1	Vaccine-mediated protection against merbecovirus and sarbecovirus challenge in mice
2	$D^{-1}D^{-1}A^{-1} = \frac{1}{2} + \frac{2}{3} + \frac{2}{3} + \frac{1}{3} + 1$
3	David R. Martinez ^{1, 2, *} , [#] , Alexandra Scha fer ^{3, *} , Tyler D. Gavitt ^{4, *} , Michael L. Mallory ³ , Esther Lee ⁴ , Nicholas J. Catanzaro ³ , Haiyan Chen ⁴ , Kendra Gully ³ , Trevor Scobey ³ , Pooja
4 5	Korategere ⁴ , Alecia Brown ⁴ , Lena Smith ⁴ , Rob Parks ⁴ , Maggie Barr ⁴ , Amanda Newman ⁴ ,
6	Cindy Bowman ⁴ , John M. Powers ³ , Katayoun Mansouri ⁴ , Robert J. Edwards ⁴ , Ralph S. Baric
7	^{3,#} , Barton F. Haynes ^{4,#} , Kevin O. Saunders ^{4,#} .
8	, Daton 1. Haynes , Revin O. Saunders .
9	1. Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
10	
11	2. Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510,
12	USA
13	
14	3. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,
15	27599, USA
16	
17	4. Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710,
18	USA
19	
20	* Equal contribution
21	
22	# Corresponding authors: <u>david.martinez@yale.edu</u> ; <u>rbaric@email.unc.edu</u> ;
23	<u>barton.haynes@duke.edu</u> ; <u>kevin.saunders@duke.edu</u>
24	
25 26	
20 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 SUMMARY

48

49 The emergence of three distinct highly pathogenic human coronaviruses – SARS-CoV in 50 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019 – underlines the need to develop broadly 51 active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While 52 SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not 53 protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent 54 sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and 55 MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody 56 responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine 57 only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected 58 against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse 59 models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-60 CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD 61 nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity 62 that broadly protects mice against disease. This study demonstrates proof-of-concept for a single 63 pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses 64 spanning two betacoronavirus subgenera.

65

Keywords: bat coronavirus, MERS-CoV, nanoparticle, neutralization, receptor binding domain,
SARS-CoV, SARS-CoV-2, universal vaccine.

68

69

70 INTRODUCTION

71	The emergence of SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019
72	into naïve human populations underlines the spillover potential of coronaviruses. SARS-CoV-2
73	causes coronavirus disease of 2019 (COVID-19) ¹ . The COVID-19 pandemic has had a
74	devastating impact on human health and the world economy. SARS-CoV, SARS-CoV-2, and
75	several zoonotic, pre-emergent SARS- and SARS2-related bat coronaviruses belong to the
76	Betacoronavirus genus and Sarbecovirus subgenus and are classified as Group 2b coronaviruses
77	²⁻⁴ . Similarly, MERS-CoV and MERS-related bat zoonotic viruses also belong to the
78	Betacoronavirus genus and Merbecovirus subgenus and are classified as Group 2c coronaviruses
79	^{2,3} . Given that in the last two decades, one merbecovirus and two sarbecoviruses have emerged
80	into humans, the development of countermeasures against these important groups of viruses -
81	including universal coronavirus vaccines -is a global health priority.
82	Several pan-betacoronavirus vaccine approaches have shown early promise in animal
83	models ⁵⁻⁸ . Sortase-conjugated ferritin nanoparticles (scNPs) bearing the SARS-CoV-2 receptor
84	binding domain (RBD) elicited neutralizing antibodies against bat SARS-related viruses and
85	protected non-human primates (NHP) against SARS-CoV-2 challenge ⁹ . Moreover, monovalent
86	SARS-CoV-2 RBD scNP vaccines elicit neutralizing antibodies against all tested SARS-CoV-2
87	variants including D614G, Beta, Delta, Omicron BA.1, BA.2, BA.2.12.1, and BA.4/BA.5 10 .
88	Similar approaches with RBD nanoparticle vaccines also protect against sarbecovirus challenge
89	in mice ⁸ . Chimeric spike antigens delivered as multiplexed mRNA-LNP vaccines similarly
90	protected mice from genetically divergent bat zoonotic SARS-related viruses and SARS-CoV-2
91	variants ⁶ . Therefore, multiple vaccine designs and modalities have protected against
92	heterologous sarbecovirus challenge in animal models. Importantly, humans infected with

93 SARS-CoV 2003 and/or SARS-CoV-2 generate neutralizing monoclonal antibodies capable of neutralizing SARS-related zoonotic viruses and SARS-CoV-2 variants¹¹⁻¹⁵. These human 94 monoclonal antibodies protected mice and monkeys from sarbecovirus infection^{11,16}. These 95 96 studies indicated that elicitation of protective neutralizing antibody responses against 97 sarbecoviruses is achievable. 98 Despite demonstrating proof-of-principle that vaccines can elicit broad immunity against genetically divergent sarbecoviruses ^{5-8,17}, no study to date has demonstrated vaccine-mediated 99 100 protection against both sarbecovirus and merbecovirus betacoronaviruses. While stem-helix 101 antibodies isolated from humans can protect against Group 2b SARS-CoV and SARS-CoV-2 as well as Group 2c MERS-CoV in highly pathogenic mouse models¹⁸, current vaccination 102 103 strategies do not reproducibly induce immunity targeting these conserved S2 epitopes. Therefore, 104 alternative vaccination strategies that effectively target sarbecoviruses and merbecoviruses are 105 needed. SARS-CoV-2 spike mRNA vaccines do not protect mice against challenge with 106 genetically divergent zoonotic SARS-related viruses and SARS-CoV⁶. This suggests that 107 108 currently used SARS-CoV-2 mRNA spike vaccines are unlikely to strongly protect against future 109 SARS-related, SARS-CoV-2-related zoonotic viruses, or highly evolved SARS-CoV-2 variants of concern that could emerge in the future ^{19,20}. We therefore developed a trivalent RBD vaccine 110 111 composed of sarbecovirus and merbecovirus RBDs from zoonotic pre-emergent, human 112 epidemic, and pandemic coronaviruses. In this study, we evaluated the immunogenicity and 113 protective efficacy against SARS-CoV and MERS-CoV in mice. We show that a monovalent

114SARS-CoV-2 RBD nanoparticle can protect against heterologous sarbecovirus challenge but

does not protect against merbecovirus challenge. Conversely, the trivalent RBD scNP generates

116 neutralizing antibodies and prevents severe sarbecovirus disease and merbecovirus infections.

117 This study demonstrates proof-of-concept in an *in vivo* challenge setting that a vaccine that

- 118 protects against merbecoviruses and sarbecoviruses is an achievable goal.
- 119

120 **RESULTS**

121 Generation and validation of trivalent RBD ferritin nanoparticle vaccine.

122 We previously reported that a ferritin scNP monovalent SARS-CoV-2 RBD vaccine

123 elicited broadly neutralizing antibodies against bat zoonotic pre-emergent betacoronaviruses,

124 SARS-CoV, and SARS-CoV-2 variants in non-human primates ^{7,16}. To broaden the response of

this SARS-CoV-2 RBD vaccine, we sought to generate a vaccine that increased the

126 immunogenicity against the high risk *Merbecovirus* (also called Group 2c coronavirus) subgenus

127 of betacoronaviruses, which includes MERS-CoV 2 . We designed a trivalent sortase-A-

128 conjugated 24-mer ferritin nanoparticle (scNP) vaccine displaying SARS-CoV-2 RBD, SARS-

129 related bat RsSHC014 RBD, and MERS-CoV EMC RBD (Figure 1A and S1A)¹⁰. Equimolar

130 ratios of each RBD were conjugated to 24 acceptor sites on the 24-mer ferritin nanoparticle. In

addition to the sarbecovirus SARS-CoV-2 RBD, RsSHC014 RBD was chosen for inclusion

because it is a pre-emergent ACE2-binding sarbecovirus ¹⁹ to which the SARS-CoV-2 RBD

133 nanoparticle generated only low levels of neutralizing antibodies ^{7,16}. We used negative stain

electron microscopy (NSEM) to visualize the sortase A conjugated trivalent vaccines and

demonstrated successful RBD conjugation (Figure 1B and S1B). The trivalent RBD scNP

136 recapitulated the stability of the individual RBDs indicating the conjugation reaction had no

deleterious effects on RBD folding or stability (Figure S1C and D).

