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Abstract:  11 

Although gene expression divergence has long been postulated to be the primary driver of human 12 

evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be 13 

quite challenging. Theory suggests that cell type-specific cis-regulatory variants may fuel evolutionary 14 

adaptation due to the specificity of their effects. These variants can precisely tune the expression of a 15 

single gene in a single cell type, avoiding the potentially deleterious consequences of trans-acting 16 

changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It 17 

has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring 18 

allele-specific expression in human-chimpanzee hybrid cells—the product of fusing induced pluripotent 19 

stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored 20 

in a limited number of tissues and cell types. Here, we quantify human-chimpanzee cis-regulatory 21 

divergence in gene expression and chromatin accessibility across six cell types, enabling the 22 

identification of highly cell type-specific cis-regulatory changes. We find that cell type-specific genes and 23 

regulatory elements evolve faster than those shared across cell types, suggesting an important role for 24 
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genes with cell type-specific expression in human evolution. Furthermore, we identify several instances 25 

of lineage-specific natural selection that may have played key roles in specific cell types, such as 26 

coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor 27 

neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that 28 

likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in 29 

the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results 30 

demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene 31 

expression across cell types is a promising approach to identify the specific genes and genetic variants 32 

that make us human.  33 

 34 

Introduction: 35 

In the past few million years, humans have evolved a multitude of unique phenotypes (Shave et al., 36 

2019; Vanderhaeghen & Polleux, 2023). For example, our cardiovascular system has evolved to enable 37 

extended periods of physical exertion and the unique aspects of our nervous system enable human 38 

language and toolmaking (Shave et al., 2019; Vanderhaeghen & Polleux, 2023). Previous research 39 

suggests that much of human adaptation may be caused by changes in gene expression (Fraser, 2013; 40 

King & Wilson, 1975; Reilly & Noonan, 2016; Romero et al., 2012). To catalog these changes, studies 41 

have compared gene expression in post-mortem tissues of humans and our closest living relatives, 42 

chimpanzees (Blake et al., 2020; Kelley & Gilad, 2020; Ma et al., 2022). Although thousands of 43 

differentially expressed genes have been identified in post-mortem samples, it is generally not possible 44 

to determine whether genetic differences cause a gene to be differentially expressed. In post-mortem 45 

studies, genetic differences cannot be disentangled from sources of variation such as differences in diet, 46 

environment, cell type abundances, age, post-mortem interval, and other confounding factors. In 47 

addition, for many traits the relevant gene expression differences may be specific to early development, 48 
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but it is impossible to study fetal development in vivo in non-human great apes due to both ethical and 49 

technical difficulties. To circumvent these issues, several groups have used great ape iPS cells to study 50 

differences in gene expression in cell types present in early development (Benito-Kwiecinski et al., 2021; 51 

Field et al., 2019; Kanton et al., 2019; Pavlovic et al., 2018). While the use of iPS cells addresses many of 52 

the confounding factors present in post-mortem comparisons, they also introduce new issues such as 53 

interspecies differences in iPS cell differentiation kinetics, efficiency, and maturation. Overall, it remains 54 

tremendously challenging to identify human-specific changes in gene expression, which limits our ability 55 

to link expression differences to either phenotypic differences or natural selection on the human 56 

lineage. 57 

 58 

One particularly powerful means of studying the evolution of gene expression is through the 59 

measurement of allele specific expression (ASE) in hybrids between two species (Combs et al., 2018; 60 

Fraser, 2011; Hu et al., 2022; Mack & Nachman, 2017; Wittkopp et al., 2004). This approach has the 61 

advantage of eliminating many confounding factors inherent to interspecies comparisons, including 62 

differences in cell type composition, environmental factors, developmental stage, and response to 63 

differentiation protocols. Because the trans-acting environments of the two alleles in a hybrid are 64 

identical, ASE has the additional benefit of reflecting only cis-regulatory changes, which are thought to 65 

be less pleiotropic and more likely to drive evolutionary adaptation than broader trans-acting changes 66 

(Agoglia et al., 2021; Gokhman et al., 2021; Prud’homme et al., 2007; Wittkopp & Kalay, 2012). 67 

Furthermore, ASE enables the use of powerful methods that can detect lineage-specific natural selection 68 

and, as a result, contribute to our understanding of the selective pressures that have shaped the 69 

evolution of a wide variety of species (Fraser, 2011). Until recently, it has not been possible to 70 

disentangle cis- and trans-acting changes fixed in the human lineage since humans cannot hybridize with 71 

any other species. However, the development of human-chimpanzee hybrid iPS cells enables 72 
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measurement of ASE in a wide variety of tissues and developmental contexts (Agoglia et al., 2021; 73 

