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Abstract 

Processes formalized in classic Reinforcement Learning (RL) theory, such as model-based (MB) 

control and exploration strategies have proven fertile in cognitive and computational 

neuroscience, as well as computational psychiatry. Dysregulations in MB control and 

exploration and their neurocomputational underpinnings play a key role across several 

psychiatric disorders. Yet, computational accounts mostly study these processes in isolation. 

The current study extended standard hybrid models of a widely-used sequential RL-task (two-

step task; TST) employed to measure MB control. We implemented and compared different 

computational model extensions for this task to quantify potential exploration mechanisms. In 

two independent data sets spanning two different variants of the task, an extension of a 

classical hybrid RL model with a heuristic-based exploration mechanism provided the best fit, 

and revealed a robust positive effect of directed exploration on choice probabilities in stage 

one of the task. Posterior predictive checks further showed that the extended model 

reproduced choice patterns present in both data sets. Results are discussed with respect to 

implications for computational psychiatry and the search for neurocognitive endophenotypes.  

Keywords: computational psychiatry, model-based, exploration, two-step task, neurocomputational 
endophenotypes 
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Introduction 

"When we remember we are all mad, the mysteries disappear and life stands explained." - Mark Twain 

Or at least it starts to make a whole lot more sense. The notion that mental health is an integral part to 

all of our lives and may vary over time on a continuous scale lies at the heart of dimensional psychiatry. 

Such dimensional approaches address the criticism of clear-cut categorical demarcations between 

mental disorders. In this view, symptoms exist on a spectrum, with sub-clinical symptom variations (e.g. 

of depressed mood, compulsive or avoidant behaviours etc.) present in the healthy population (Insel et 

al., 2010; Robbins et al., 2012). 

Transdiagnostic research specifically tackles the traditional symptom-based categorisation and thereby 

partitioning of mental disorders. High rates of comorbidity present another common issue raised with 

regard to the current conceptualisation and point to inherent flaws (i.e. commonly co-occurring 

diseases might be better understood as one shared rather than two distinct entities; Insel et al., 2010; 

Dalgeshi et al., 2020). Oftentimes, transdiagnostic and dimensional approaches go hand in hand as they 

both aim to improve our understanding of mental disorders, and aim to bring these approaches more 

in line with syndrome-based understanding known from other medical disorders (e.g., one does not 

have leg pain, but a broken leg; Insel 2014; Conway & Krueger, 2021).  

Research into the basic computational processes that may go awry in the case of mental 

disorders provides important groundwork for these efforts (Adams et al., 2016). Computational 

psychiatry has identified several key mechanisms which likely cut across traditional diagnostic lines 

(Montague et al., 2012; Huys, Maia, & Frank, 2016; Insel et al., 2010; Moutoussis, Eldar, & Dolan, 2017). 

Such computationally derived transdiagnostic endophenotypes might better differentiate between 

mental health and disease than symptom-based conceptualisations (Robbins et al., 2012; Wise & Dolan, 

2020, Yip et al., 2022; Conway & Krueger, 2021). All of these recent changes ultimately aim at furthering 

our understanding of mental disorders, improving prevention, diagnosis and treatment options. The 
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hope is to someday be able to provide precision medicine, more akin on the common understanding 

and handling of “medical” disorders (Insel, 2014). 

Reinforcement Learning (RL) theory (Sutton & Barto, 2018) has been of central importance in 

these efforts and extensively studied (Montague et al., 2012; Huys et al., 2021; Wise & Dolan, 2020). 

Here, two processes have emerged as promising computational endophenotypes mapping onto (sub-) 

clinical variation in symptoms - model-based control and exploration behaviour (Goschke 2014; Addicot 

et al., 2017). Regarding model-based control, behaviour is thought to depend on at least two systems: 

a model-free (MF) system, which selects actions based on past reinforcement and a model-based (MB) 

system that uses a model of the environment to select actions based on a computation of their 

predicted consequences (e.g. Balleine & O’Doherty, 2010; Daw et al., 2011; Daw & O’Doherty, 2014). 

The exploration-exploitation trade-off (Addicot et al., 2017; Sutton & Barto, 2018) refers to the process 

of balancing between selecting novel courses of action (exploration) and doing what has worked in the 

past (exploitation; Daw et al., 2006; Gershman, 2018, 2019). Here, at least two strategies have been 

discussed (Gershman, 2018; Wilson et al.,2014; 2021): choice randomization (random exploration), e.g. 

via SoftMax or epsilon-greedy choice rules (Sutton & Barto, 2018) and directed exploration, which 

involves the specific selection of options that maximize information gain (Wilson et al., 2021). 

Interestingly, despite the fact that both model-based control and directed exploration have been 

conceptually linked to the goal-directed system, both processes have largely been studied in isolation. 

 For more than a decade, the two-step task (TST, Daw et al., 2011), as well as various variants 

thereof, have been the key paradigm in the study MB and MF contributions to behaviour in human 

studies. This task has also been a central instrument in computational psychiatry (e.g. Voon et al., 2017; 

Patzelt et al., 2019; Dolan & Dayan, 2013). The TST is a sequential RL task, consisting of two stages, 

which each involve a choice between two options (Daw et al., 2011, Figure 1). First-stage choices lead 

to one of two different second stages (S2, Figure 1) with either high probability (common transition, 

70%) or low probability (rare transition, 30%). Transition probabilities are reversed for the other S1 
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option (Figure 1). Second stage options are then associated with either drifting reward probabilities 

(classic version, see e.g. Daw et al., 2011; Gillan et al., 2016) or drifting reward magnitudes (modified 

version, see. Mathar et al., 2022). Following the S2 choice and outcome presentation (c.f. Figure 1) a 

new trial begins and participants are set back to S1.  

Importantly, MB and MF control make different predictions for S1 choices as a function of 

reward and transition on the previous trial: a purely MF agent would repeat previously rewarded S1 

actions, regardless of transition. In contrast, a MB agent “knows” about the transition structure, and 

would therefore switch to the other S1 option following the experience of a high reward after a rare 

transition, and repeat the same S1 choice following the experience of a low reward after a rare 

transition. In this way, the TST is thought to allow for an estimation of the relative contribution of each 

system (Daw et al., 2011; Otto et al., 2013a).  

 

Figure 1. Outline of the two-step task (TST). Transition probabilities from the first stage to the second 
stage remain the same in both versions of the task. The second stage with a green frame depicts the 
modified task version employed in data set data1 (Mathar et al., 2022): after making a S2-choice 
subjects receive feedback in the form of continuous reward magnitudes (rounded to the next integer). 
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The lower S2 stage (orange frame) depicts the classic version (used in data set data2; Gillan et al., 2016), 
in which the S2 feedback is presented in a binary fashion (rewarded vs. unrewarded based on 
fluctuating reward probabilities). 

 

The distinction between MB and MF is conceptually closely related to goal-directed vs. habitual, 

behavioural control (Daw et al., 2006; Daw & O’Doherty, 2014; Kool, Cushman, & Gershman, 2018). 

Despite growing criticisms of this simplified view (see e.g. Akam et al., 2015; Collins & Cockburn, 2020; 

Feher da Silva & Hare, 2018), this terminology is widely used interchangeably (Miller, Shenhav, & Ludvig, 

2019).  

A reduction in MB control and resulting over-reliance on the MF system is thought to underlie 

habitual and/or compulsive behaviors characteristic of several mental disorders (e.g. Voon et al., 2015). 

Many studies since have indeed provided empirical support for this idea, showing reduced MB control 

in several patient groups spanning schizophrenia (Culberth et al., 2016), substance use disorders (e.g. 

Reiter et al., 2016; Sebold et al., 2017),  pathological gambling (e.g. Bruder et al., 2021; Wyckmans et 

al., 2019), eating disorders (Foerde et al., 2021; Reiter et al., 2017), and obsessive-compulsive disorder 

(OCD; Gillan et al., 2011, Gillan & Robbins, 2014; Brown et al., 2020). Similar effects were observed for 

sub-clinical variations in symptom severity (Gillan et al., 2016; Seow et al., 2021). Reduced MB control 

might thus constitute a promising transdiagnostic endophenotype that might more closely relate to 

real world behaviour than traditional clinical categorizations (Ferrante & Gordon, 2021; Maia & Frank, 

2011). 

As noted above, directed exploration shares some conceptual features with MB control. Both 

are assumed to depend on more elaborate computations (Daw & O’Doherty, 2014; Gershman & Daw, 

2012; Wilson et al., 2021; for diverging views regarding the dichotomy of MB & MF control see e.g. 