138	To validate the efficient conjugation of SARS-CoV-2/RsSHC014/MERS-CoV RBDs as a
139	trivalent vaccine, we also performed biolayer interferometry (BLI) binding analyses with human
140	monoclonal antibodies that recognize Group 2b and Group 2c coronavirus spike epitopes and
141	human ACE2. MERS-CoV RBD-specific mAbs JC57-14 and CDC-C2 only recognized MERS-
142	CoV spike and the trivalent RBD vaccine (Figure 1C). Similarly, SARS-CoV-2 RBD-specific
143	mAbs DH1284 and DH1041 bound only to SARS-CoV-2 spike and the trivalent RBD vaccine
144	(Figure 1C). Group 2b RBD cross-reactive mAbs DH1047, DH1235, CR3022, and S309 bound
145	to SARS-CoV-2 spike, RsSHC014 spike, and the trivalent RBD vaccine with highest magnitude
146	but not to MERS-CoV spike or HIV Env. Finally, the negative control stem-helix mAb
147	DH1057.1 bound to RsSHC014 spike and SARS-CoV-2 spike but not to the trivalent RBD
148	vaccine, MERS-CoV spike, or HIV Env. Overall, the trivalent RBD nanoparticle bound to all the
149	various Group 2b and 2c RBD antibodies, whereas no one spike protein recapitulated this
150	breadth of reactivity. These BLI binding analyses suggest that the trivalent SARS-CoV-
151	2/RsSHC014/MERS-CoV RBD scNP vaccine was efficiently conjugated and the RBD
152	immunogens are properly recognized by various Group 2b and Group 2c-reactive monoclonal
153	antibodies.
154	

154

155 Immunogenicity of monovalent versus trivalent scNP vaccines in mice.

To compare the immunogenicity of the monovalent versus the trivalent RBD scNP
vaccines, we vaccinated aged BALB/c two times four weeks apart (Figure 2A). The Toll-like
receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) was used as the
adjuvant for both vaccine groups and adjuvant-only controls (Figure 2A) ²¹. We immunized mice
with 10µg of the monovalent SARS-CoV-2 RBD scNP vaccine and also 10µg of the trivalent

161 SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP vaccine adjuvanted with 5µg of the GLA-SE 162 adjuvant. We measured serum binding IgG antibodies against sarbecovirus and merbecovirus 163 spike ectodomain matching the RBDs present in the vaccine and SARS-CoV spike, which was 164 not in the vaccine. In mice vaccinated twice with the SARS-CoV-2/RsSHC014/MERS-CoV 165 trivalent RBD scNP vaccine, high titers of spike binding IgG antibodies against human outbreak 166 SARS-CoV Tor2 isolate (Figure 2B), bat pre-emergent RsSHC014 (Figure 2C), the SARS-CoV-167 2 Wuhan-1 outbreak isolate (Figure 2D), and the MERS-CoV EMC isolate (Figure 2E) were 168 observed. In agreement with the IgG binding to various Group 2b and Group 2c spikes, we also 169 observed serum antibody blocking of hACE2 binding to SARS-CoV-2 Spike and hDPP4 binding 170 to MERS-CoV in trivalent RBD scNP vaccinated mice (Figure 2F and 2G). Only the trivalent 171 scNP vaccine elicited robust serum antibody responses capable of blocking hDPP4 (Figure 2G). 172 The monovalent SARS-CoV-2 RBD scNP vaccine also elicited high titers of binding IgG 173 antibodies two weeks post boost against the three sarbecovirus spikes SARS-CoV Tor2 isolate, 174 RsSHC014, SARS-CoV-2 Wuhan-1 isolate and human ACE2-blocking antibodies (Figure 2B-D, 175 2F). However, immunization with SARS-CoV-2 RBD scNP did not elicit binding IgG to MERS-176 CoV spike or DPP4-blocking antibodies (Figure 2E 2G). These data indicated that the 177 monovalent SARS-CoV-2 RBD scNP vaccine elicited cross-reactive binding and serum-178 blocking antibodies to Group 2b but not Group 2c coronaviruses. Thus, the trivalent RBD scNP 179 vaccine improved antibody responses compared to the monovalent SARS-CoV-2 RBD scNP by 180 eliciting serum antibodies to spikes from all three highly pathogenic human betacoronaviruses 181 and a pre-emergent bat coronavirus. 182 To gain insights about the antibody binding breadth and depth elicited by the trivalent

183 RBD scNP vaccine, we assessed serum IgG binding in vaccinated mice to thirteen RBDs of

184	animal and human coronaviruses from Groups 1, 2, and 4 ^{2,3} . The RBD panel included a canine
185	CoV-huPn, OC43, WIV-1, SARS-CoV GZ02, ZC45, GXP4L, BANAL-236, MERS-CoV,
186	NL140422, HKU4, HKU5, BtKY06, and porcine deltacoronavirus Haiti (Figure 2H). The
187	trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP vaccine elicited high IgG binding
188	responses against five different Group 2b RBDs and four different Group 2c RBDs (Figure 2H).
189	IgG binding was not observed against Group 1, Group 2a, 2d, and Group 4 coronaviruses (Figure
190	2H). Notably, the MERS-CoV RBD in the trivalent vaccine elicited high binding responses
191	against MERS-CoV and HKU5 and markedly lower binding was observed against NL140422
192	and HKU4 (Figure 2H). This heterogenous binding across Group 2c RBDs suggests that Group
193	2c RBDs may share fewer conserved epitopes as compared to Group 2b RBDs (Figure 2H). In
194	contrast, the monovalent SARS-CoV-2 RBD scNP vaccine only elicited high IgG binding
195	responses to Group 2b betacoronaviruses (Figure 2H), demonstrating more limited breadth than
196	the trivalent RBD scNP. Together, these findings indicated that the superior trivalent RBD scNP
197	vaccine elicited broad IgG responses against Group 2b and 2c viruses, and its IgG response
198	exhibited depth reacting with multiple human and animal CoV RBDs from Group 2b and 2c
199	coronaviruses.

