

temporal cortex face processing network. July 2020.1033

79. Johannes Mehrer, Courtney J Spoerer, Emer C Jones, Nikolaus Kriegeskorte, and Tim C Kietzmann. An1034

ecologically motivated image dataset for deep learning yields better models of human vision. Proc. Natl.1035

Acad. Sci. U. S. A., 118(8), February 2021.1036

80. Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre1037

Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech1038

Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel1039

Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2:1040

Learning Robust Visual Features without Supervision. April 2023.1041

81. U Guclu and M A J van Gerven. Deep Neural Networks Reveal a Gradient in the Complexity of Neural1042

Representations across the Ventral Stream, 2015.1043

82. Nathan C L Kong, Eshed Margalit, Justin L Gardner, and Anthony M Norcia. Increasing neural network1044

robustness improves match to macaque V1 eigenspectrum, spatial frequency preference and predictivity.1045

PLoS Comput. Biol., 18(1):e1009739, January 2022.1046

83. Eric Elmoznino and Michael F Bonner. High-performing neural network models of visual cortex benefit from1047

high latent dimensionality. February 2023.1048

84. Marco Del Giudice. Effective Dimensionality: A Tutorial. Multivariate Behav. Res., 56(3):527–542, 2021.1049

85. Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Matteo Carandini, and Kenneth D Harris.1050

High-dimensional geometry of population responses in visual cortex. Nature, 571(7765):361–365, July 2019.1051

86. Dmitri B Chklovskii, Thomas Schikorski, and Charles F Stevens. Wiring optimization in cortical circuits.1052

Neuron, 34(3):341–347, 2002.1053

87. Sebastian Moeller, Winrich A Freiwald, and Doris Y Tsao. Patches with links: a unified system for processing1054

faces in the macaque temporal lobe. Science, 320(5881):1355–1359, June 2008.1055

88. Michael S Beauchamp, Denise Oswalt, Ping Sun, Brett L Foster, John F Magnotti, Soroush Niketeghad, Nader1056

Pouratian, William H Bosking, and Daniel Yoshor. Dynamic Stimulation of Visual Cortex Produces Form Vision1057

in Sighted and Blind Humans. Cell, 181(4):774–783.e5, May 2020.1058

89. Maureen van der Grinten, Jaap de Ruyter van Steveninck, Antonio Lozano, Laura Pijnacker, Bodo Rückauer,1059

Pieter Roelfsema, Marcel van Gerven, Richard van Wezel, Umut Güçlü, and Yağmur Güçlütürk. Biologically1060
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Supplementary Information1119

V1-like maps produced with alternative feature sets1120

Figure 2 demonstrates that co-training for spatial and task losses is sufficient to generate V1-like topography.1121

However, we have not ruled out the possibility that generating orientation-selective units and arranging them on1122

the cortical sheet via other strategies could produce V1-like maps. To address this concern, we derive orientation1123

prefrence maps (OPMs) from three different strategies for learning and spatially organizing model units. We first1124

compare the standard TDANN, in which unit positions are fixed prior to training and model weights are optimized to1125

minimize both task and spatial losses, to a Task Only DCNN whose weights are optimized only for the task loss. To1126

generate an OPM from the Task Only model, we freeze network weights then iteratively shuffle model units on the1127

cortical sheet such that the Spatial Loss is minimized post-hoc. Accordingly, we refer to this model as a "Post-hoc"1128

arrangement of DCNN features. We find that OPM smoothness is nearly identical when co-learning features with1129

the spatial loss (i.e., TDANN) than when first learning features and then post-hoc arranging units in the cortical sheet1130

(Supplementary Figure S4). A third alternative is to bypass the learning of features altogether and use a hard-coded1131

Gabor filterbank (GFB) to generate model units, as has been suggested as a model of V1 neuron tuning (e.g. Jones1132

and Palmer [5], Dapello et al. [3]). Following the same approach as in the Task Only model for deriving OPMs, we1133

find that the hard-coded GFB features fail to produce a smooth OPM. How can we reconcile the apparent inadequacy1134

of the Gabor filterbank in generating V1-like topography with its strong orientation selectivity? One possibility is that1135

a Gabor filterbank lacks the required complexity to form responses to natural images that drive brain-like topography,1136

but that simpler stimuli may improve the accuracy of its topographic predictions. To test whether the nature of the1137

images presented to the model matters, we evaluated the same three feature sets (TDANN, Post-hoc, Task Only,1138

and GFB) on a set of simple sine grating images (Figure S4a, bottom). Interestingly, we find that the TDANN,1139