Akam et al., 2015; Doody et al., 2022; Miller et al., 2019). However, directed exploration might also rely 

on simpler heuristic-based exploration strategies (Fox et al., 2020). For example, an agent may utilize a 

simple proxy measure of environmental uncertainty (and therefore of potential information gain) 
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rather than a precise model of environmental dynamics, which is often assumed in e.g. Kalman Filter 

models (e.g. Daw et al., 2006; Speekenbrink, 2022; Chakroun et al., 2020). Reductions in directed 

exploration have been observed in a range of mental disorders, including substance use disorders (SUD; 

Addicot et al, 2013; Morris et al., 2016; Smith et al., 2020), gambling disorder (Wiehler, Chakroun, & 

Peters., 2021), OCD, Depression (Blanco et al., 2013) as well as anxiety (Aberg et al., 2021; Smith et al., 

2020). Similar to model-based control, aberrant directed exploration might constitute a potential 

transdiagnostic endophenotype in computational psychiatry (Addicot et al., 2017).  

 Interestingly, the TST shares several key features with tasks traditionally used in the study of 

directed exploration. For example, similar to restless bandit tasks used to study exploration (Daw et al., 

2006; Sutton & Barto, 2018; Speekenbrink, 2022; Chakroun et al., 2020; Wiehler et al., 2021), rewards 

(or reward probabilities, depending on task version) in S2 of the TST drift according to Gaussian random 

walks. Potential information gain in S2 of the TST is therefore a function of sampling recency of S2 

options. Given the structural similarities between S2 of the TST and restless bandit problems, it thus 

seems natural to hypothesize that similar directed exploration processes might contribute to TST 

behaviour. However, there have only been isolated attempts to integrate these concepts (Gijsen et al., 

2022). A further issue relates to recent concerns regarding the interpretation of TST results. Feher da 

Silva and Hare (2018; 2020) argued that MB measures from the TST only reflect one specific model-

based strategy (see also Toyama et al., 2017;2019). Participants might well utilize different and/or 

additional models of the task that constitute a “model-based” strategy, but which are not directly 

measured using the simple MB vs. MF dichotomy embedded in standard hybrid models (Collins et al., 

2017; Collins & Cockburn, 2020; Feher da Silva et al., 2022). To resolve this issue, some researchers 

have resorted to specifying task features and experimental procedures which allow for a more precise 

interpretation of results from classical analyses (see e.g. Kool et al., 2016). Another way of tackling this 

issue is to specify and implement proposed additional processes within computational models, which 

can subsequently be tested with regard to their fit to empirical data.   
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The present study follows the latter approach. We had the primary aim to extend standard 

hybrid models of MB and MF control in the TST by incorporating directed exploration mechanisms. To 

this end, we implemented and compared several potential candidate mechanisms, including more 

elaborate mechanisms of uncertainty tracking (Kalman, 1960; Daw et al., 2006) as well as simpler 

heuristics (Fox et al., 2020). We tested and compared our models in two independent data sets, a 

variant of the TST with drifting reward magnitudes in S2 (data1, Mathar et al., 2022) as well as the 

classical TST with drifting reward probabilities (and binary payouts) in S2 (data2, Gillan et al., 2016). A 

wealth of empirical data from the TST have already been acquired, many in clinical groups. These data 

are often available for re-analysis. Therefore, investigations into additional computational mechanisms 

that might be reflected in these data could proof valuable for the field.  

 

Methods 

Participants and Task Versions  

We evaluated all models on the basis of a re-analysis of two independent existing data sets. The first 

data set (data1) encompasses data from 39 healthy, male participants (aged 18-35; M= 25.17, SD= 3.89) 

who performed 300 trials of the modified TST version (neutral condition from Mathar et al., 2022). The 

second data set (data2) constitutes a subsample (N=100) from a previously published large scale online 

study using the classical TST (Gillan et al., 2016).  

Data1 

The first data set (data1) was obtained in a recent study (Mathar et al., 2022) that spanned two testing 

sessions and included additional tasks, self-report measures and physiological markers of autonomic 

arousal, which were not analysed for the current study (for more details see Mathar et al., 2022). Prior 

to performing the TST, participants received instructions regarding the transition probabilities as well 

as fluctuating reward structure and performed 20 training trials. In addition, they were informed that 
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the maximum response time was two seconds and that they could obtain an additional 4€ in 

reimbursement, contingent upon task performance.  

This TST version used transition probabilities fixed to 70% and 30% for common and rare 

transitions, respectively and the reward magnitudes for each S2 option followed independent Gaussian 

Random Walks (fluctuating between 0 and 100, rounded to the next integer, see Fig. 1). S2 states that 

were marked by different colours to make them more easily distinguishable. For all analyses, trials with 

response times < 150ms were excluded. 

Data2 

Gillan and colleagues (2016) used the original variant of the TST (Daw et al., 2011). Here, reward 

probabilities of all choice options varied independently according to Gaussian Random Walks, and 

participants received binary reward feedback (rewarded vs. no reward; Fig.1). Detailed descriptions of 

the whole sample, exclusion criteria, procedure, additional measures, as well as specifics of the TST 

version employed can be found in the original publication. 

 We drew a subsample of N=100 (age: M=34; SD=11; 69% female) from the full sample of 

Experiment 1 from the original publication (N=548, age: M=35; SD=11; 65% female; for further details 

see Gillan et al., 2016). This subsample is representative of the whole original sample regarding the self-

report measures obtained by the authors. To yield this subsample, we randomly sampled from the 

original full sample from Experiment 1 until self-reported symptom severity did not significantly differ 

from those of the full sample. The resulting transdiagnostic symptom-score relating to compulsivity and 

intrusive thoughts (c.f. PCA analyses reported in Gillan et al., 2016 for more detail) was chosen as a 

criterion due to its significant association with model-based RL in the original publication.   

Model-Agnostic Analyses 

As a first step we used logistic mixed effects regression models to analyze stay-probabilities for first-

stage choices, i.e. the probability to repeat the first stage selection of the preceding trial, depending on 

the transition (common vs. rare) and reward (rewarded vs. unrewarded) experienced. Such regression 
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models are amongst the most common ways of analyzing TST behavior outside a computational 

modeling framework. Reward and transition type (rewarded/unrewarded and common/rare were 

coded as 1/-1 respectively) were entered as (fixed effects) predictors of S1 choice repetition (i.e. 

perseveration). Individual subjects were entered as random effects. Using the lme4 package (Bates et 

al., 2015) this resulted in the following model specification in the R syntax: 

pstay ~ rew * trans + (rew * trans + 1 | subj) 

Due to the presentation of continuous reward magnitudes in the modified version (data1) we defined 

outcomes to be rewarded / unrewarded (1/-1) relative to the mean outcome over the preceding 20 

trials (Wagner et al., 2020; Mathar et al., 2022).  

As additional model-agnostic indices of MB and MF behavior, we calculated difference scores (MBdiff & 

MFdiff) as proposed by Eppinger and colleagues (2013): 

MFdiff = [ Pcommon,rewarded + Prare,rewarded] -[Pcommon,unrewarded + Prare,unrewarded] 

and MBdiff = [Pcommon,rewarded + Prare,unrewarded] -[Pcommon,unrewarded + Prare,rewarded] . 

Computational Models 

 Our model space consisted of nine models in total. Two standard hybrid RL models without 

exploration terms but with different learning rules served as baseline models (Q-Learner, Bayesian 

Learner). We extended both models with exploration terms that incorporated different ways in which 

S2 uncertainty might impact first stage choice probabilities (see below).  
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Learning Rules 

Q-Learner 

The first model is an adaptation of standard hybrid models (e.g. Daw et al.,2011; Otto et al., 

2013b). Here, for each first-stage state-action pair (i.e. choice option), separate MF and MB values 

(𝑄𝑀𝐹 , 𝑄𝑀𝐵) are calculated in parallel. 

MF values in both stages are updated using the TD learning algorithm SARSA (Rummery & 

Niranjan, 1994), such that MF Q-values of a chosen state-action pair at stage 𝑖 in trial 𝑡 are updated 

according to: 

(1) 𝑄𝑀𝐹(𝑠𝑖,𝑡,𝑎𝑖,𝑡) = 𝑄𝑀𝐹(𝑠𝑖,𝑡,𝑎𝑖,𝑡) + 𝛼𝑖𝛿𝑖,𝑡 with the RPE: 

(2)  𝛿𝑖,𝑡= 𝑟𝑖,𝑡 + 𝑄𝑀𝐹(𝑠𝑖+1,𝑡,𝑎𝑖+1,𝑡) −𝑄𝑀𝐹(𝑠𝑖,𝑡,𝑎𝑖,𝑡). 

and a constant learning rate 𝛼 (ranging from 0 to 1) for each stage.  