200

201 Induction of SARS-CoV-2, RsSHC014, MERS-CoV neutralizing antibodies.

We then measured serum neutralizing antibody responses against Group 2b and Group 2c coronaviruses using live-virus assays. At baseline, both the monovalent SARS-CoV-2 RBD and trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP-vaccinated mice had undetectable neutralizing antibodies against the highly transmissible SARS-CoV-2 BA.1, SARS-CoV Urbani,

and MERS-CoV. Following two immunizations, monovalent SARS-CoV-2 RBD scNP

207	vaccinated mice elicited serum neutralizing antibodies against SARS-CoV-2 BA.1 with a median
208	ID_{80} of 1832 (Figure 3A). Similarly, monovalent vaccinated mice elicited potent serum
209	neutralizing antibodies against SARS-CoV Urbani with a median ID_{80} of 1157 (Figure 3B).
210	Undetectable serum neutralizing antibodies were observed against MERS-CoV EMC (Figure
211	3C). In contrast to the monovalent vaccine, we observed potent serum neutralizing antibodies
212	against MERS-CoV by the trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP vaccine
213	with a median ID_{80} of 3424 (Figure 3C). The trivalent SARS-CoV-2/RsSHC014/MERS-CoV
214	RBD scNP vaccine also elicited serum neutralizing antibodies against SARS-CoV-2 BA.1 and
215	SARS-CoV-1 Urbani with ID_{80} values of 251 and 625, respectively. Importantly, undetectable
216	serum neutralizing antibodies were measured in the adjuvant-only vaccinated mice. Thus, the
217	monovalent SARS-CoV-2 RBD scNP vaccine elicited neutralizing antibodies against pandemic
218	and epidemic sarbecoviruses whereas trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD
219	scNP vaccines elicited neutralizing antibodies against pandemic and epidemic sarbecoviruses
220	and MERS-CoV.
221	
222	Protective efficacy of trivalent RBD nanoparticle vaccine against Group 2b and Group 2c
223	CoVs.
224	To evaluate the protective efficacy of the trivalent RBD scNP against sarbecovirus and

merbecovirus infection with highly pathogenic coronaviruses, we challenged mice with either a

heterologous, lethal mouse-adapted SARS-CoV virus (MA15)²², or a highly pathogenic mouse-

227 adapted MERS-CoV virus (m35c4) ^{23,24}. Aged BALB/c mice immunized with the trivalent

225

228 SARS-CoV-2/RsSHC014/MERS-CoV RBD were protected from weight loss (Figure 4A) and

229 mortality (Figure 4B) after SARS-CoV MA15 challenge. This protection was likely due to

230	conserved RBD epitopes shared among sarbecoviruses ^{7,10,11,25} . Notably, the monovalent SARS-
231	CoV-2 RBD scNP vaccine also protected against heterologous SARS-CoV MA15 challenge,
232	whereas the adjuvant-only-vaccinated controls had 40% mortality by day 4 post infection (Figure
233	4B). Compared to adjuvant-only controls, both monovalent and trivalent RBD scNP had reduced
234	lung virus replication at day 2 post infection as measured by infectious virus plaque assays
235	(Figure 4C). However, only the trivalent scNP- vaccinated mice had lower infectious SARS-CoV
236	replication in the nasal turbinates at day 2 post infection as measured by plaque assay compared
237	to the adjuvant-only-vaccinated controls (Figure 4D). Moreover, the trivalent RBD scNP vaccine
238	also mediated increased protection against upper airway replication of SARS-CoV in mice.
239	As we observed strong protection from heterologous and highly pathogenic SARS-CoV
240	MA15, we evaluated whether the trivalent vaccine also protected against challenge in a highly
241	pathogenic mouse-adapted MERS-CoV model ^{23,24} . Like adjuvant-only controls, DPP4
242	transgenic mice vaccinated twice with a monovalent SARS-CoV-2 RBD scNP vaccine
243	experienced severe MERS-CoV disease including weight loss (Figure S2A), high levels of
244	infectious virus replication in the lung and nasal turbinates (Figure S2B and C). Similarly, by day
245	4 post infection SARS-CoV-2 RBD scNP-vaccinated mice exhibited significant weight loss and
246	high amounts of virus replication in the lung (Figure S2D). In contrast, mice vaccinated twice
247	with the trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP vaccine were protected from
248	weight loss (Figure S2A). Unlike adjuvant-only controls and SARS-CoV-2 RBD monovalent
249	vaccinated mice, we observed complete protection from lung virus replication at day 2 post
250	infection in the trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP 2X vaccinated group
251	(Figure S2B). However, we did not observe complete suppression of nasal turbinate MERS-CoV
252	replication at day 2 post infection and lung virus replication at day 4 post infection in the

trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP 2X vaccinated group (Figure S2CD).

255	To evaluate if additional boosting could increase the protective efficacy in the upper
256	airways of the trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP vaccine, we repeated
257	the vaccination study in the DPP4-modified mice that are susceptible to MERS-CoV infection
258	and disease. We vaccinated mice three times four weeks apart with either the trivalent RBD
259	scNP or SARS-CoV-2 RBD scNP (Figure S3A). Notably, mice immunized three times (3X)
260	showed an increase in serum binding IgG against Group 2b and 2c coronavirus RBDs indicating
261	the additional boost augmented antibody responses (Figure S3B). Three immunizations with the
262	trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP vaccine completely protected mice
263	from weight loss (Figure 5A), and lung virus replication at days 3 and 5 following MERS-CoV
264	challenge (Figure 5B, 5D). Importantly, mice vaccinated 3x with the trivalent vaccine were fully
265	protected from MERS-CoV replication in the nasal turbinates (Figure 5C). In contrast, the
266	adjuvant-only control and the SARS-CoV-2 RBD monovalent scNP vaccine group exhibited
267	marked weight loss following MERS-CoV challenge (Figure 5A) and had high levels of virus
268	replication in the lungs and nasal turbinates at day 3 (Figure 5B and C). At day 5 post infection,
269	virus replication remained high in these two groups of mice (Figure 5D). Therefore, a three-dose
270	vaccination strategy achieved a high degree of protection in both the lower and upper airway
271	after challenge with MERS-CoV.

272

273 **DISCUSSION**

Given the more than 6.8 million deaths attributed to the SARS-CoV-2 pandemic,
vaccines that protect against the known highly pathogenic human coronaviruses are needed ^{26,27}.

276 This current study demonstrated a trivalent receptor binding domain sortase-conjugated 277 nanoparticle vaccine induced neutralizing antibodies against all three highly pathogenic human 278 betacoronaviruses and protected against both heterologous Group 2b (Sarbecovirus subgenus) 279 and homologous Group 2c (Merbecovirus subgenus) coronavirus infections. This vaccine is an 280 advance over current SARS-CoV-2 mRNA vaccines, which lack protection against other human pathogenic betacoronaviruses such as SARS-CoV and MERS-CoV⁶. The trivalent vaccine is 281 282 also an advance beyond current Group 2b-focused RBD nanoparticle vaccines. The monovalent 283 SARS-CoV-2 RBD scNP vaccine used in this study elicited high concentrations of IgG 284 antibodies against Group 2b RBDs, and in previous studies was shown to neutralize recent known SARS-CoV-2 variants including highly mutated BA.4/BA.5 omicron sub-strains¹⁰. 285 286 Moreover, the monovalent SARS-CoV-2 RBD scNP vaccine protects against sarbecoviruses SARS-CoV, SARS-CoV-2, and RsSHC014¹⁰. However, this SARS-CoV-2 RBD nanoparticle 287 did not generate cross-reactive antibodies against Group 2c spike⁷. Notably, monovalent scNP 288 289 SARS-CoV-2 vaccines that protect mice and monkeys against SARS-CoV-2 and sarbecovirus challenge^{7,10} did not protect against MERS-CoV challenge. The lack of broadly reactive Group 290 291 2b and 2c antibodies is expected given that MERS-CoV and SARS-CoV-2 RBDs differ in overall structure ^{28,29}. Therefore, "universal" vaccine approaches targeting SARS-CoV-2 variants 292 293 may be distinct from those approaches needed for vaccines against antigenically and genetically 294 distant coronaviruses.

Importantly, the SARS-CoV-2 RBD was sufficient in the monovalent vaccine for
eliciting cross-reactive IgG antibodies against all tested sarbecoviruses. To bolster immunity
against sarbecoviruses, the trivalent RBD nanoparticle includes SHC014 RBD. Conversely, the
MERS-CoV RBD in the trivalent RBD vaccine elicited a range of high and low binding IgG

titers to the four Group 2c RBDs tested. The inability of a single Group 2c RBD to elicit high
titers of cross-reactive IgG to all Group 2c RBDs tested indicates that Group 2c RBDs may share
less epitope conservation compared to Group 2b RBDs.