Post-hoc Task Only, and GFB feature sets all produce smooth OPMs when their units are organized with respect1140

to correlations of sine grating responses. We conclude that the TDANN is the only model that, by co-learning1141

features and topography, is able to produce brain-like OPMs from realistically complex natural inputs. Task Only1142

and Hand-Crafted feature spaces are capable of producing V1-like OPMs only when presented with simple inputs,1143

whereas the core advantage of the TDANN is its ability to learn a feature space that produces brain-like functional1144

organization in the presence of realistically complex natural images.1145

Natural image inputs are required for the emergence of brain-like functional organization1146

Work in developmental neuroscience and psychology has called into consideration the influence of visual experience1147

on the development of structure and function in visual cortex. We leveraged the ability of self-supervised TDANNs1148

to predict functional organization after learning from unlabeled visual data streams to determine which inputs might1149

drive the emergence of brain-like topographic maps. We evaluated networks trained on four distinct image datasets,1150

including the natural image datasets ImageNet and Ecoset [9], and two artificial datasets: sine gratings and white1151

noise images. We find that for both natural image datasets, there is brain-like functional organization of V1-like1152

and VTC-like layers. In the V1-like layer, 14% of units in the Ecoset-trained network and 20% of units in the1153

ImageNet-trained network were strongly orientation selective (circular variance < 0.6), and we observe smooth1154

OPMs with pinwheels in models trained from both datasets. Further, we found similar numbers of VTC-like layer1155

units with selectivity t > 5 in both models (12.7% for Ecoset and 14.2% for ImageNet), and we detect patches1156

selective for all five categories in both models (Figure S9).1157

While the suitability of naturalistic stimuli for generating brain-like functional organization may not be surprising, we1158

wanted to test if simpler artificial datasets could succeed in matching neural data for two reasons. First, it has1159

been demonstrated that patterned endogenous activity prior to eye opening can establish visual cortical circuitry [4].1160

Second, if artificial synthetic stimuli were suitable for constructing brain models, we could avoid needing to collect1161

large natural image datasets. We trained TDANN on two artificial stimulus sets: a set of sine grating stimuli that may1162

loosely mirror endogenous activity patterns, and Gaussian white noise images. The grating-trained model exhibited1163

a very high fraction of strongly orientation selective units in the V1-like layer (73%). However, the grating-trained1164

model had no category selectivity (1.2% of units selective at t > 5, averaged across categories), and no detectable1165

patches. Thus, simple oriented stimuli may be sufficient to drive V1-like map formation, but natural stimuli are1166

necessary to develop the remainder of the ventral visual pathway. We next evaluated a model trained on white noise,1167

which allows us to isolate the effects of the model architecture and loss functions in the absence of structure in the1168

input data. We find that training on white noise prevents the learning of strongly orientation-selective units in the1169

V1-like layer (0% of units with circular variance < 0.6) or strongly category-selective units in the VTC-like layer (4%1170

of units with t > 5). Surprisingly, however, the noise-trained TDANN does learn some weak functional organization.1171

In the V1-like layer, a weak orientation preference map is formed, and in the VTC-like layer, two character-selective1172

patches and one face-selective patch is observed. These results suggest that the spatial loss is able to produce some1173
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topographic structure even in the absence of patterned inputs, although the strength of the selectivity is extremely1174

weak. Taken together, these analyses of the impact of training data on functional organization support the necessity1175

and sufficiency of natural images for the emergence of robust V1-like and VTC-like topographic maps.1176