S2 prediction errors are incorporated into S1 value estimates via the second-stage learning rate 

𝛼  (constrained between 0 and 1): 

(3) 𝑄𝑀𝐹(𝑠1,𝑡,𝑎1,𝑡) = 𝑄𝑀𝐹(𝑠1,𝑡,𝑎1,𝑡) + 𝛼 𝛿2,𝑡. 

While several other models utilize an eligibility trace parameter (𝜆) to propagate S2 RPEs, here we chose 

to reduce the parameter space and model complexity by instead using the S2 learning rate. This 

formalization was used for all QL models, while all BL models kept the an additional parameter 𝜆 (as 

there is no 𝛼 , for more detail see below; c.f. Table 1). 

We included an additional “forgetting process” for MF Q-values (Toyama et al., 2017, Toyama 

et al., 2019), such that unchosen Q-values decayed towards the mean according to a decay rate 

𝛼3(constrained between 0 and 1): 

(4) 𝑄𝑀𝐹(𝑠1,𝑡,𝑎1,𝑡) = 𝛼3 ∗ 𝑄𝑀𝐹(𝑠1,𝑡,𝑎1,𝑡) + (1 − 𝛼
3

) ∗ 0.5 and likewise for S2 MF values: 

𝑄2(𝑠2,𝑡,𝑎2,𝑡) = 𝛼3 ∗ 𝑄2(𝑠2,𝑡,𝑎2,𝑡) + (1 − 𝛼
3

) ∗ 0.5. 
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Recall that transition probabilities in the model were fixed as follows: 

(5)  𝑃(𝑠 | 𝑠 , 𝑎 )= 0.7, 𝑃(𝑠 | 𝑠 , 𝑎 ) = 0.7, or in the alternative case as: 

𝑃(𝑠 | 𝑠 , 𝑎 )= 0.3, 𝑃(𝑠 | 𝑠 , 𝑎 ) = 0.3  

with  

(6) 𝑃(𝑠
𝐵

| 𝑠𝐴, 𝑎𝐵) = 1 − 𝑃(𝑠𝐵| 𝑠𝐴, 𝑎𝐴) and  𝑃(𝑠 | 𝑠 , 𝑎 )= 1 − 𝑃(𝑠 | 𝑠 , 𝑎 ).  

First-stage 𝑄𝑀𝐵values were then computed as the maximal 𝑄2values weighted by their 

respective transition probabilities. Thus, using the Bellman equation 𝑄𝑀𝐵 values are defined as:  

(7) 𝑄𝑀𝐵(𝑠
𝐴

, 𝑎𝑗)= 𝑃(𝑠 | 𝑠 , 𝑎 ) max
𝑎∈{𝑎𝐴,𝑎𝐵}

𝑄2(𝑠
𝐵

, 𝑎 ) 

+𝑃(𝑠 | 𝑠 , 𝑎 ) max
𝑎∈{𝑎𝐴,𝑎𝐵}

 𝑄2(𝑠
𝐶

, 𝑎 ) 

As a trial ends with the second-stage choice, for S2 only MF values are relevant, such that: 

(8)  𝑄𝑀𝐵(𝑠2,𝑡, 𝑎) = 𝑄𝑀𝐹(𝑠2,𝑡, 𝑎)=𝑄2(𝑠2,𝑡, 𝑎). 

Accordingly, 𝑄2(𝑠2,𝑡, 𝑎) updates follow the TD process as described previously for first stage 

𝑄𝑀𝐹 values (Equation 1), while allowing for a separate learning rate 𝛼2 (also constrained between 0 

and 1).  

Bayesian Learner (BL) 

The second learning rule applied is based on the Bayesian Learner (BL) as commonly applied in 

restless bandit tasks (Daw et al., 2006; see also: Chakroun et al., 2020; Wiehler et al., 2021). Here, the 

constant learning rate 𝛼2 (see Equation 1) is replaced by a trial-specific learning rate (𝜅𝑡) based on the 

Kalman Filter (Kalman, 1960). The idea is that participants track the changes in the underlying reward 

means of all choice options, as well as the uncertainty associated with these estimates. In this model, 

learning rates are then uncertainty-dependent.  
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For both data1 and data2, the true process underlying the Gaussian random walks of S2 

rewards was directly incorporated in the model (for applications in the explore-exploit dilemma see e.g. 

Daw et al., 2006; Chakroun et al., 2020). 

For data1, rewards for each option 𝑛 at trial 𝑡 ranged between 0 and 1 (multiplied by 100 and 

rounded to the next integer for presentation as points in the task; c.f. Methods). These were generated 

following a Gaussian random walk with mean 𝜇 , = 0.5 , and  SD = 0.04 (observation variance 𝜎  =

0.042). Means for each option independently changed on a trial-to-trial basis. 

As participants were assumed to represent the reward-walk dynamics in their internal models, the 

computational model includes fixed parameters  𝛾, 𝜃, 𝜎𝑜, 𝜎𝑑 , which are set to values approximating 

those of the underlying random walk: the decay parameter 𝛾 = 0.9836, decay centre 𝜃= 0.45, and the 

diffusion variance 𝜎𝑑
2= 0.025  , and diffusion noise 𝑣𝑡 ∼ 𝑁(0, 𝜎𝑑

2) .  

Participants start with prior beliefs of a normally distributed reward mean 𝜇
𝑛,𝑡
𝑝𝑟𝑒with variance 

𝜎𝑛,𝑡
2𝑝𝑟𝑒of a chosen second-stage option 𝑛  on trial 𝑡 and update these in light of the reward 𝑟𝑡 they receive 

according to: 

(9)  𝜎𝑛,𝑡
2𝑝𝑜𝑠𝑡= (1-𝜅𝑡)𝜎𝑛,𝑡

2𝑝𝑟𝑒 and  

(10)  𝜇
𝑛,𝑡
𝑝𝑜𝑠𝑡=𝜇

𝑛,𝑡
𝑝𝑟𝑒+ 𝜅𝑡𝛿𝑡 with 𝛿𝑡= 𝑟𝑡-𝜇

𝑛,𝑡
𝑝𝑟𝑒. 

The parameter 𝜅𝑡 is the Kalman Gain, which serves as the uncertainty-dependent learning rate, 

similar to 𝛼  in the original (QL) model. In the updating process of a chosen option the Kalman Gain 

(just like 𝛼) scales the prediction error used for updating the mean reward estimate (𝜇
𝑛,𝑡
𝑝𝑟𝑒). The 

important difference being that 𝜅𝑡 varies on a trial-to-trial basis depending on the observation as well 

as diffusion variance: 

(11) 𝜅𝑡= 𝜎𝑛,𝑡
2𝑝𝑟𝑒 / (𝜎𝑛,𝑡

2𝑝𝑟𝑒 + 𝜎𝑜
2). 
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 Thus, high observation uncertainty yields large values of 𝜅  and thus increased updating. In 

contrast, low observation uncertainty yields small values of  𝜅𝑡 and thus reduced updating.  

Values of all options are updated between trials according to: 

(12) 𝜇
𝑛,𝑡+1
𝑝𝑟𝑒 = 𝛾𝜇

𝑛,𝑡
𝑝𝑜𝑠𝑡 + (1-𝛾)𝜃 and  𝜎𝑛,𝑡+1

2𝑝𝑟𝑒 = 𝛾2
𝜎𝑛,𝑡

2𝑝𝑜𝑠𝑡 + 𝜎𝑑
2. 

That is, between-trial updating describes participants tracking of the assumed dynamics underlying the 

Gaussian random walks. Due to these between-trial updating dynamics, the forgetting process for S2 

Q-values (see Equation 4) was omitted from all BL models.  

The Kalman Filter (Equation 12) was implemented as the learning rule for second-stage values 

and then incorporated into the hybrid model, such that 𝜇
𝑛,𝑡
𝑝𝑟𝑒substitutes the Q-values for second-stage 

options in Equation 13 above.  

Choice Rules  

The standard SoftMax function (SM, McFadden, 1973; Sutton & Barto, 2018) served as the basis 

for all choice rules. According to this rule, choices’ probabilities scale with the value differences 

between options. 

SoftMax  

As proposed by Otto and colleagues (2013b), separate coefficients for 𝑄𝑀𝐹 and 𝑄𝑀𝐵  were used, 

rather than a single weighting parameter 𝜔 (as done e.g. in Daw et al., 2011 and Gillan et al., 2016). 