302 The development of antibody-based MERS vaccines has been of concern given reports 303 that antibody dependent enhancement of infection can occur in vitro with MERS-CoV-reactive antibodies ³⁰. Increased virus replication that is mediated by IgG antibodies is a classical 304 305 surrogate of antibody-dependent enhancement that is observed for flaviviruses like dengue virus 306 ³¹. In our study, we observed potent serum antibody neutralization of MERS-CoV *in vitro* and no 307 evidence of increased virus replication upon challenge of mice immunized with MERS-CoV 308 RBD. It is also important to note that we did not observe increased lung or nasal turbinate 309 MERS-CoV replication relative to adjuvant only controls in mice vaccinated with the 310 monovalent SARS-CoV-2 RBD scNP vaccine even though this vaccine did not protect against 311 MERS-CoV challenge. This is an important observation as it suggests that individuals that have 312 SARS-CoV-2 immunity to the RBD are unlikely to experience more severe disease when 313 exposed to MERS-CoV or to a distinct Group 2c coronavirus that is antigenically like MERS-314 CoV.

A limitation to our study is that mucosal antibody responses were not measured. Thus, the durability of vaccine-elicited neutralizing antibodies in the upper airway is not known. Similarly, tissue-resident memory B and T cells responses were not profiled in the nasal airways or lungs ¹⁷. Another limitation to our study is the lack of a heterologous Group 2c challenge in the trivalent scNP vaccine expressing MERS-CoV RBD. However, this is currently a limitation of the broad coronavirus pathogenesis field as MERS-CoV is the only known Group 2c human

respiratory coronavirus that can replicate and cause disease in mice expressing humanized DPP4receptors.

323 Finally, our study shows the utility of the sortase conjugate nanoparticle platform for 324 rapidly and easily generating broadly protective vaccines. The trivalent RBD scNP vaccine is a 325 viable strategy for vaccine-mediated protection against the three highly pathogenic Group 2b and 326 2c betacoronaviruses - SARS-CoV, SARS-CoV-2 and its variants, and MERS-CoV. Moving 327 forward it will be critical to assess if this trivalent RBD scNP vaccine also protect against Group 328 2b and Group 2c coronaviruses in additional mouse models that express human ACE2 in the upper and lower airway epithelium as is observed in humans³² and in other MERS-CoV mouse 329 330 challenge models ³³. Our results suggest that universal vaccine approaches targeting Group 2b 331 and Group 2c coronaviruses is achievable via multivalent delivery of RBDs via adjuvanted 332 nanoparticle vaccines. The protective Group 2c immunity generated by the trivalent RBD 333 nanoparticle is important since previous MERS-CoV outbreaks have had case fatality rates as high as 40% ³⁴, far exceeding the 1-10% rate reported for SARS-CoV-2 and SARS-CoV ³⁵. The 334 335 next generation of coronavirus vaccines will need to broaden protection to include both Group 2b 336 and 2c coronaviruses. Additionally, these findings have important implications for slowing down or preventing the spread of pre-emergent, zoonotic coronaviruses poised for human emergence 337 19,20 338

- 339
- 340
- 341
- 342

343 STAR METHODS

344 RBD sortase A conjugated nanoparticle vaccine production

345 The receptor-binding domains (RBDs) from SARS-CoV-2 Wuhan-Hu1 isolate, MERS-CoV

- 346 EMC isolate, and BatCoV RsSHC014 were expressed with a Sortase A donor sequence
- 347 (LPETGG) encoded at the C terminus. An HRV-3C cleave site, an 8x His-tag, and a twin
- 348 StrepTagII (IBA) were added C-terminal to the Sortase A donor sequence. The RBDs were each
- expressed by transient transfection using 293Fectin in Freestyle 293 cells and purified by
- 350 StrepTactin affinity chromatography (IBA) followed by Superdex200 size-exclusion
- 351 chromatography as described previously^{7,36}. *Helicobacter pylori* ferritin particles were expressed
- 352 with an N-terminal pentaglycine Sortase A acceptor sequence at the end of each subunit. 6x His-
- tags were included C-terminal to an HRV-3C cleavage site to enable affinity purification of the
- Ferritin particles. Prior to conjugation, RBDs, ferritin subunits, and pentamutant Sortase A³⁷
- 355 were buffer exchanged into 50mM Tris, 150mM NaCl, 5mM CaCl₂ at pH 7.4. The components
- were combined at a ratio of 360 μ M total RBD (360 μ M SARS-CoV-2 RBD for monovalent
- 357 RBD scNP, or 120µM each of SARS-CoV-2, RsSHC014, and MERS-CoV RBD for the trivalent
- RBD scNP), plus 120uM Ferritin, plus 100uM Sortase A, and incubated at room temperature for
- 4 hours. After incubation, the conjugated RBD-bearing nanoparticles were separated from free
- unconjugated reactants by size-exclusion chromatography using a Superose6 16/600 column.
- 361 Conjugate nanoparticle assembly was confirmed by NSEM and by Western blot under both
- 362 reducing and non-reducing conditions.

363

364 Biolayer interferometry (BLI)

365 Antibody binding was determined using a FortéBio Bio-Layer Interferometry instrument

366 (Sartorius Octet Red96e) at 25°C with a shake speed of 1000 rpm. Antibodies were diluted to 20

367	μ g/mL in a flat bottom 96-well plate (Greiner) with .22 μ m filtered phosphate buffered saline pH
368	7.4 and 0.05% Tween 20 (PBS-T). The antigens were diluted to a concentration of 50μ g/mL
369	using PBS-T. Hydrated Anti-hIgG Fc Capture (AHC) biosensors (Sartorius #18-5060) were
370	equilibrated for 60 second and then antibodies were loaded to biosensors for 300 seconds. After a
371	60-second wash and a 180-second baseline step, biosensors were then dipped into the diluted
372	antigens for a 200-second association. Next, antibody and antigens allowed to dissociate for 300
373	seconds. Data was analyzed using Data Analysis HT 12.0 software. The negative control
374	antibody, CH65, was indicated as a reference sensor and subtracted from the remaining ligand
375	sensor measurements. Data was then aligned to the average of the baseline step and plotted using
376	GraphPad Prism 9 software.
277	

377

378 Negative stain electron microscopy of RBD nanoparticles

Negative stain electron microscopy was performed as previously described ⁷. The RBD 379 380 nanoparticle protein was thawed in an aluminum block at room temperature for 5 min. The RBD 381 scNP was diluted to a final concentration of 0.2 mg/mL into room-temperature buffer containing 382 150 mM NaCl, 20 mM HEPES pH 7.4, 5g/dL glycerol and 8 mM glutaraldehyde. After 5 min, 383 the cross-linking was quenched by the addition of 1 M Tris pH 7.4 to a final concentration of 75 384 mM Tris and incubated for 5 min. Carbon-coated grids (EMS, CF300-cu-UL) were glow-385 discharged for 20 s at 15 mA, and subsequently a 5-µl drop of quenched sample was incubated 386 on the grid for 10–15 s. The grid was blotted and then stained with 2g/dL uranyl formate. After 387 air drying, grids were imaged with a Philips EM420 electron microscope operated at 120 kV, at 388 49,000× magnification and images captured with a 76 megapixel CCD camera at a pixel size of 2.4 Å. 389

390

391 Processing of negative-stain images

392 The RELION 3.0 program was used for all negative-stain image processing following previously

³⁹³ published procedures ⁷. Images were CTF-corrected with CTFFIND and particles were picked

using a nanoparticle template. Extracted particle stacks were underwent 2 or 3 rounds of 2D class

averaging and selection to discard irrelevant particles and background picks.