Probing the tuning of unit populations outside of category-selective patches1177

If the VTC-like layer smoothly encodes a space of objects, we might expect that images synthesized to drive high1178

responses in nearby regions of the cortical sheet would be perceptually similar. Indeed, we find that optimal image1179

characteristics smoothly vary across the cortical surface. Higher spatial frequency and rectilinear features dominate1180

the upper right sides of the map, while curvilinear and lower spatial frequency features best drive the top and bottom1181

edges. We find that these optimal images also align with category-selectivity, e.g., the input images that best drive1182

units in face-selective patches tend to contain eyes and fall in the more curvilinear regions of feature space. Images1183

synthesized to maximize regions that fall between patches (sites 5, 10, 11, 15, 16, and 20) lack clearly discernible1184

object categories, but nonetheless follow the smooth gradients of image features across the cortical surface. Thus,1185

it appears that the VTC-like layer learns a smooth mapping of object space in two dimensions, and that patches1186

emerge as regions of that space that align with the category localization stimuli that we use to probe the model.1187

Supplemental Methods1188

Dimensionality Summarize by Power Law Exponent. Following Kong et al. [7], Stringer et al. [11], we summarize the1189

eigenvalues by fitting a line to the log-log plot of eigenvalues against their principal component index, and report the1190

absolute value of the best fit line as the power law exponent. To prevent fitting to nonlinear regions in the earliest1191

and latest parts of the distribution, the line is fit from the 2nd to the 50th principal component.1192

Linear regression. Neural predictivity is computed against a given dataset as the mean variance explained across1193

neurons and splits of the data. In practice we follow the parameters and design decisions made by the BrainScore1194

team [10]; they are repeated here for completeness. We use partial least squares (PLS) regression to predict the1195

activity of a given neuron as a linear weighted sum of model units in a given layer. Model activations are preprocessed1196

by first projecting unit responses to ImageNet images onto the first 1000 principal components, i.e. each component1197

is a linear mixture of model units. This projection is used when fitting on the stimuli that were shown to the animal.1198

When fitting V1, we use data from Cadena et al. [2], which consists of single-neuron recordings to a set of natural1199

images. When fitting V4 and IT, we use data from Majaj, Hong, et al., 2015 [8], which consists of multi-electrode1200

array data in responses to quasi-naturalistic scenes with a variety of objects on a variety of backgrounds. Variance1201

explained is corrected by dividing raw predictivity by the internal noise ceiling, a measure of the consistency of each1202

recorded neuron.1203

Unit Clustering. The degree to which of responses to natural images are clustered is computed by considering the1204

locations of the 5% of units that respond most strongly to a given input image. We compute the distribution of1205

pairwise distances between these highly-active units, then count the number of pairs that are within 10.0mm of each1206

other: if the count is high, then the active units are concentrated into a small number of clusters. Finally, clusterness1207

is defined as the ratio between the number of nearby pairs in the true response pattern to the number of nearby pairs1208

when locations are randomly shuffled. We compute results for 10 random position shuffles, 64 randomly-selected1209

images used as input, and five random initial seeds for each model.1210

Gabor Filter Bank (GFB). In Figure S4, we generate responses from a Gabor filter bank by following the VOneNet1211

implementation in Dapello et al. [3]. For computational tractability and to produce a similar quantity of units as in the1212

TDANN V1-like layer, we reduce the number of simple and complex channels from 256 to 64 each, and increase the1213

stride of the convolution from 4 to 8 pixels. The resulting filter bank is then treated identically to the TDANN V1-like1214

layer when extracting responses and constructing tuning curves.1215

The orientation preference map (OPM) for the GFB model is produced by assigning GFB outputs to random initial1216

positions, then minimizing the Spatial Loss by iteratively swapping the locations of randomly-selected pairs of units1217

as described above.1218

Stimulus Optimization. We use image synthesis methods, implemented in the lucent Python package ( https://1219

github.com/greentfrapp/lucent), to generate images which reproduce patterns of stimulation. Specifically, we1220

synthesize an input image that minimizes the mean squared error between a desired pattern of activity and the actual1221

pattern obtained by presenting the synthesized image to the network. The desired pattern of activity is set according1222

to a two-dimensional Gaussian centered over some region of the cortical sheet. In these experiments we set the1223

σ parameter of the Gaussian to 3.5mm. For efficiency, we also remove units far from the center of the Gaussian1224

from the computation of the mean squared error: units below 10% of the height of the Gaussian are ignored. All1225

Margalit et al. | Topographic deep artificial neural networks Supplementary Information | 34

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2023. ; https://doi.org/10.1101/2023.05.18.541361doi: bioRxiv preprint 

https://github.com/greentfrapp/lucent
https://github.com/greentfrapp/lucent
https://github.com/greentfrapp/lucent
https://doi.org/10.1101/2023.05.18.541361
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 100 101 102