Thus, choice probabilities for action 𝑎 at the first stage were modelled as: 

(13) 𝑃(𝑎 , = 𝑎| 𝑠 , ) = 
ß ( , , ) ß ( , , ) ß ( )

∑ ß ( , , ) ß ( , , ) ß ( )  
 . 

The parameter ß𝐶 describes the “stickiness” of first stage choices, i.e. first order perseveration. 

The indicator function 𝑟𝑒𝑝(𝑎) equals 1 if the first-stage choice of the previous trial is repeated and 0 

otherwise. 
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At the second stage, choices are driven by MF Q-values only (𝑄2(𝑠2,𝑡, 𝑎), as described above) 

scaled by the second-stage inverse temperature parameter ß2, such that: 

(14) 𝑃(𝑎 , = 𝑎| 𝑠 , ) = 
ß ( , , )

∑ ß ( , , )
 . 

The two baseline models M1 and M3 (BL & QL respectively) used this basic version of the SM. 

These were extended by incorporating terms that account for directed exploration in first stage choices. 

Exploration Bonus (eb) 

The following sections describe the different implementations of directed exploration for first 

stage choices in more detail. Generally, we compared various implementations of an exploration bonus 

(𝑒𝑏) for first-stage values to capture strategic exploration. The general idea is that participants may 

seek out uncertain S2 states for information-gain and potential long-term reward maximization. 

Random exploration, in contrast, is assumed to result from sub-optimal, random deviations from a 

reward-maximizing decision-scheme (Sutton & Barto, 2018; Wilson et al., 2021).  

For all variants of the exploration bonus 𝑒𝑏, this bonus was included in the standard SoftMax and 

weighted by an additional free parameter 𝜙, resulting in the following first-stage choice probabilities 

(for models M2 and M4 to M7): 

(15) 𝑃(𝑎 , = 𝑎| 𝑠 , ) = 

ß ( , , ) ß ( , , ) ß ( )  𝜙 ( , , )

∑ ß ( , , ) ß ( , , ) ß ( )  𝜙 ( , , )
. 

Models M8 and M9 included two measures of eb, therefore another free parameter 𝜌  

was included modelling 𝑒𝑏   in addition to 𝑒𝑏 , resulting in: 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.541443doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.22.541443
http://creativecommons.org/licenses/by-nd/4.0/


(16) 𝑃(𝑎 , = 𝑎| 𝑠 , ) = 

ß ( , , ) ß ( , , ) ß ( )  ( , , )  ( , , )

∑ ß ( , , ) ß ( , , ) ß ( )   ( , , )  ( , , )

. 

Overall, we compared four different formalizations of uncertainty that participants might draw upon 

during directed exploration for S1 decisions (see below). These different types of exploration bonus 

incorporated transition probabilities analogously to the 𝑄𝑀𝐵 values (c.f. Eq. 7 & Eq. 18-20). This 

formalization was based on previous research efforts providing evidence for the demarcation of at least 

two separate exploration strategies (Sutton & Barto, 2018; Wilson et al., 2014). Directed (vs. random) 

exploration is assumed to reflect an effortful, goal-directed strategy, aiming at long-term reward 

accumulation via maximal information gain. In this way directed exploration and MB control show a 

large conceptual overlap (i.e. deliberate forward-planning under consideration of environmental 

dynamics, with a long-term perspective on goal-attainment). Consequently, formalizations of directed 

exploration in model variants presented here were defined analogous to the MB component. In both 

components transition probabilities are utilized to weigh the reward and uncertainty estimates (MB 

and exploration, respectively) associated with S2 options to reflect these assumed deliberate and 

foresighted aspects. 

 

Uncertainty estimates based on the Kalman filter. 

This variant was only included for the BL model (M2), as the Q-learning models lack an explicit 

representation of uncertainty. Here, the 𝑒𝑏 was based on the estimated maximum standard deviation 

of second-stage options (Daw et al., 2006; Chakroun et al., 2020) such that:  

(17) 𝑒𝑏 (𝑠 , 𝑎 )= 𝑃(𝑠 | 𝑠 , 𝑎 ) max
𝑎∈{𝑎𝐴,𝑎𝐵}

𝜎𝑛,𝑡
𝑝𝑟𝑒

(𝑠
𝐵

, 𝑎) 

       +𝑃(𝑠 | 𝑠 , 𝑎 ) max
𝑎∈{𝑎𝐴,𝑎𝐵}

𝜎𝑛,𝑡
𝑝𝑟𝑒

(𝑠
𝐶

, 𝑎). 
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The resulting first-stage choice probabilities were modelled according to Equation 15.  

All remaining variants of the exploration bonus were based on simpler counter-based heuristics.  

Uncertainty estimates based on a bandit-counter heuristic. 

For the first of these (𝑏𝑛,𝑡(𝑠
𝐵

, 𝑎), bandit-heuristic), participants were assumed to estimate how many 

of the alternative S2 options they have sampled since last choosing a given option 𝑛. Following selection 

of an S2 option 𝑛, the respective counter 𝑏𝑛,𝑡 is reset to 0. Thus, 𝑏𝑛,𝑡 of a given S2 option 𝑛 ranges from 

0 (this option was chosen on the last trial) to 3 (all other S2 option were sampled since last sampling 

this option). Diverging from the formalization in the BL + sigma model (M2), here we assumed 

participants to sum up these counters over both options of the respective S2 stage associated most 

likely with either first-stage choice (instead of tracking the maximum). The sum of 𝑏𝑛,𝑡 across associated 

S2 options were again weighted by their transition probabilities (see M2; Equation 17) resulting in: 

(18) 𝑒𝑏 (𝑠 , 𝑎 )= 𝑃(𝑠 | 𝑠 , 𝑎 ) ∑ 𝑏𝑛,𝑡(𝑠
𝐵

, 𝑎 )  

       +𝑃(𝑠 | 𝑠 , 𝑎 ) ∑ 𝑏𝑛,𝑡(𝑠
𝐶

, 𝑎 ). 

This yielded the models M4 (BL+ bandit) and M5 (QL + bandit; see Equation 15 for corresponding S1 

choice probabilities). Often times uncertainty sum-scores are associated with less goal-directed 

exploration strategies (i.e. random exploration based on total uncertainty), such as Thompson 

Sampling. In such cases however, total uncertainty scores (sums) are directly linked to choice 

stochasticity (c.f. Gershman, 2018, 2019; Fox et al., 2020). In contrast, here the summed uncertainty 

proxy is incorporated in a more complex model of a decision sequence (exploration boni are sensitive 

to the transition type and are ultimately assigned to S1 state-action pairs). In this way higher sum scores 

of given counters associated with a particular S1 action are incorporated in a simplified, yet still model-

based way. Moran and colleagues (2019) have furthermore used similar formalizations to describe 

interactive dynamics and partial overlap of the proposed MB and MF system. The authors provide 
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evidence for the incorporation of rather parsimonious MF-like value estimates (via sum scores) to 

retrospectively assign credit to previous actions using an internal model of the environment.  

Uncertainty estimates based on a trial-counter heuristic. 

For models BL+ Trial and QL + Trial (M6 and M7, respectively) we followed the same logic, with the only 

difference being that participants were assumed to utilize a trial counter ( 𝑡 , ) as a proxy for 

uncertainty. This counter heuristic was simply defined as the number of trials since that particular 

second-stage option was last sampled. The resulting exploration bonus was thus defined as follows: 

(19) 𝑒𝑏 (𝑠 , 𝑎 )= 𝑃(𝑠 | 𝑠 , 𝑎 ) ∑ 𝑡𝑛,𝑡(𝑠
𝐵

, 𝑎)  

       +𝑃(𝑠 | 𝑠 , 𝑎 ) ∑ 𝑡𝑛,𝑡(𝑠
𝐶

, 𝑎). 

Analogous to models M4 and M5, action probabilities for first-stage choices were modelled according 

to Equation 15. 

Combined models 

Finally, combined models with terms for both trial- and bandit-heuristic exploration were examined, 

i.e. BL+ Trial + Bandit and QL + Trial + Bandit (M8 and M9, respectively). The implementation of both 

exploration mechanisms resulted in first-stage action probabilities according to Equation 16.  