396

397 Mouse vaccinations and virus challenge experiments

398 Aged BALB/c (#047) retired breeder female mice were purchased from Envigo and were used 399 for SARS-CoV-1 MA15 challenge studies. B6 male and female mice modified at the DPP4 locus ²³ to allow pathogenesis by mouse-adapted MERS-CoV m35c4 ²⁴ were bred in house and used at 400 ~20-25 weeks of age. The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable 401 402 emulsion (GLA-SE) was used as the adjuvant for the vaccine immunogens. Mouse vaccination 403 studies were performed intramuscularly with GLA-SE-adjuvanted SARS-CoV-2 RBD scNP, 404 GLA-SE-adjuvanted SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP, or GLA-SE-adjuvant 405 only for the control group. Vaccine immunogens were administered at 10 µg of the RBD scNP 406 vaccines formulated with 5 µg of adjuvant. Mice were immunized at week 0 and week 4 for the 407 2X prime-boost vaccine regimen, and at week 0, week 4, and week 8 for the 3X prime-boost-408 boost vaccine regimen. Mice were then moved into the BSL3 and acclimated for a few days. 409 Prior to challenge, mice were anesthetized with an intraperitoneal delivery of xylazine and ketamine and given a lethal dose of SARS-CoV-1 MA15 22 : $1 \square \times \square 10^4$ PFU/ml. For the MERS-410 CoV challenge studies, mice were challenged with mouse-adapted MERS-CoV m35c4²⁴. 411 412

413 Binding ELISA against coronavirus antigen panel

414 For coronavirus antigen-binding assays, 384-well ELISA plates (Costar #3700) were coated with 415 $2 \mu g/ml$ antigens in 0.1M sodium bicarbonate overnight at 4°C. Plates were then washed 1X and 416 blocked for 2 h at room temperature with SuperBlock (1X phosphate buffered saline (PBS) 417 containing 4% (w/v) whey protein 15% normal goat serum/0.5% Tween-20/0.05% sodium azide). Mouse serum samples were collected at baseline before prime, two weeks post prime, 418 419 four weeks post prime, two weeks post boost, and two weeks post the second boost. Mouse 420 serum samples were added at 1:30 dilution in SuperBlock and diluted 3-fold through 12 dilution 421 spots to generate binding curves. Diluted serum samples were bound to coated plates in 422 SuperBlock for 1h at room temperature. Plates were then washed 2X and a horseradish 423 peroxidase (HRP)-conjugated goat anti-mouse IgG secondary antibody (SouthernBiotech 1030-424 05) was added in SuperBlock at a 1:16,000 dilution. Secondary antibody was bound for 1h and 425 then washed 4X and detected with 20µL SureBlue Reserve (KPL 53-00-03) for 15 min. 426 Colorimetric reactions were stopped by adding 20µL of 1% HCL stop solution. Plates were read 427 at 450nm and area under the curve (AUC) was calculated from the serially diluted mouse serum 428 samples.

429

430 Live virus neutralization assays

431 All live virus assays were performed in a BSL-3 laboratory. Full length SARS-CoV Urbani,

432 SARS-CoV-2 Wuhan-1 expressing the BA.1 spike, and MERS-CoV were designed to express

433 nanoluciferase (nLuc) as described previously ^{38,39}. SARS-CoV Urbani and SARS-CoV-2 BA.1

434 stocks were generated and titrated in Vero E6 (C1008) cells and MERS-CoV stocks were titrated

435 in Vero 81 (CCL-81) cells. For the live virus neutralization assays, cells were plated at 20,000

436	cells per well in clear bottom, black-walled 96-well plates the day prior to the assay. On the day
437	of the assay, mouse serum samples diluted 1:40 and serially diluted 3-fold to eight dilutions.
438	Serially diluted mouse serum was added at a 1:1 volume with diluted virus and incubated for 1 h.
439	Antibody-virus dilutions were then added to cells at 800 PFU per well and incubated at 37°C
440	with 5% CO ₂ . Following a 24hr incubation, plates were read by adding 25μ L of Nano-Glo
441	Luciferase Assay System (Promega). Luminescence was measured by a Spectramax M3 plate
442	reader (Molecular Devices). Fifty percent virus neutralization titers were calculated using
443	GraphPad Prism via four-parameter dose-response curves.
444	
445	Biocontainment and biosafety
446	All experiments handling live viruses, including mouse-adapted coronaviruses, were performed
447	in an animal biosafety level 3 (BSL-3) laboratory. Laboratory workers performing BSL-3
448	experiments wore powered air purifying respirators (PAPR), Tyvek coverall suits, double booties
449	covering footwear, and double gloves. All recombinant coronavirus work was approved by the
450	UNC Institutional Biosafety Committee (IBC). All animal work was approved by the UNC
451	Institutional Animal Care and Use Committee (IACUC). All BSL-3 work was performed in a
452	facility conforming to requirements recommended in the Microbiological and Biomedical
453	Laboratories, by the U.S. Department of Health and Human Services, the U.S. Public Health
454	Service, and the U.S. Center for Disease Control and Prevention (CDC), and the National
455	Institutes of Health (NIH).
456	

457 Statistical analysis

458	Non-parametric Kruskal-Wallis tests were used to compare lung and nasal turbinate infectious
459	virus replication in challenged mice and neutralizing antibody assays. A Dunn's test was used to
460	correct for multiple comparisons. A Chi square log-rank test was used for the survival analysis.
461	Statistical analyses were performed in GraphPad Prism 9.
462	
463	Acknowledgements
464	Funding: D.R.M. is supported by a Hanna H. Gray Fellowship from the Howard Hughes
465	Medical Institute. This project was supported by the NIAID, NIH, U.S. Department of Health
466	and Human Services award U54 CA260543 (to R.S.B.), and AI158571 (to B.F.H.), as well as an
467	animal models contract from the NIH (HHSN272201700036I).
468	
469	Author contributions: D.R.M., R.S.B. B.F.H. and K.O.S. conceived the study. D.R.M., T.D.G.,
470	A.S., R.S.B., B.F.H., K.O.S., designed experiments. D.R.M., T.D.G., A.S., M.L.M, N.J.C., K.G.,
471	T.S., R.J.E., K.M., performed laboratory experiments. D.R.M., T.D.G., A.S., M.L.M, N.J.C.,
472	K.G., T.S., R.S.B., B.F.H., K.O.S. analyzed the data and provided critical insight. D.R.M. wrote
473	the first draft of the paper. D.R.M., T.D.G., A.S., M.L.M, N.J.C., K.G., T.S., R.S.B., B.F.H.,
474	K.O.S. edited the paper. All authors read and approved the final version of the paper.
475	
476	Competing interests: B.F.H. and K.O.S. have filed US patents regarding the nanoparticle
477	vaccine. R.S.B. is on the scientific advisory boards of VaxArt, Invivyd, and Takeda.
478	
479	Data and materials availability: All data associated with this paper is in the paper and
480	Supplementary Materials. Reagents developed in this study, including vaccine immunogens and

- 481 viruses will be made available by contacting R.S.B., B.F.H. and K.O.S. following the completion
- 482 of a material transfer agreement.