Epoch

0

1

2

Ta
sk

 L
os

s

0 100 101 102

Epoch

0.0

0.1

0.2

0.3

Sp
at

ia
l L

os
s

Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

a b

c

d

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Cortical Distance

−0.1

0.0

0.1

0.2

0.3

0.4

Re
sp

on
se

 S
im

ila
rit

y

Layer 2 Layer 4 Layer 6 Layer 8

−0.3
0.0
0.3

Co
rre

la
tio

n

early layers

later layers

500μm 2.5mm 2.5mm 2cm

Figure S1. Minimization of loss components during training. (a) Task loss throughout training. (b) Spatial loss in each of the
eight convolutional layers during training. Shaded area: 95% confidence interval (CI) across random initializations. (c) Response
correlation decreases as a function of the cortical distance between model unit pairs in each model layer. Shaded region: 95%
CI from repeated sampling of different cortical neighborhoods in each layer. (d) Portions of the cortical sheet from each of four
convolutional layers; units colored according to their correlation with an arbitrarily selected seed unit, marked by the black star.

synthesized images begin as 128 x 128 pixels of white noise and are optimized for 1,024 steps. We retain the default1226

settings for image transforms, which include optimization in the Fourier basis, color channel decorrelation, jittering,1227

rotation, and padding.1228

Retinal Waves. In Figure S18 we organize DCNN units in the cortical sheet according to their response correlations1229

to a series of simulated retinal waves.1230

Creating Retinal Waves Our simulation of retinal wave activity is heavily inspired by the description in Kim et al.1231

[6]. We simulate the retina as a two-dimensional circle of radius 320px. The retina has three spatially-overlapping1232

cell layers: one for ON-RGCs (retinal ganglion cells), one for OFF-RGCs, and one for amacrine cells. Each cell can1233
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Figure S3. Topographic and representational benchmarks in the V1-like model layer (a) Orientation, spatial frequency, and
chromatic preference maps for all candidate model types. (b) Left: Distribution of preferred orientations for each model type.
Right: Cardinality index, computed as the fraction of units selective for cardinal orientations to units selective for the obliques.
Dashed green light indicates value in macaque V1. (c) Left: Distribution of circular variance for each model and for macaque V1.
Vertical line indicates cutoff for strong selectivity. Right: percentage of units strongly selective for orientations in each model type.

be in one of four states: inhibited, recruitable (but not currently active), refractory (recently active but not recruitable1234

yet), or active (currently "on"). Cells are connected to each other according to the following rules: 1) ON-RGCs are1235

connected to one another in an excitatory fashion within a radius of ron, 2) ON-RGCs are connected to amacrine1236

cells in an excitatory fashion within a radius of ron, and amacrine cells inhibit OFF-RGCs within a radius of ramacrine.1237

A wave is initiated by setting some subset of the ON-RGCs to the "active" state. The activated subset is determined1238

by picking a random location along the edge of the retina and activating cells along a thin strip at that location. The1239

wave is then propagated for up to t timesteps (propagation is halted if the wave runs off screen and all cells are1240

off). At each timestep, activity is propagated as follows. First, all cells that have been active longer than a specified1241
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Figure S4. Smoothed OPMs from alternative feature spaces (a) Top row: smoothed OPMs from the TDANN, a Task Only
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Figure S5. Orientation preference maps (OPMs) and pinwheel density in alternative models For demonstration, all models
in this figure had unit positions organized post-hoc to achieve a strong OPM, i.e., they are not proper TDANNs. (a) OPM in a
small region of the standard ResNet-18 TDANN. Pinwheels are shown by black and white dots. (b) OPM in the V1-like layer of
a categorization-trained ResNet-50, in which the increased number of channels allows a reduction of cortical neighborhood size
and, accordingly, a dramatic increase in pinwheel density. (c) OPM in the V1-like layer of a categorization-trained ResNet-18 with
twice the number of channels in each layer, in which the increased number of channels allows a reduction of cortical neighborhood
size and, accordingly, a dramatic increase in pinwheel density.