Hierarchical Bayesian Modelling Scheme 

Table 1 provides an overview of all free and fixed parameters for the models described above. Using a 

hierarchical Bayesian modelling scheme, subject parameters were drawn from shared group-level 

Gaussian distributions. This resulted in two additional free parameters 𝑀𝑥and 𝛬𝑥 for each subject-level 

parameter 𝑥. Group-level parameter means (𝑀𝑥) were assumed to be normally distributed (M= 0, SD= 

10) and standard deviations (𝛬𝑥) were set to follow a uniform distribution (with limits 0 and 10 for 𝜆 

and all 𝛼𝑖 , and an upper limit of 20 for remaining group-level SD parameters). All learning rates 

(𝛼 , 𝛼 , 𝛼 ) as well as the eligibility trace parameter (𝜆 ) were then back-transformed to the interval (0, 
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1) using STANs built in cumulative density function. This was done directly within the model, so that 

raw subject-level parameter values ranging from -10 to 10 were mapped onto the interval (0,1). 

For models M1, M2, M4, M6 and M8, participant’s estimates of the random walk parameters 

(𝛾, 𝜃, 𝜎𝑜, 𝜎𝑑) were fixed to  values reasonably approximating the underlying dynamics. The estimated 

mean and standard deviation for the reward distribution were initialised at the first trial with 𝜇
𝑛,1
𝑝𝑟𝑒 =

0.5, and 𝜎𝑛,1
2𝑝𝑟𝑒 = 0.042. 

Table 1  

Free and fixed parameters for all models. 

Model free parameters fixed parameters 

M1 (BL)  𝛼, 𝛼 , 𝜆, ß ,ß ,ß , ß  𝛾, 𝜃, 𝜎 , 𝜎 , 𝜎 ,  , �̂� ,  

M2, M4, M6 (BL + EB) 𝛼, 𝛼 , 𝜆, ß ,ß ,ß , ß , 𝜙 𝛾, 𝜃, 𝜎 , 𝜎 , 𝜎 ,  , �̂� ,  

M8 (BL + EBbandit+EBtrial) 𝛼, 𝛼 , 𝜆, ß ,ß ,ß , ß , 𝜙, 𝜌 𝛾, 𝜃, 𝜎 , 𝜎 , 𝜎 ,  , �̂� ,  

M3 (QL) 𝛼, 𝛼 , 𝛼 , ß ,ß ,ß , ß   

M5, M7 (QL + EB) 𝛼, 𝛼 , 𝛼 , ß ,ß ,ß , ß , 𝜙  

M9 (QL + EBbandit+EBtrial) 𝛼, 𝛼 , 𝛼 , ß ,ß ,ß , ß , 𝜙, 𝜌  

Note. QL refers to the basic hybrid model. BL denotes the altered hybrid model versions with Kalman 
Filter updates. E = added first-stage exploration bonus;  𝜙: parameter that scales the exploration bonus. 
Note that this parameter remains the same for both exploration bonus variants, regardless of the 
specific formalisation of uncertainty estimates in a given model. For M8 and M9 an additional free 
parameter  𝜌 was included to account for additive exploration effects of both heuristics.  

 

All models were implemented using the STAN modelling language (version 2.21.0; Stan Development 

Team, 2019) running in the statistical program R, which was also used for all further analyses (version 
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3.6.1, R Core Team, 2019). The sampling for each model was done using a Markov-Chain-Monte-Carlo 

(MCMC) algorithm (no-U-turn sampler NUTS), with four chains running 10000 iterations each, 8000 of 

which were discarded as warm-up. MCMC methods are based on the generation of a random number 

sequence (chain) that is used to sample a probability distribution. Parameters estimates with higher 

(posterior) probability are sampled more often, resulting in a posterior probability distribution. The 

desired state is reached when a chain has reached equilibrium. 𝑅 is a measure of convergence across 

chains, indicating the ratio of between-chain to within-chain variance. Here, values of 𝑅 ≤1.1 were 

considered acceptable.  

In a first step, all models were compared regarding their predictive accuracy. As this method 

only provides a relative comparison between models, posterior predictive checks were performed to 

gain a deeper understanding. These allow a more detailed insight with regard to predictions made by 

the model and their ability to accurately portrait the data as well as an indication of possible model 

misspecifications (Wilson & Collins, 2019).  

 Open Code  

STAN model code will be shared via the Open Science Framework upon publication. By making the 

model code freely available, we wish to facilitate further application and development of this model 

and further adaptations thereof. Transparently reporting on model specifications also holds the 

potential of direct comparisons of parameter estimates (e.g. as reported above for the data sets 

compared here). 

 Open Data  

Both data sets analyzed here are freely available (for links see the respective publications). 

 

Model Comparison 

Model comparison was performed using the loo package (Vehtari et al., 2023) which provides a 

measure of predictive accuracy via leave-one-out cross-validation (LOO; Vehtari, Gabry, & Gelman, 
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2017). To this end the estimated log pointwise predictive density (-elpd) is applied as the criterion of 

interest. The model with the lowest -elpd score was selected as the best fitting model. While lower 

values indicate a superior fit, in direct comparisons between models values close to 0 indicate superior 

fit. As can be seen in Table 3, in these cases the difference in elpd compared to the winning model (elpd 

diff) is provided (thus, values close to zero show “smallest” distance to the winning model). In cases in 

which a more parsimonious model showed overlap with the best-fitting model in terms of the SE of the 

elpd difference, the more parsimonious model was chosen. 

 

RESULTS 

 

Model-Agnostic analyses 

In a first step, we quantified MF and MB contributions using common model-agnostic procedures (see 

e.g. Daw et al., 2011; Otto et al., 2013a; Gillan et al., 2016) as outlined in the methods section. A linear 

mixed model of S1 stay-switch behavior using the factors reward and transition type as well as their 

interaction confirmed the standard effects (Daw et al., 2011; Otto et al., 2013a): in both data sets (see 

Table 2) we observed a main effect of reward (reflecting MF control) and a reward x transition 

interaction (reflecting MB control).  

 

Table 2. Results from regression analyses of S1 choice repetition probability. 

  Estimate 95% CI z-Value p-Value 

data1 Intercept 1.35 [1.12; 1.58] 11.48 <.01 

 Reward 0.11 [0.05; 0.18] 3.47 <.01 

 Transition -0.07 [-0.14; -0.01] -2.14 .03 

 Reward*Transition 0.47 [0.36; 0.59] 8.10 <.01 
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data2 Intercept 1.73 [1.53; 1.94] 16.68 <.01 

 Reward 0.64 [0.51; 0.77] 9.89 <.01 

 Transition 0.02 [-0.03; 0.08] 0.81 .42 

 Reward*Transition 0.16 [0.07; 0.24] 3.76 <.01 

Note. Reward: main effect of reward type (unrewarded vs. rewarded), commonly interpreted as an 
indicator for MF control; Transition: main effect of transition type (rare vs. common); 
Reward*Transition: interaction of Reward and Transition type, commonly interpreted as an indicator 
for MB control.  

 

Figure 2. Stay-Probabilities of S1 choices and difference scores. Upper panel: Probabilities for S1 choice 
repetition as a function of reward (rew+ : rewarded; rew- : unrewarded) and transition type 
(common/rare) of the preceding trial. Lower panel: MB and MF difference scores as defined by Eppinger 
et al. (2013), bar heights depict mean scores over all participants, error bars show the standard error. 
The left plots (green, A & C) shows results from data1; the right plot (orange) shows results from data2.  
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However, regression results along with visual inspection (Table 2, Figure 2) also suggest differences 

between task versions (i.e. between data1 and data2). The MF effect was somewhat more pronounced 

in the data set from Gillan and colleagues (2016; data2), while data1 showed a more pronounced MB 

effect. This contrast between data1 and data2 was also clearly evident in the respective model-agnostic 

difference scores for the two effects (Figure 2, lower panel).  

Model comparison  

In both data sets all parameters (group- as well as subject-level) could be estimated well, as evidenced 

by the aforementioned convergence measure 𝑅 (all 𝑅 <1.1). Model comparison then was based on the 

estimated log pointwise predictive density (-elpd). Here, lower absolute values reflect a superior fit. The 

difference in -elpd (-elpd diff; c.f. Table 3) is provided in reference to the winning model (which itself 

thus always has a -elpd diff  of zero). The Q-Learner models consistently outperformed BL models across 

both data sets (cf. Figure S1). 

Within the group of QL models the bandit model (M5) provided the best fit for data2 and was 

indistinguishable from the combined model (M9) for data1 (i.e., the standard error of the elpd-

difference of M5 from the best model M9 included zero, see Table 3, Figure 3). Thus, all further analyses 

focused on the more parsimonious model (M5, QL+Bandit). 