-

504 **REFERENCES**

- Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W.,
 Lu, R., et al. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019.
 N Engl J Med *382*, 727-733. 10.1056/NEJMoa2001017.
- Cui, J., Li, F., and Shi, Z.L. (2019). Origin and evolution of pathogenic coronaviruses.
 Nat Rev Microbiol *17*, 181-192. 10.1038/s41579-018-0118-9.
- 510 3. Graham, R.L., Donaldson, E.F., and Baric, R.S. (2013). A decade after SARS: strategies
 511 for controlling emerging coronaviruses. Nat Rev Microbiol *11*, 836-848.
- 512 10.1038/nrmicro3143.
- Gorbalenya, A.E., Baker, S.C., Baric, R.S., de Groot, R.J., Drosten, C., Gulyaeva, A.A.,
 Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., et al. (2020). The species
 Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and
 naming it SARS-CoV-2. Nature Microbiology 5, 536-544. 10.1038/s41564-020-0695-z.
- 5. Cohen, A.A., Gnanapragasam, P.N.P., Lee, Y.E., Hoffman, P.R., Ou, S., Kakutani, L.M.,
 Keeffe, J.R., Wu, H.-J., Howarth, M., West, A.P., et al. (2021). Mosaic nanoparticles
 elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science,
 eabf6840. 10.1126/science.abf6840.
- Martinez, D.R., Schäfer, A., Leist, S.R., De la Cruz, G., West, A., Atochina-Vasserman,
 E.N., Lindesmith, L.C., Pardi, N., Parks, R., Barr, M., et al. (2021). Chimeric spike
 mRNA vaccines protect against Sarbecovirus challenge in mice. Science *373*, 991-998.
 10.1126/science.abi4506.
- 525 7. Saunders, K.O., Lee, E., Parks, R., Martinez, D.R., Li, D., Chen, H., Edwards, R.J.,
 526 Gobeil, S., Barr, M., Mansouri, K., et al. (2021). Neutralizing antibody vaccine for
 527 pandemic and pre-emergent coronaviruses. Nature. 10.1038/s41586-021-03594-0.
- 528 8. Walls, A.C., Miranda, M.C., Schäfer, A., Pham, M.N., Greaney, A., Arunachalam, P.S.,
- Navarro, M.-J., Tortorici, M.A., Rogers, K., O'Connor, M.A., et al. (2021). Elicitation of
 broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle
 vaccines. Cell. <u>https://doi.org/10.1016/j.cell.2021.09.015</u>.
- Saunders, K.O., Lee, E., Parks, R., Martinez, D.R., Li, D., Chen, H., Edwards, R.J.,
 Gobeil, S., Barr, M., Mansouri, K., et al. (2021). Neutralizing antibody vaccine for
 pandemic and pre-emergent coronaviruses. Nature *594*, 553-559. 10.1038/s41586-02103594-0.
- Li, D., Martinez, D.R., Schäfer, A., Chen, H., Barr, M., Sutherland, L.L., Lee, E., Parks,
 R., Mielke, D., Edwards, W., et al. (2022). Breadth of SARS-CoV-2 neutralization and
 protection induced by a nanoparticle vaccine. Nat Commun *13*, 6309. 10.1038/s41467022-33985-4.
- Martinez, D.R., Schäfer, A., Gobeil, S., Li, D., De la Cruz, G., Parks, R., Lu, X., Barr,
 M., Stalls, V., Janowska, K., et al. (2022). A broadly cross-reactive antibody neutralizes
 and protects against sarbecovirus challenge in mice. Sci Transl Med *14*, eabj7125.
 10.1126/scitranslmed.abj7125.
- Pinto, D., Park, Y.-J., Beltramello, M., Walls, A.C., Tortorici, M.A., Bianchi, S., Jaconi,
 S., Culap, K., Zatta, F., De Marco, A., et al. (2020). Cross-neutralization of SARS-CoV-2
 by a human monoclonal SARS-CoV antibody. Nature *583*, 290-295. 10.1038/s41586020-2349-y.

- Rappazzo, C.G., Tse, L.V., Kaku, C.I., Wrapp, D., Sakharkar, M., Huang, D., Deveau,
 L.M., Yockachonis, T.J., Herbert, A.S., Battles, M.B., et al. (2021). Broad and potent
 activity against SARS-like viruses by an engineered human monoclonal antibody.
 Science *371*, 823-829. 10.1126/science.abf4830.
- He, W.T., Musharrafieh, R., Song, G., Dueker, K., Tse, L.V., Martinez, D.R., Schäfer,
 A., Callaghan, S., Yong, P., Beutler, N., et al. (2022). Targeted isolation of diverse
 human protective broadly neutralizing antibodies against SARS-like viruses. Nat
 Immunol 23, 960-970. 10.1038/s41590-022-01222-1.
- Tan, C.W., Chia, W.N., Young, B.E., Zhu, F., Lim, B.L., Sia, W.R., Thein, T.L., Chen,
 M.I., Leo, Y.S., Lye, D.C., and Wang, L.F. (2021). Pan-Sarbecovirus Neutralizing
 Antibodies in BNT162b2-Immunized SARS-CoV-1 Survivors. N Engl J Med.
 10.1056/NEJMoa2108453.
- Li, D., Edwards, R.J., Manne, K., Martinez, D.R., Schäfer, A., Alam, S.M., Wiehe, K.,
 Lu, X., Parks, R., Sutherland, L.L., et al. (2021). In vitro and in vivo functions of SARSCoV-2 infection-enhancing and neutralizing antibodies. Cell *184*, 4203-4219.e4232.
 10.1016/j.cell.2021.06.021.
- Mao, T., Israelow, B., Peña-Hernández, M.A., Suberi, A., Zhou, L., Luyten, S., Reschke,
 M., Dong, H., Homer, R.J., Saltzman, W.M., and Iwasaki, A. (2022). Unadjuvanted
 intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses.
 Science *378*, eabo2523. 10.1126/science.abo2523.
- I8. Zhou, P., Song, G., Liu, H., Yuan, M., He, W.T., Beutler, N., Zhu, X., Tse, L.V.,
 Martinez, D.R., Schäfer, A., et al. (2023). Broadly neutralizing anti-S2 antibodies protect
 against all three human betacoronaviruses that cause deadly disease. Immunity *56*, 669686.e667. 10.1016/j.immuni.2023.02.005.
- Menachery, V.D., Yount, B.L., Jr., Debbink, K., Agnihothram, S., Gralinski, L.E., Plante,
 J.A., Graham, R.L., Scobey, T., Ge, X.Y., Donaldson, E.F., et al. (2015). A SARS-like
 cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med
 21, 1508-1513. 10.1038/nm.3985.
- Menachery, V.D., Yount, B.L., Jr., Sims, A.C., Debbink, K., Agnihothram, S.S.,
 Gralinski, L.E., Graham, R.L., Scobey, T., Plante, J.A., Royal, S.R., et al. (2016). SARSlike WIV1-CoV poised for human emergence. Proc Natl Acad Sci U S A *113*, 30483053. 10.1073/pnas.1517719113.
- Behzad, H., Huckriede, A.L., Haynes, L., Gentleman, B., Coyle, K., Wilschut, J.C.,
 Kollmann, T.R., Reed, S.G., and McElhaney, J.E. (2012). GLA-SE, a synthetic toll-like
 receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults. J Infect
 Dis 205, 466-473. 10.1093/infdis/jir769.
- Roberts, A., Deming, D., Paddock, C.D., Cheng, A., Yount, B., Vogel, L., Herman, B.D.,
 Sheahan, T., Heise, M., Genrich, G.L., et al. (2007). A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog *3*, e5.
- 587 10.1371/journal.ppat.0030005.
- 588 23. Cockrell, A.S., Yount, B.L., Scobey, T., Jensen, K., Douglas, M., Beall, A., Tang, X.C.,
 589 Marasco, W.A., Heise, M.T., and Baric, R.S. (2016). A mouse model for MERS
- 590 coronavirus-induced acute respiratory distress syndrome. Nat Microbiol 2, 16226.
- 591 10.1038/nmicrobiol.2016.226.