"active duration" are set to the refractory state. Second, cell activity levels are updated by multiplying the connectivity1242

matrices with the previous activity states. Third, we activate all ON-RGCs who are in the recruitable state and whose1243

activity exceeds an activity threshold of tON-active. Fourth, we inhibit all OFF-RGCs whose activity falls below a1244

threshold of tOFF-active. OFF-RGCs whose activity passes that threshold are activated if they are currently in the1245

recruitable state. Finally, amacrine cells whose activity exceeds tamacrine-active are set to active. The remainder of1246

the amacrine cells are made recruitable instead. Images of the simulated activity at each stage are produced by1247

creating binary masks of the locations of active ON-RGCs. Half of the waves are randomly assigned to map the1248

binary images to a black and white colormap, and the remainder are assigned to a red and green colormap.1249

In this work, we produce retinal waves with two sets of parameters. The following parameters are common to both1250

sets of retinal waves: ron = 15, ramacrine = 1.5, t = 20, tON-active = 7, tamacrine-active = 0.1, tOFF-active = 0.1. In1251

one of the two sets of waves, the active duration is set to 100ms, and in the other, the active duration is set to 200ms.1252

In practice, the waves produced with the longer active duration are twice as thick.1253

Measuring Responses to Waves Each wave consists of a number of images, one per timestep of the simulation.1254

Because the simulated retina is circular, the corners of each image never contain simulated activity. To make better1255

use of each image, we take a central square crop of each image of size M x M pixels then resize the image back1256

to 224 x 224 pixels. M is selected such that all regions of the crop contain activity: for an image of size 224px,1257
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Figure S6. Data in each human subject from the NSD fLoc experiment and patch detection protocol All scale bars: 2mm.
(a) Map of face selectivity in the right-hemisphere VTC region of interest (ROI) for one example subject. A: anterior, M: medial, L:
lateral, P: posterior. (b) Thresholded face selectivity map for the same subject as (a). (c) Category selectivity map for all five fLoc
categories. (d) Patches detected from the category selective clusters in (c). (e) Detected patches in each hemisphere (LH = left
hemisphere, RH = right hemisphere) for each subject.
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Figure S7. Optimal stimuli throughout the VTC-like layer (a) VTC-like layer of an example TDANN model. Overlaid numbers
correspond to sub-panels in (b). (b) Images synthesized to maximally activate a local population of units centered at the indicated
location in (a). Small dot in bottom left of each image indicates the patch membership of that location, e.g., a red dot indicates
that the image optimally drives units that happen to be in a face-selective patch.

M =
√

2× (224
2 )2 ≈ 158. As with all other images presented to the DCNN models, the images are then preprocessed1258

and normalized.1259

For a wave with t timesteps, each model unit produces t responses. We integrate responses to each wave by1260

computing the mean response across all waves. Anecdotally, similar results are achieved by computing the maximum1261

response instead of the mean. Unit-to-unit correlations are then computed by considering the vector of integrated1262

responses for each wave. We use the unit-to-unit correlations to perform swap-based organization of units on the1263