Figure 3. Model Comparison Results via the Widely Applied Information Criterion (WAIC) for all QL 
Models (M3, M5, M7, M9). Panel A/B green/orange bar plots refer to data1 and data2, respectively. 
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M3: QL base model without added exploration bonus. M5/7: Base + Bandit/ Trial refer to the model 
variants with added heuristic-based exploration bonus using stimulus identity/recency, respectively. 
M9: Base + Bandit+ Trial: model variant with additive combination of both heuristic-based exploration 
implementations. 

 

Table 3 

 Results from model comparison of QL-models using Leave-one-out cross-validation (LOO). 

Data Set Model -elpd diff se diff 

data1 M3 (Base)  -7.9 6.3 

 M5 (Base + bandit) -0.4 5.0 

 M7 (Base + trial) -5.4 4.5 

 M9 (Base + bandit + trial) 0.0 0.0 

    

data2 M3 (Base)  -10.8 8.1 

 M5 (Base + bandit) 0.0 0.0 

 M7 (Base + trial) -8.5 7.3 

 M9 (Base + bandit + trial) -4.2 6.9 

Note. The difference in the expected log pointwise predictive density (elpd diff ) and standard error of 
the difference ( se diff ). These values show the results of a model comparison using LOO estimates. Each 
model is compared to the preferred model (M5/M9), as there is no difference between the winning 
model and itself, values in the first column are always zero.  

 

Posterior Predictive Checks 

While results from model comparisons can provide relative support for one computational account 

over another, posterior predictive checks are required to ensure that a model can reproduce core 

patterns in the data. We thus simulated 10000 full trial sequences, 8000 of which were discarded as 

warm-up, yielding 8000 (2000 per chain) simulated data sets per subject. Simulations were performed 

during fitting the model to the empirical data (i.e. on the basis of possible parameter values sampled 
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during this procedure). As can be taken from Table 4, simulated S1 choices largely reproduced the 

patterns observed in human data. We repeated the model-agnostic analyses of stay-/switch behavior 

(shown above for empirical data, c.f. Table 2 Figure 2 and 4) for the simulated data sets. Visual 

inspection (Figure 4) revealed an underestimation of “stay”-probabilities in the simulations when 

compared to the empirical data. Nonetheless, the overall pattern of stay-switch tendencies as a 

function of reward and transition were largely reproduced, whereas this was less pronounced for the 

main effect of reward (MF contribution; Table 2, Figure 2).  

 

Table 4. Proportion of correct S1 choice predictions by the winning model M5.  

Data Set Min 25th percentile Median Mean 75th percentile Max 

data1 .510 .631 .758 .742 .840 .9125 

data2 .505 .667 .753 .749 .828 .9754 
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Figure 4. Probabilities of S1 choice repetition as a function of reward and transition type. Y-axis: Stay 
probabilities for 1st stage choices; data: empirical stay probabilities from data sets data1 (panel A; 
green) and data2 (panel B; orange). simulation: stay-probabilities from N=8000 simulated choice 
sequences per subject, derived from the winning model (M5).; rew+/-: previous trial was rewarded (+) 
or unrewarded (-).; common/rare: previous trial followed a common/rare transition respectively. Error 
bars in the simulation plots depict the 95% HDI over 8000 simulated data sets.  

 

Posterior Distributions 

Figure 5 shows the posterior distributions of group-level parameters underlying S1 choices in the best-

fitting model. The group-level mean of the exploration bonus parameter (ϕ) was positive in both data 

sets and the 95% highest-density interval (HDI) did not overlap with 0 (Table 5, Figure 5). We thus 

confirmed the predicted positive effect of directed exploration on S1 choice probabilities in both data 
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sets. Furthermore, in both data sets, there was evidence for a substantial perseveration effect (Figure 

5). 

Posterior point-estimates of all hyperparameter means from the best-fitting model are shown 

in Table 5. Model parameters confirmed the model-agnostic analyses portraited above: the MB 

component (ß ) was more pronounced in data1 vs. data2.  

 

Table 5. Posterior Point-Estimates of all Group-Level Parameters of model M5 for data1 and data2. 

parameter 𝑀𝑥 𝛬𝑥 

 data1 data2 data1 data2 

𝛼  -0.63 0.32 1.40 0.59 

𝛼  0.47 -0.11 1.05 0.78 

𝛼  2.11 0.75 0.64 1.26 

ß  12.26 2.73 10.80 5.26 

ß  1.73 3.00 2.03 2.22 

ß  0.86 1.58 0.52 1.08 

ß  10.13 6.78 4.75 2.91 

ϕ 0.15 0.09 0.13 0.08 

Note. Posterior point-estimates of group-level means (𝑀𝑥) and standard deviations (𝛬𝑥) for data1 and 
data2 from the winning model (M5; QL +Bandit) for all subject-level parameters 𝑥 listed in the first 
column. 
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Figure 5. Posterior distributions of Group-Level Means of S1 Choice Parameters. Solid black lines show 
the 95% highest density interval (HDI) and the black dot depicts the point-estimate of the mean. Panels 
A and B (green and orange plots) show results on the basis of data sets data1 and data2, respectively.  

 

Recall that in the best-fitting model M5, the uncertainty heuristic (bandit heuristic) ranges between 

values of 0 to 3 per S2 option, resulting in a range of 1 to 5 for the combined predictor over both S2 

options (see Equation 18 above). Recall further that rewards were re-coded to range between 0 and 1 

for both data sets.  Table 6 illustrates the resulting exploration bonus values (VEB) for four different 

example trials and parameter values of 𝜙 = 0.05; 0.1 and 0.15. Imagine a subject choosing option A in 

S1 (S1A first column), followed by a common transition, thus, leading to the S2-state A (S2A third 

column). Since the last visit of state S2A our subject may have chosen two and three alternative S2 

options each, so that the bandit-heuristic counters of the currently available S2 options have values two 

and three respectively. Following our model, the sum of both counters (five in this example) is scaled 

by the transition probability (0.7 as it was a common transition from S1A) and the alternative case is 

added (see Equation 18). In this alternative case (following a rare transition, with probability 0.3 leading 

to S2B instead) bandit counters for the available choice options may have values zero and one 

respectively (e.g. if these were chosen in the two preceding trials). These resulting model-based 
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uncertainty estimates are then weighted by the individual’s exploration parameter ϕ (here shown for 

exemplary values 0.05, 0.1, and 0.15). 

 

Table 6. Exemplary exploration bonus values for different S1-S2 combinations given plausible 

exploration bonus parameter values for  ϕ 

S1-choice transition S2 state  
(bandit heuristic counter value) 

ϕ Resulting exploration 
bonus value (VEB) 

S1A Common S2A (2; 3) 0.05 
0.1 
0.15 

0.19 
0.38 
0.57 

S1B Common S2B (0; 1) 0.05 
0.1 
0.15 

0.11 
0.22 
0.33 

S1A Rare S2B (2; 3) 0.05 
0.1 
0.15 

0.115 
0.23 
0.345 

S1B Rare S2A (0; 1) 0.05 
0.1 
0.15 

0.17 
0.34 
0.6 

Note. The first three columns show possible combinations of first state choices and second stage states 
following either transition type.  ϕ: plausible exemplary subject-level parameter values. The last column 
shows the exploration bonus value for the these S1- S2 sequences for a given  ϕ-estimate according to 
Equations 15 and 18. 

 

A rough insight into the relationship of VEB compared to the weighted MB Q-value (QMB) of S1 options 

is shown in Table 7. In data1 the median proportion of VEB in relation to QMB (VEB / QMB over both S1 

options) was 5%, whereas it was 17% in data2. These example calculations illustrate that, while 

posterior estimates of the exploration parameter may appear numerically small, they do in fact make 

meaningful contributions to subjective valuations.  
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Table 7. Proportion of VEB compared to QMB across both S1 options 

Data Set 25th percentile Median 75th percentile  

data1 .03 .05 .11 

data2 .08 .17 .42 

Note. VEB and QMB were calculated on the basis of subject-level parameter estimates derived from M5 
(QL + Bandit). Values shown depict VEB /QMB (c.f. Eq. 18 and Eq. 7 respectively) over both S1 options, 
which were then averaged across all participants for data1 and data2 each. 

 

Correspondence with model-agnostic analyses 

In order to investigate how parameters derived from the model relate to model-agnostic indices of MB 

and MF behavior as well as to the overall performance, correlation analyses were performed (Figure 

6). For this purpose, we applied the same regression model as described for the group analyses to each 

participant’s individual data set, omitting the random effects term, resulting in:  

pstay ~ rew * trans + (rew * trans + 1). 