Gokhman et al., 2021; Song et al., 2021). This provides an effective platform to investigate general 74 

principles of hominid gene expression evolution, detect lineage-specific selection, and identify candidate 75 

gene expression changes underlying human-specific traits.  76 

 77 

While gene expression differences between humans and chimpanzees are well-studied, there has been 78 

less focus on epigenetic changes, many of which are likely to underlie differences in gene expression 79 

(García-Pérez et al., 2021; Kozlenkov et al., 2020; Netherlands Brain Bank et al., 2016; Trizzino et al., 80 

2017). Furthermore, these studies, regardless of whether they utilize post-mortem tissues or cell lines, 81 

are subject to the same confounding factors mentioned above. Analogous to ASE, one can use the assay 82 

for transposase accessible chromatin using sequencing (ATAC-seq) in interspecies hybrids to measure 83 

allele-specific chromatin accessibility (ASCA) (Buenrostro et al., 2013; Corces et al., 2017; Liang et al., 84 

2021; S. Zhang et al., 2020). As with ASE, ASCA is unaffected by many confounders inherent to between-85 

species comparisons and only measures cis-regulatory divergence. Perhaps most importantly, ASCA can 86 

implicate specific regulatory elements that likely underlie gene expression differences. These regulatory 87 

elements can then be more closely studied to identify the likely causal genetic variants and the 88 

molecular mechanisms by which those variants alter gene expression.  89 

 90 

Here, we generated RNA-seq and ATAC-seq data from six human-chimpanzee hybrid iPS cell-derived cell 91 

types and quantified ASE and ASCA. Using this dataset, we identified thousands of genes and cis-92 

regulatory elements showing cell type-specific ASE and ASCA. We found that cell type-specific genes and 93 

cis-regulatory elements are more likely to have divergent expression and accessibility than their more 94 

broadly expressed/accessible counterparts. Furthermore, we provide evidence for polygenic selection 95 

on the expression level of genes associated with physiologically relevant gene sets including sodium 96 
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channels and syntaxin-binding proteins in motor neurons. Finally, we use newly developed metrics and 97 

machine learning algorithms to link cell type-specific differences in chromatin accessibility and gene 98 

expression and identify putative causal mutations underlying these differences. Using this pipeline we 99 

identified motor neuron-specific increases in promoter chromatin accessibility and gene expression for 100 

FABP7, which plays a key role in neurodevelopment but is not well-studied in neurons. In addition, we 101 

focus on a human-accelerated region (HAR) near the promoter of GAD1. While this region is accessible 102 

in all cell types, both the accessibility of the HAR and the expression of GAD1 are only chimpanzee-103 

biased in motor neurons. Analysis of scRNA-seq from human and chimpanzee brain organoids showed 104 

that increased expression of GAD1 also occurs in ventral forebrain inhibitory neurons. Overall, this study 105 

provides insight into the evolution of gene expression in great apes as well as a resource that will inform 106 

functional dissection of human-specific molecular changes. 107 

 108 

Results 109 

 110 

Cis-regulatory divergence of gene expression in six cell types is largely cell type-specific or shared 111 

across all cell types 112 

 113 

To measure genome-wide cis-regulatory divergence in gene expression, we performed RNA-seq on six 114 

cell types derived from human-chimpanzee hybrid iPS cells (Fig. 1a). The cell types profiled were from six 115 

diverse developmental lineages including the motor neuron (MN), cardiomyocyte (CM), hepatocyte 116 

progenitor (HP), pancreatic progenitor (PP), skeletal myocyte (SKM), and retinal pigment epithelium 117 

(RPE) lineages. These represent all three germ layers and a variety of organs (Fig. 1a). It is worth noting 118 

that these differentiations do not necessarily lead to a pure population of cells, but rather a population 119 

of cells with different levels of maturity along a particular developmental lineage. For example, the SKM 120 
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population likely contains fully differentiated muscle fibers as well as a small population of proliferating 121 

satellite cells; for clarity we refer to this as the SKM cell type. As these different cell types are not shared 122 

between tissues, we use cell type-specific and tissue-specific interchangeably throughout the 123 

manuscript.  124 

 125 

Two independently generated hybrid lines were differentiated for each cell type and at least two 126 

biological replicates per hybrid line per cell type were collected (see Methods). Each cell type was 127 

sequenced to an average depth of 134 million paired-end reads (Supp Fig. 1). We used a computational 128 

pipeline to quantify ASE adapted from the pipeline introduced by Agoglia et al (Agoglia et al., 2021). 129 