cortical surface such that correlated units are moved to be nearby one another.1264
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Figure S8. Topographic maps for models trained with the Relative SL and the Supervised Categorization objective (a)
Orientation preference maps (OPMs) in the V1-like layer of models at each level of α trained from five different random seeds with
the categorization objective. A region of each cortical sheet is shown, with black and white dots indicating locations of detected
clockwise and counter-clockwise pinwheels, respectively. Gray square covers the Task Only seed 0, which was used during
position initialization. (b) Category selectivity maps for the VTC-like layer of each model in (A). Plotting conventions as in Figure
3.
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Figure S9. Topographic maps from models trained with different training datasets (a) Orientation, spatial frequency,
and chromatic preference maps in the V1-like layer of models trained with ImageNet images, the Ecoset training set, a set
of hand-selected sine gratings (increased α = 10), and Gaussian white noise images. (b) Representational similarity between
human VTC and models trained with each dataset. Error bar: 95% CI across human hemispheres. (c) Category selectivity maps
for the VTC-like layer of each model in (a). Plotting conventions as in Figure 3.
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Figure S10. Topographic maps for models trained with the Relative SL and self-supervision (a) Orientation preference
maps (OPMs) in the V1-like layer of models at each level of α trained from five different random seeds with the Relative Spatial
Loss (SL). A region of each cortical sheet is shown, with black and white dots indicating locations of detected clockwise and
counter-clockwise pinwheels, respectively. (b) Category selectivity maps for the VTC-like layer of each model in (a). Plotting
conventions as in Figure 3.
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Figure S11. Topographic maps for models trained with the Absolute SL (a) Orientation preference maps (OPMs) in the
V1-like layer of models at each level of α trained from five different random seeds with the Absolute Spatial Loss (SL). A mm
region of each cortical sheet is shown, with black and white dots indicating locations of detected clockwise and counter-clockwise
pinwheels, respectively. (b) Category selectivity maps for the VTC-like layer of each model in (a). Plotting conventions as in
Figure 3.
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Figure S12. Additional comparison of models trained with different task and spatial objectives (a) Spatial loss in the
VTC-like layer of TDANN models (purple), categorization-trained models (gold), and models trained with the Absolute SL (red)
throughout training. (b) Categorization accuracy (top-1 ImageNet validation set performance) for models trained at each level of
α with either the Relative (purple) or Absolute (red) SL. (c) Categorization accuracy for models trained at each level of α directly
on the supervised categorization objective.
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Figure S13. Dimensionality of model unit populations as a function of training objective and α (a) Variance explained by
each principal component (PC) for each layer of TDANNs trained at different levels of the spatial weight magnitude α. Components
computed from responses to 10,000 images from the NSD [1]. (b) Variance explained by each principal component in the VTC-like
layer of models trained with α = 0.25 and different objectives. (c) Power law coefficient fit to eigenspectra from the VTC-like layer
of models trained with α = 0.25 and different objectives.
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Figure S14. Clustering of responses to natural images as a function of α (a) Strength of activation in the TDANN VTC-like
layer to an arbitrarily-selected natural image, for models trained at different levels of the spatial weight (α). (b) Probability density
function of pairwise distances between pairs of activated units for each model type, computed over repeated presentations of
different natural images. Curve color indicates the level of the spatial weight (α) that model was trained with. (c) Clusterness,
measured as the increase in unit density above the chance of value (dashed line: 1.0). Error bars: 95% CI over different
random initial model seeds and images used to generate responses. ANOVA: F (7,32) = 70.5,p < 10−16, post-hoc Tukey’s
tests: significantly lower clusterness for α = 0 and Unoptimized models compared to models with α > 0, all post-hoc ps < .001.
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Figure S15. Prediction of neural firing rates with linear regression compared against topographic map smoothness (a)
Models trained at different levels of α (represented by dot size) and with different objectives compared in their capacity to predict
macaque V1 firing rates (Var Exp) and the smoothness of their orientation preference maps. b) As in (b), but for prediction of
firing rates in macaque inferotemporal cortex (IT) and smoothness of face selectivity maps. No difference in variance explained
when α < 25, all pairwise ps from Mann-Whitney tests p > 0.42.
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Figure S16. Topographic maps in each layer of a representative TDANN model. (a) Orientation, spatial frequency, and
chromatic preference maps in each layer. Plotting conventions as in Figure 2. (b) Category selectivity map in each layer. (c)
Orientation and color selectivity in the V4-like model layer. Units in magenta are selective for color and not orientation, units in
green are selective for orientation and not color, and units in black are selective for both orientation and color. Similar data in
macaque V4 is shown in the inset at bottom right (from [12]).
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Figure S17. Topographic maps in a representative TDANN throughout training. (a) OPMs in the V1-like layer at initialization
(left), and after 1, 11, 51, 101, and 200 epochs of training. (b) Category selectivity maps in the VTC-like model layer at each
timepoint. (c) Smoothness as a function of training step for orientation, spatial frequency, and color preference maps. Smoothness
peaks early then plateaus. (d) Selectivity of category selectivity maps for each fLoc category. Smoothness increases throughout
training.
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Figure S18. Simulated retinal waves can drive unit-to-unit correlations comparable to static sine gratings. (a) Five
example frames from a simulated retinal wave movie. The responses to each frame are integrated to compute the mean response
to each wave. (b) OPMs created by post-hoc organization of units in the V1-like layer of a Task Only SimCLR model, when the
unit-to-unit correlations are computed by presenting retinal wave movies (left), a dataset of sine gratings (middle), or natural
images (right). Scale bar: 2mm.
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