Model-agnostic indices of MB ( ß :  and 𝑀𝐵 ) and MF (ß  and 𝑀𝐹 ) exhibited moderate 

associations in both data sets (Figure 6). Both effects were likewise associated with the corresponding 

model-derived parameters (ß , ß ). The exploration parameter did not show significant 

associations with mean rewards earned on this task. In contrast, the MB component showed a 

moderate to strong association to the mean overall payout in data1 but not data2, confirming that the 

modified version successfully addressed previous concerns (see Kool et al., 2016). In data2, there was 

no evidence for this association (see Figure 6, lower panel).  
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Figure 6. Associations of model-agnostic and model-derived TST indices of MB and MF signatures. 
Results from correlation analyses of model-agnostic indices of MB and MF influences. Empty tiles (left 
panel) indicate non-significant associations. ; ß ,ß , ß : : regression weights for main 
effects of reward, transition type and their interaction; 𝑀𝐵 , 𝑀𝐹 : differences scores of MB and 
MF influences on S1 stay probabilities respectively; ß ,ß : MB and MF S1 choice parameters from 
the winning model; ß : S1 perseveration parameter; ß : S2 inverse temperature parameter; 𝜙: 
exploration parameter; mean reward: mean reward gained throughout TST (data1: 300 trials, data2: 
200 trials). Right panel: association of model-derived MB (ß ) and exploration parameter (𝜙) with 
mean reward. Circles depict individual participants. All green plots (upper panel) are based on data1, 
orange plots (lower panel) are based on data2.  
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Further Validation of the best-fitting model  

In a final step, we verified that results for data2 were not due to specific characteristics inherent to the 

subsample we drew from the data set from Gillan et al. (2016). To this end, we repeated the model 

estimation procedure for M5 (c.f. Methods described above) using the full sample of experiment 1 

(N=548) from the original publication by Gillan and colleagues (2016). Modelling results were 

comparable to those reported above for the initial subsample (data2). The model converged equally 

well (all 𝑅<1.1) and posterior estimates of group-level parameters mirrored results reported above 

(Figure7). Results again confirmed a highly robust effect of S2 uncertainty on S1 choice probabilities 

(see Figure 7), such that the posterior distribution of the exploration bonus parameter 𝜙 was robustly 

> 0. 

 

Figure 7. Posterior density estimates of 1st-stage group-level mean choice parameters from the winning 
model. The lower panel of Figure 5 shows corresponding results based on data2 (N=100), plots shown 
here are based on the full sample of experiment 1 in the original publication (N=548; Gillan et al., 2016). 
Black dots indicate the mean point-estimate, black bars cover the 95%-HDI.  

  

DISCUSSION 

This study set out to extend existing hybrid models of TST behaviour with mechanisms implementing 

directed (uncertainty-based) exploration.  To this end, we considered varying ways in which uncertainty 

may guide participants choices in stage 1 of the task, building upon insights from the explore-exploit 
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dilemma (4-armed restless bandit; Daw et al., 2006; Chakroun et al.,2020; Wiehler et al., 2021). In the 

empirical data analysed here, an uncertainty-dependent learning model (BL-models using a Kalman 

Filter) did not provide an advantage over a classic Q-Learner algorithm.  The addition of heuristic-based 

uncertainty measures in the choice component for stage 1 of the task, however, significantly improved 

model fit (see model comparison results). Results were consistent across two independent data sets 

using two versions of the TST assessed in different settings (laboratory vs. online sample), and 

confirmed a positive directed exploration effect in TST behavioural data.  

We complemented model-based results with more traditional model-agnostic analyses to gain 

a deeper understanding of how these relate to each other. This additionally aided the interpretation of 

the best-fitting model, parameter estimates derived from it as well as differences in the results obtained 

from both data sets. 

Uncertainty-based exploration (but not learning) on the TST 

While human choice behaviour in the bandit task is typically better described by models that 

incorporate a Kalman-Filter as a learning component (vs. a constant learning rate; see e.g. Daw et al., 

2006; Raja Beharelle et al., 2015; Chakroun et al., 2020; Wiehler et al., 2021), this was not the case for 

TST data analysed here. This may likely be due to the more complex task structure and resulting higher 

cognitive demands. Thus, tracking the underlying reward walks and uncertainties associated with them 

might be too computationally demanding. Participants did, however, show uncertainty-dependent 

adjustments in their choices in S1 of the task, such that robust exploration bonus parameters > 0 were 

obtained (see below). Yet, when faced with a more complex task, participants might fall back on simpler, 

heuristic-based uncertainty proxies to guide their behaviour. In fact, the current results point to an 

advantage of the more parsimonious counter-based heuristic tested here (M5, see model comparison 

results in favour of the bandit-heuristic compared to the trial-heuristic model M7). Although a purely 

temporal indicator (M6 & M7, trial heuristic) may seem more intuitive at first, continuous tracking over 

the course of up to 300 trials (data1; 200 trials in data2) seems cognitively implausible. The bandit 
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heuristic further has the advantage of visual support throughout the task (clearly distinguishable 

stimulus identities). These external cues, alongside the limited numerical range, ease the demand 

placed on working memory processes and thus may ultimately “protect” the MB system (Otto et al., 

2013; Brown et al., 2022; Collins et al., 2017; Yoo & Collins, 2022; for a diverging view however see Silva 

et al, 2022). As the instructed goal for participants was to maximize their pay-outs, placing higher 

priority on the MB system might be advantageous. As Kool and colleagues (2016) have pointed out, 

such an advantage is however, dependent upon the task version at hand. This finding is supported by 

the significant positive association of MB control and rewards earned in data1 (adapted version of the 

TST) and a lack thereof in data2 (classic TST version). These differential associations also show that 

previously voiced criticisms and proposed alterations (Kool et al., 2016) have successfully been 

addressed in the adapted task version used in data1. Parameter estimates for the weight on 2nd-stage 

Q-values were positively associated with overall pay-out in both data sets and were indeed the only 

significant association in this regard in data2. Thus, relatively lower MB tendencies in data2 may even 

be seen as goal-directed in a broader sense, as MB control is commonly viewed as more demanding, 

while in this case not more rewarding and ultimately too costly.  

 Taking a closer look at the exploration bonus from the winning model, we show that here too, 

results from data1 and data2 differ in regard to their association with MB control. Table 7 provides 

rough estimates of the relative proportion of this bonus in relation to MB control. As pointed out above, 

MB control was attenuated in data2 compared to data1. Considering the similar posterior estimates for 

the exploration parameter these proportional differences (VEB / QMB : 5% vs 17% of  in data1 and data2, 

respectively, Table 7) come to little surprise. Nonetheless, one may speculate that they are not fully 

independent of aforementioned diverging utility and contribution of MB control. Varying reward 

magnitudes in the adapted TST version (data1) are likely easier to track than binary outcomes in data2 

and may have provided participants with a sufficiently useful and not overly costly reference point for 

S1 preferences. Tracking underlying reward dynamics based on binary outcomes (data2) on the other 

hand might be more difficult. The additional heuristic-based uncertainty estimates may have thus been 
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of varying utility during decision-making, depending on the environment (i.e. task version) at hand. 

These considerations are somewhat speculative in nature and warrant further, more detailed 

investigations in the future. 

The assessment within a laboratory setting further enabled more control over participants’ 

understanding of the task at hand compared to the online sample from which we derived data2. As 

several scholars have pointed out over the past years, general task understanding and diverging 

instructions of the TST can have a significant influence on the relative employment of the MB over MF 

system (e.g. Akam et al., 2015; Feher da Silva & Hare, 2018; Castro-Rodrigues et al., 2022; Hamroun, 

Lebreton,& Palminteri, 2022). It should be noted that the authors of the original publication of data2 

have taken extensive precautions such as training trials and a comprehension test (for details see Gillan 

et al., 2016) prior to execution of the TST. Nonetheless, insight into participants’ model of the task 

remains reduced within this online context. Noticeable differences in the compensation and therefore 

incentive for participation may have further influenced individuals’ motivational state with regard to 

more effort placed on task execution (see e.g. Patzelt et al., 2019).  

Dual-System Views and the TST 

Beside these external influences on relative MB and MF contributions (i.e. task versions, instructions, 

incentives etc.) broader criticisms regarding their definition within classic dual-system frameworks has 

been raised. As outlined previously, indices of MB control likely only depict one possible goal-directed 

strategy subjects use to complete the TST (recall reduced MB control in data2 vs. data1 in light of its 

utility for reward maximization, i.e. long-term goal-attainment). Consequently, several alternative 

strategies that may also utilize a model of the environment, rendering them MB in the literal sense, are 

not accounted for (Feher da Silva & Hare, 2018; 2020; Toyama et al., 2017;2019). Models employed on 

the other hand, may be skewed, outright incorrect, or employed in a rigid and habitual way, further 

complicating a clear-cut interpretation of associated indices (see e.g. Seow et al., 2021; Shahar et al., 

2019a). The same holds true for potential additional subprocesses which are not represented in classic 
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dual-system views and formalizations thereof (Collins et al., 2017; Collins & Cockburn, 2020; Feher da 

Silva et al., 2022). At this point it should be noted that several of these issues may also apply to the 

explore-exploit research and theoretical assumptions works in this field are based on.  