Briefly, we computed ASE by mapping reads to both the human and chimpanzee genomes, correcting 130 

for mapping bias, and assigning reads to the human or chimpanzee genome if a read contained one or 131 

more human-chimpanzee single nucleotide differences (see Methods).  132 

 133 

As expected, the samples clustered predominantly by cell type (Fig. 1b-c). Within four of the six cell type 134 

clusters, individual samples clustered by line rather than species of origin, potentially indicating line to 135 

line variability in differentiation (Fig. 1b). This highlights the importance of measuring ASE which, by 136 

definition, is measured within each line and so robust to variability between lines. Indeed, when 137 

performing PCA within cell types using allelic counts (i.e. counting reads from the human allele and 138 

chimpanzee allele separately), human and chimpanzee species differences were clearly separated by 139 

principal component (PC) 1 or PC2 in each cell type (Fig. 1d, Supp Fig. 2). To assess the success of our 140 

differentiations, we examined each cell type for the expression of known marker genes in our RNA-seq 141 

data (Fig. 1e, Supp Fig. 3). All cell types express canonical marker genes and do not express pluripotency 142 

markers, indicating that the differentiations were successful (Fig. 1e, Supp Fig 3, Additional file 1) 143 
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(Burridge et al., 2014; Chal et al., 2016; Korytnikov & Nostro, 2016; Mallanna & Duncan, 2013; Maury et 144 

al., 2015; Sharma et al., 2019).  145 

 146 

Because our hybrid cells were grown concurrently with their human and chimpanzee diploid “parental” 147 

cells, we performed an additional check for purity of the hybrid lines by quantifying genome-wide ASE. 148 

We noticed that among our 25 RNA-seq samples, the two PP hybrid2 samples had a slight bias towards 149 

higher expression from the chimpanzee alleles across all chromosomes. This is likely due to a small 150 

fraction of contaminating chimpanzee cells in these samples. We corrected for this by reducing the 151 

chimpanzee allele counts such that the number of reads assigned to the human and chimpanzee alleles 152 

was equal. By simulating contamination of a hybrid sample with chimpanzee cells, we found that this 153 

correction was conservative and that the log fold-change estimates were largely unaffected by 154 

contamination after this correction (Methods, Supp Fig. 4).  155 

 156 

We next investigated which genes were differentially expressed between the human and chimpanzee 157 

allele in each cell type (Fig. 2a). We identified thousands of genes showing significantly biased ASE in 158 

each cell type at a false discovery rate (FDR) cutoff of 0.05 (Fig. 2b). We detected a comparable number 159 

of ASE genes in all cell types except SKM. As a result, we repeated all subsequent analyses both including 160 

and excluding SKM and obtained qualitatively similar results regardless of whether SKM was included.  161 

 162 

While a considerable number of genes had significant ASE in all cell types, many more genes only had 163 

significant ASE in a single cell type, suggesting cell type-specific cis-regulatory divergence (Fig. 2b). A 164 

notable family of developmentally important genes that exemplifies differences in ASE across cell types 165 

is the neurotrophins and their receptors (Fig. 2c) (Caporali & Emanueli, 2009; Huang & Reichardt, 2001). 166 

For example, NTRK3, which plays a key role in the development of the nervous system, is only 167 
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differentially expressed in RPE and MN but is chimpanzee-biased in RPE and human-biased in MN (Supp 168 

Fig. 5) (Ichim et al., 2012; Naito et al., 2017). In addition, the gene coding for its primary ligand (NTF3) is 169 

differentially expressed in a variety of cell types yet is human-biased in all cell types except MN in which 170 

it is chimpanzee-biased (Supp Fig. 5). NTRK1 differential expression is similarly tissue-specific as it is 171 

strongly chimpanzee-biased in MN, but human-biased in CM and SKM (Supp Fig. 5). These results 172 

indicate that the regulatory landscape of these genes has undergone many complex cis-regulatory 173 

changes as the human and chimpanzee lineages have diverged.  174 

 175 

To further investigate the relationship between tissue-specificity and ASE, we asked whether genes with 176 

variable expression across tissues are more likely to show ASE. Using a standard definition of cell type-177 

specific genes—those with detectable expression in only one cell type in our study—we found that cell 178 

type-specific genes were typically enriched for ASE in the one cell type where they are expressed (Supp 179 

Fig. 6) (GTEx Consortium, 2017; Jain & Tuteja, 2019). However, other cell type-specific expression 180 

patterns such as uniquely low expression in a particular cell type may also indicate an important dosage-181 

sensitive function in that cell type. We therefore focused on a broader definition of cell type-specificity 182 

in which genes that are differentially expressed between one cell type and all others in our study (FDR < 183 