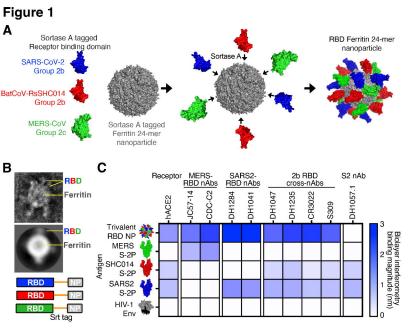
- 592 24. Douglas, M.G., Kocher, J.F., Scobey, T., Baric, R.S., and Cockrell, A.S. (2018). 593 Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve 594 severe respiratory disease. Virology 517, 98-107. 10.1016/j.virol.2017.12.006. 595 25. Walls, A.C., Miranda, M.C., Pham, M.N., Schäfer, A., Greaney, A., Arunachalam, P.S., 596 Navarro, M.J., Tortorici, M.A., Rogers, K., O'Connor, M.A., et al. (2021). Elicitation of 597 broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle 598 vaccines. bioRxiv. 10.1101/2021.03.15.435528. 599 26. Burton, D.R., and Walker, L.M. (2020). Rational Vaccine Design in the Time of COVID-600 19. Cell host & amp; microbe 27, 695-698. 10.1016/j.chom.2020.04.022. 601 27. Dolgin, E. (2022). Pan-coronavirus vaccine pipeline takes form. Nat Rev Drug Discov 602 21, 324-326. 10.1038/d41573-022-00074-6. 603 28. Wang, N., Shi, X., Jiang, L., Zhang, S., Wang, D., Tong, P., Guo, D., Fu, L., Cui, Y., Liu, 604 X., et al. (2013). Structure of MERS-CoV spike receptor-binding domain complexed with 605 human receptor DPP4. Cell Res 23, 986-993. 10.1038/cr.2013.92. 606 29. Huo, J., Zhao, Y., Ren, J., Zhou, D., Duyvesteyn, H.M.E., Ginn, H.M., Carrique, L., 607 Malinauskas, T., Ruza, R.R., Shah, P.N.M., et al. (2020). Neutralization of SARS-CoV-2 608 by Destruction of the Prefusion Spike. Cell Host Microbe 28, 445-454.e446. 609 10.1016/j.chom.2020.06.010. 610 Wan, Y., Shang, J., Sun, S., Tai, W., Chen, J., Geng, Q., He, L., Chen, Y., Wu, J., Shi, Z., 30. 611 et al. (2020). Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol 94. 10.1128/jvi.02015-19. 612 613 31. Martinez, D.R., Metz, S.W., and Baric, R.S. (2021). Dengue Vaccines: The Promise and 614 Pitfalls of Antibody-Mediated Protection. Cell Host Microbe 29, 13-22. 615 10.1016/j.chom.2020.12.011. 616 32. Snouwaert, J.N., Jania, L.A., Nguyen, T., Martinez, D.R., Schäfer, A., Catanzaro, N.J., 617 Gully, K.L., Baric, R.S., Heise, M., Ferris, M.T., et al. (2023). Human ACE2 expression, 618 a major tropism determinant for SARS-CoV-2, is regulated by upstream and intragenic 619 elements. PLoS Pathog 19, e1011168. 10.1371/journal.ppat.1011168. 620 33. Li, K., Wohlford-Lenane, C.L., Channappanavar, R., Park, J.E., Earnest, J.T., Bair, T.B., 621 Bates, A.M., Brogden, K.A., Flaherty, H.A., Gallagher, T., et al. (2017). Mouse-adapted 622 MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc Natl 623 Acad Sci U S A 114, E3119-e3128. 10.1073/pnas.1619109114. 624 Zumla, A., Hui, D.S., and Perlman, S. (2015). Middle East respiratory syndrome. Lancet 34. 625 386, 995-1007. 10.1016/s0140-6736(15)60454-8. 626 35. Cao, Y., Hiyoshi, A., and Montgomery, S. (2020). COVID-19 case-fatality rate and demographic and socioeconomic influencers: worldwide spatial regression analysis based 627
- 628 on country-level data. BMJ Open 10, e043560. 10.1136/bmjopen-2020-043560.
- 629 36. Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O., Graham,
- 630 B.S., and McLellan, J.S. (2020). Cryo-EM structure of the 2019-nCoV spike in the 631 prefusion conformation. Science *367*, 1260-1263. 10.1126/science.abb2507.
- 632 37. Chen, L., Cohen, J., Song, X., Zhao, A., Ye, Z., Feulner, C.J., Doonan, P., Somers, W.,
 633 Lin, L., and Chen, P.R. (2016). Improved variants of SrtA for site-specific conjugation on
 634 antibodies and proteins with high efficiency. Sci Rep *6*, 31899. 10.1038/srep31899.
- 635 38. Scobey, T., Yount, B.L., Sims, A.C., Donaldson, E.F., Agnihothram, S.S., Menachery,
- 636 V.D., Graham, R.L., Swanstrom, J., Bove, P.F., Kim, J.D., et al. (2013). Reverse genetics

637		with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus.
638		Proc Natl Acad Sci U S A 110, 16157-16162. 10.1073/pnas.1311542110.
639	39.	Hou, Y.J., Okuda, K., Edwards, C.E., Martinez, D.R., Asakura, T., Dinnon, K.H., 3rd,
640		Kato, T., Lee, R.E., Yount, B.L., Mascenik, T.M., et al. (2020). SARS-CoV-2 Reverse
641		Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 182, 429-
642		446.e414. 10.1016/j.cell.2020.05.042.
643		5
644		
645		
646		
647		
648		
649		
650		
651		
652		
653		
654		
655		
656		
657		
658		
659		
660		
661		
662		
663		
664		
665		
666		
667		
668		
669		
670		
671		
672		
673		
674		
675		
676		
677		
678		
679		
680		
681		
682		

683 Figure legends:

684

685	Figure 1. Design and characterization of trivalent RBD scNP vaccines. (A) Ferritin
686	nanoparticles were conjugated with sortase A tagged Group 2b SARS-CoV-2 RBD, Group 2b
687	RsSHC014 RBD, and Group 2c MERS-CoV RBD. (B) Visualization of trivalent scNP was
688	performed via negative stain electron microscopy. (C) Validation of trivalent scNP vaccine by
689	Biolayer Interferometry. Trivalent RBD scNP antigenicity was done by assessing binding of the
690	trivalent vaccine and various Group 2b and Group 2c spikes to human ACE2, MERS-CoV RBD
691	mAbs, SARS-CoV-2 RBD mAbs, Group 2b cross-reactive RBD mAbs, and an S2 mAb. HIV-1
692	envelope was included as a negative control antigen.
693	
694	Fig. 2. IgG binding responses in mice immunized with monovalent SARS-CoV-2 RBD scNP
695	vaccine, trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP, and adjuvant alone.
696	Mouse sera was measured at pre-prime, pre-boost, and two-week post boost against the
697	following spike antigens (A) SARS-CoV Tor2, (B) RsSHC014, (C) SARS-CoV-2, and (D)
698	MERS-CoV. (E) Vaccine-elicited hACE2-blocking serum responses in monovalent, trivalent,
699	and adjuvant-only vaccinated mice. (F) Vaccine-elicited hDPP4-blocking serum responses in
700	monovalent, trivalent, and adjuvant-only vaccinated mice. (G) Cross-reactivity of monovalent,
701	trivalent, vs adjuvant-only IgG responses against Group 1 (Canine CoV-HuPn), Group 2a
702	(OC43), 2b (WIV-1, SARS-CoV GZ02, ZC45, GXP4L, and BANAL-236), 2c (MERS-CoV,
703	NL140422, HKU4, and HKU5), 2d (BtKY06), and Group 4 (Porcine deltaCoV Haiti)
704	coronavirus RBDs.
705	