 To address these concerns several scholars have been developing adapted versions or novel 

alternatives to these paradigms (see e.g. Kool et al., 2016 and the adapted TST version applied by 

Mathar et al., 2022; Bruder et al., 2021; Wagner et al., 2021 etc.). To name one prominent example 

posed as an alternative (or at the least useful supplement) to widely applied classic restless bandit 

paradigms in the explore-exploit research, Wilson and colleagues (2014) have introduced the Horizon 

Task. This task aimed at the decoupling of reward and information, which are classically confounded 

and thus hamper the clear distinction between exploration, exploitation and their driving factors. The 

Horizon Task has been successfully applied in a number of studies and has thus far also undergone 

several further adaptations (e.g. Feng et al., 2021; Cogliati Dezza et al., 2017; Sadeghiyeh, et al., 2020). 

Computational Modelling  

Another approach is the development of novel computational models to better delineate the 

specific processes engaged during task performance. Several researchers have set out to move away 

from traditional computational accounts, and build upon markedly different conceptualisations of 

learning and decision processes in this task. One recent example for such efforts comes from Gijsen, 

Grundei, and Blankenburg (2022): The authors applied an active inference account to TST data and – 

akin to the procedure laid out here- re-analysed existing data sets. Some of these were in fact better 

described by the proposed more elaborate models. However, specifically data gathered in an online 

setting as well as data including a negative reinforcement scheme diverged with regard to model 

ranking. The preferred model for these data sets (referred to as online and shock data sets respectively 

in Gijsen et al., 2022) was in fact more akin to versions tested here. Moreover, it should be noted that 

the current study followed a different aim in more general terms. As pointed out previously, the TST is 

widely applied and probably the most utilized paradigm to capture MB and MF behavioural tendencies. 
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Thus, by extending existing models that are already in use, we hope to balance improving their 

descriptive ability while at the same time ensuring their applicability for a wide scientific audience.  By 

making the code for the winning model freely available we hope to foster similar efforts (c.f. Open Code 

above).  

Limitations of the current study 

Common to all computational modelling approaches are basic considerations regarding the 

limited scope of possible mechanisms accounted for. To put it more bluntly: Results derived from 

computational models (and their comparison) are ultimately limited to the finite set of processes 

defined in them. Due to its non-specific applicability this issue may almost seem trivial, but should 

nonetheless be kept in mind when evaluating and interpreting such results.  

In addition to these broader conceptual issues with regard to the TST, more specific limitations 

of the present study should be noted as well. While results from model comparison clearly favoured all 

QL over BL models in both data sets it should be noted that the implemented belief updating process 

in the latter model group depicts an approximation (vs. exact representation) of the true underlying 

random walk dynamics (control analyses however showed that the empirical reward dynamics closely 

corresponded to those implemented in all BL models).The Kalman-Filter updating process between 

trials (Equation 12) in all BL models is analogous to the forgetting process implemented in the QL model 

variants (Equation 4).  Thus, for both learning mechanisms we assumed subjective value estimates of 

unchosen options to move closer to a reasonable estimate (mid-range of possible values). Nonetheless, 

future applications may consider refining this model aspect.   

Despite the fact that the evidence for strategic exploration behaviour was consistently present 

across both data sets (exploration bonus effects were substantially larger than zero), these effects were 

numerically small (e.g. mean exploration bonus values ranged between 5% and 17% of MB values). Yet, 

inclusion of these terms substantially improved model fit. As outlined above, model variants shown in 

the present study only cover a very limited set of possible exploration mechanisms at play. Different 
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versions of such exploratory behaviour or additional processes not accounted for here are possible, in 

light of these results plausible or even likely and should be part of future investigations.  

These may also include simulations and analyses thereof in order to provide comparison results 

to those presented here. To our knowledge such analogous simulations from related work are currently 

not available. Thus, a clear interpretation of the winning model’s simulation presented above is hard to 

reach. Although posterior predictive checks revealed that the winning model (M5) accounted for the 

over data pattern quite well, it still underpredicted S1 stay-probabilities in both data sets (c.f. Table 4 

and Figure 4 above). Future work is required to determine the degree to which this depends on the 

specific task version employed, or reflects a general shortcoming of current hybrid models. 

Another potential limitation is that recently applied DDM choice rules were not used in the 

present study (Pedersen, Frank, & Biele, 2017). The investigation of reaction time distributions and their 

relation to information processing and decision-making can provide valuable insights that may 

complement present results (Shahar et al., 2019b). Parameters derived from models like these have 

further been linked to various (sub-)clinical symptoms, and thereby also shed light on potential disease 

mechanisms (see e.g. Forstmann, Ratcliff, & Wagenmakers, 2016; Mandali et al., 2019; Maia, Huys, & 

Frank, 2017, Sripada & Weigard, 2021).  Here however, our goal was first to confirm the existence of 

the proposed exploration mechanisms in different TST versions. We therefore leave extensions to DDM 

choice rules to future work. 

The empirical data used to develop and test the proposed novel model variants may pose yet 

another concern. We included two TST versions as a first step, but several additional task variants could 

be examined in future work in order to further validate the adapted hybrid model. Considering 

aforementioned ambiguities with regard to the generalizability and transferability of proposed 

exploration-strategies (and other information-processing steps inherent in the model; e.g. learning 

mechanisms etc.) these may also be tested for in data from related paradigms posing similar demands 

(i.e. reward accumulation in light of uncertain, dynamic environments). In order to (at least in part) 
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account for the myriad of contextual factors influencing learning and decision-making in such 

paradigms, data from within-subject design studies examining specific contextual effects would be 

required to delineate how the proposed exploration mechanism is modulated by these factors.  

An additional issue concerns the generalizability of the present results. To this day, a large part 

of empirical findings is based on small rather homogenous groups of individuals, namely WEIRD ones 

(i.e. white, educated, industrialised, rich, & democratic), which also applies to many other data sets in 

the field. Despite participants’ WEIRDness , samples are seldomly diverse with regard to age or gender 

either. In the present case for example, the sample from data1 was exclusively comprised of 18 to 35-

year-old heterosexual males (Mathar et al., 2022). While reducing variability in these sample 

characteristics has its’ utility, (improving internal validity and thus enabling more clear-cut 

interpretations) results are consequently limited to this confined group. Gillan and colleagues (2016) 

on the other hand employed a more diverse large-scale community sample. Despite lesser concerns 

regarding diversity, here other limitations that arise due to the online setting and associated factors 

come into play (e.g. data quality due to false profiles, low incentives, task understanding etc.).   

Despite ever growing popularity and application of transdiagnostic as well as dimensional 

conceptualisations of mental health, a substantial body of research is still based on the comparison of 

groups defined as either healthy or diseased. Again, procedures like this have a rational basis, entail 

advantages, and have produced a wealth of valuable insights. Keeping this and aforementioned 

progress in mind (Insel et al., 2010; Robbins et al., 2012; Maia & Frank, 2011), it is nonetheless 

warranted to push further. Future studies that leverage large samples and the natural sub-clinical 

variation in psychiatric symptomatology these entail, are called for. 

CONCLUSION 

In summary, we provide computational evidence for a contribution of directed exploration to 

behaviour in two independent data sets of different variants of the a widely used two-step task (TST). 

We compared a series of extensions of commonly applied hybrid models for TST behaviour using 
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concepts from exploration-exploitation work (Wilson et al., 2021), and show that a model with a 

heuristic-based directed exploration term for S1 decisions consistently outperformed both a baseline 

model without a directed exploration process, and a series of alternative model variants. Future work 

may extend these approaches to other task variants, and explore the degree to which the observed 

directed exploration process observed for TST behaviour is sensitive to e.g. individual differences in 

(sub-)clinical measures of psychopathology.  
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SUPPLEMENT 

 

Figure S1. Model Comparison Results for all models considered via the Widely Applied Information 
Criterion (WAIC). Panel A/B green/orange bar plots refer to data1 and data2, respectively. Kalman-
Filter: Bayesian Learner (BL) models.  
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