Figure 3. Neutralizing antibodies elicited against Group 2b and Group 2c

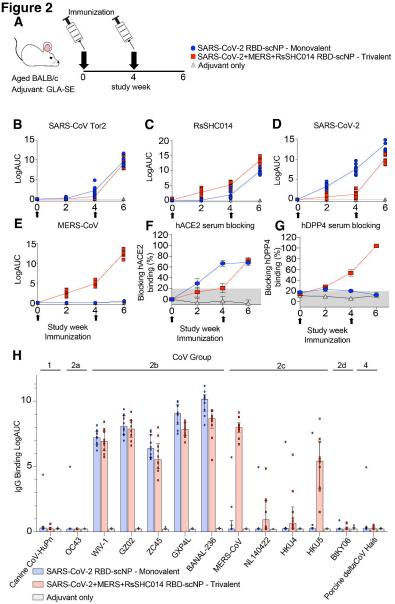

707	betacoronaviruses. Live virus neutralizing activity against SARS-CoV-2 BA.1, SARS-CoV
708	Urbani, and MERS-CoV EMC. Mouse sera at baseline and post boost are shown in 2X
709	vaccinated mice are shown. Blue circles denote monovalent SARS-CoV-2 RBD scNP vaccinated
710	mice. Red squares denote trivalent SARS-CoV-2/RsSHC014/MERS-CoV RBD scNP vaccinated
711	mice. Gray triangles denote adjuvant-only control mice. Numerical values in the graphs denote
712	the median ID_{80} values (n = 16; *P < 0.05, **P < 0.005, ***P < 0.0005, and ****P < 0.0001).
713	
714	Figure 4. Protective efficacy of monovalent vs trivalent RBD scNP vaccines against SARS-
715	CoV challenge in mice. (A) Weight loss in monovalent SARS-CoV-2 RBD, trivalent SARS-
716	CoV-2/RsSHC014/MERS-CoV RBD vaccinated scNP, and adjuvant-only vaccinated mice. (B)
717	Percent survival in vaccinated mice vs control following lethal SARS-CoV Urbani MA15
718	challenge. Statistical significance of the survival curves is from a Chi square log-rank test. (C)
719	Infectious virus replication in the lung of vaccinated mice at day 2 following infection. Statistical
720	significance is from a Kruskal-Wallis test following a Dunn's multiple comparison correction
721	test. (D) Infectious virus replication in nasal turbinates at day 2 post infection. Statistical
722	significance is from a Kruskal-Wallis test following a Dunn's multiple comparison correction
723	test. Blue circles represent the monovalent vaccinated mice. Red squares represent the trivalent
724	vaccinated mice. Grey triangles denote the adjuvant-only vaccinated mice. $*P < 0.05$, $**P < 0.05$
725	0.005, ***P < 0.0005, and ****P < 0.0001
726	
707	

Figure 5. Protective efficacy of monovalent vs trivalent RBD scNP vaccines against MERSCoV challenge in mice. (A) Weight loss in SARS-CoV-2 RBD monovalent, SARS-CoV-

729	2/RsSHC014/MERS-CoV RBD vaccinated scNP, and adjuvant-only vaccinated mice following
730	MERS-CoV intranasal challenge. Lung virus replication in monovalent, trivalent, and adjuvant-
731	only controls at day 3 post infection. (C) Infectious virus replication in nasal turbinates at day 3
732	post infection. (D) Lung infectious virus replication at day 5 post infection. P values shown in all
733	panels are from a Kruskal-Wallis test following a Dunn's multiple comparisons test. $*P < 0.05$,
734	** $P < 0.005$, *** $P < 0.0005$, and **** $P < 0.0001$
735	
736	
737	
738	
739	
740	
741	
742	
772	
743	
744	
745	
746	
747	Supplemental Figure legends:
748	
749	
750	Figure S1. Structural and biophysical characterization of the trivalent SARS-CoV-
751	2/SHC014/MERS RBD scNP. (A) Analytical size exclusion chromatography with a Superose6
752	column showing a homogenous protein nanoparticle at the expected elution volume. (B)
753	Negative stain electron microscopy of trivalent RBD scNP. 2D class average is shown on the

754 bottom left and a raw image of a single nanoparticle is shown on the top left. The raw image of 755 the carbon grid is shown on the right. (C and D) Differential scanning fluorimetry of the 756 individual components and assembled trivalent RBD scNP. Melting temperature is defined as the 757 inflection temperature (T_i) on the 350 nm/330 nm ratio curve. 758 759 Figure S2. Protective efficacy of monovalent vs trivalent RBD scNP vaccines against 760 MERS-CoV challenge in 2X vaccinated mice. (A) Weight loss following MERS-CoV 761 intranasal challenge in monovalent, trivalent, and adjuvant-only vaccinated mice. (B) Infectious 762 virus replication in the lung at day 2 post infection. (C) Infectious virus replication at day 2 post 763 infection in nasal turbinates. (D) Infectious virus replication at day 4 post infection. A Kruskal-764 Wallis test with a Dunn's multiple comparison correction test was used for calculating statistical significance in all panels. *P < 0.05, **P < 0.005, ***P < 0.0005, and ****P < 0.0001765 766 Figure S3. Immunogenicity of monovalent vs trivalent RBD scNP vaccines in 2X vs 3X 767 768 vaccinated mice. (A) vaccination schema with monovalent scNP, trivalent scNP, and adjuvant 769 only (GLA-SE). (B) LogAUC IgG binding comparison of 2X (prime-boost) vs 3X (prime-boost-770 boost) vaccinated mice with monovalent, trivalent, and adjuvant-only against genetically 771 divergent RBDs from Group 1 (canineCoV-HuPn). Group 2a (OC43), Group 2b (WIV-1, GZ02, 772 ZC45, GXP4L, and BANAL-236), Group 2c (MERS-CoV, NL140422, HKU4, and HKU5), 773 Group 2d (BtKY06), and Group 4 (Porcine deltacoronavirus Haiti). 774

Figure 3



Figure 4

SARS-CoV challenge

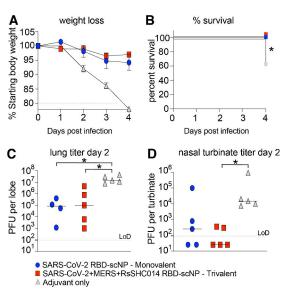
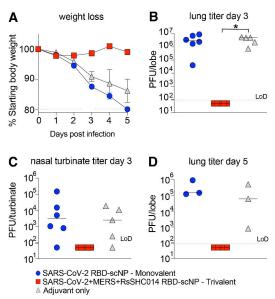
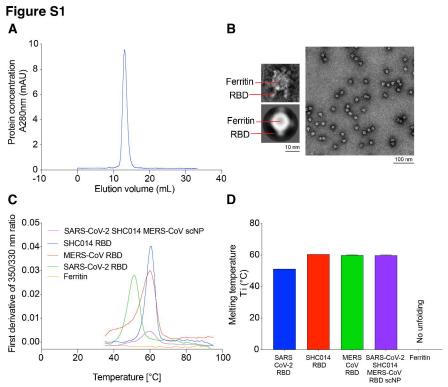
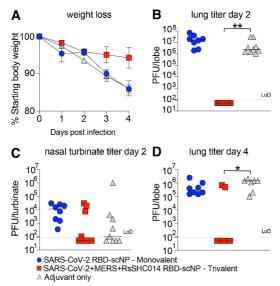




Figure 5


MERS-CoV challenge

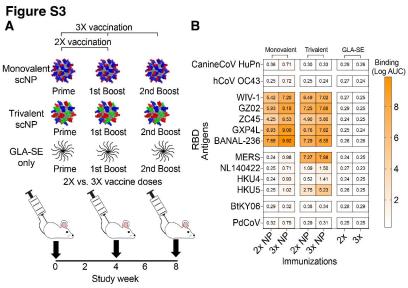


Figure S2

MERS-CoV challenge