0.05 for each pairwise comparison) are considered cell type-specific for that cell type. We found that 184 

this more inclusive definition, which assigned many more genes to be cell type-specific, showed an even 185 

more significant ASE enrichment than the narrower definition (Fig. 2d). This result is not sensitive to the 186 

choice of FDR cutoff nor driven solely by a subgroup of highly expressed genes as it is well-preserved 187 

across FDR cutoffs (Supp Fig. 7) and different gene expression levels (Supp Fig. 8). This trend is also 188 

robust to separating samples into two groups and using one to define cell type-specific genes and the 189 

other to identify differentially expressed genes. This controls for spurious relationships that can result 190 
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when the same data are used to define two different quantities which are then compared (Supp Fig. 9) 191 

(Fraser, 2019). 192 

 193 

This enrichment (Fig. 2d) suggests that tissue-specific genes may have less constraint and/or more 194 

frequent positive selection on their expression. We reasoned that if the trend was solely driven by 195 

constraint, then controlling for constraint—even if imperfectly—would be expected to reduce the 196 

strength of the relationship. To investigate this, we binned genes by their variance in ASE across a large 197 

cohort of human samples which we have previously shown acts as a reasonable proxy for evolutionary 198 

constraint on gene expression (Castel et al., 2020; Starr et al., 2023). Across cell types, we generally 199 

observe significant enrichments in each bin and little difference in enrichment between bins, suggesting 200 

that differences in constraint on expression of cell type-specific vs. ubiquitously expressed genes are not 201 

solely responsible for our observations (Supp Fig. 10). Furthermore, we observe even stronger 202 

enrichments using an alternative constraint metric, the probability of haploinsufficiency score (pHI) 203 

likely due to the larger number of genes for which pHI can be calculated (Supp Fig. 11) (Collins et al., 204 

2022). Overall, our analysis suggests that differences in constraint are unlikely to fully explain these 205 

trends, suggesting a potential role for positive selection.  206 

 207 

Lineage-specific selection has acted on tissue-specific gene expression divergence 208 

 209 

Next, we sought to use our RNA-seq data to identify instances of lineage-specific selection. We used a 210 

previously published method that incorporates a tissue-specific measure of constraint on gene 211 

expression to test whether groups of genes have likely been under selection (Starr et al., 2023). Using 212 

this strategy, we detected several signals of putative lineage-specific selection, some of which were cell 213 

type-specific (Additional file 2). Notably, the four most significant enrichments were found in motor 214 
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neurons and cardiomyocytes and are highly relevant to those cell types (Fig. 2e; Additional file 2). In 215 

cardiomyocytes, the top pathway was “PPAR signaling pathway” which has been shown to play an 216 

important role in the regulation of heart morphology and lipid metabolism (Montaigne et al., 2021). For 217 

example, NR1H3 (also known as LXRA) is strongly upregulated in human cardiomyocytes as well as all 218 

other cell types (Supp Fig. 12a). Furthermore, this upregulation appears to have occurred in the human 219 

lineage based on data from non-hybrid cardiomyocytes as well as adult hearts (Supp Fig. 12b) (Blake et 220 

al., 2020; Pavlovic et al., 2018). Hybrid cells are essential in determining that the human-specific 221 

upregulation of NR1H3 in cardiomyocytes has a strong genetic component as NR1H3 expression is very 222 

responsive to diet and other environmental factors (Wang & Tontonoz, 2018).  223 

 224 

In motor neurons, multiple categories showed a strong bias toward higher chimpanzee expression 225 

including “sodium ion transmembrane transport” and “syntaxin binding”. The genes in these categories 226 

are of fundamental importance to the function of motor neurons as sodium ion transporters control 227 

excitability and syntaxin binding proteins play a major role in controlling the release of 228 

neurotransmitters from synaptic vesicles (Brose et al., 2019; Meisler et al., 2021). Interestingly, several 229 

key genes in these sets appear to have human-derived differences in expression that extend beyond 230 

motor neurons to other neuronal types. For example, SCN1B, SCN2B, and SYT2 have chimpanzee-biased 231 

ASE in our MN data. Similarly, these genes have human-biased expression when comparing human, 232 

chimpanzee, and rhesus macaque glutamatergic cortical neurons in a previously published dataset (Supp 233 

Fig. 13) (Kozlenkov et al., 2020). We note that several other genes in these genes sets are not 234 

differentially expressed between humans and chimpanzees in this cortical neuron dataset, emphasizing 235 

the importance of studying individual neuron types (Kozlenkov et al., 2020). Overall, the strong bias in 236 

gene expression of sodium ion transporters and syntaxin binding proteins we observe suggests lineage-237 

specific selection that may have altered the electrophysiological properties of human motor neurons.  238 
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 239 

Patterns of allele-specific chromatin accessibility reveal divergent cis-regulatory elements 240 

 241 

While ASE provides insight into what gene expression changes might underlie phenotypic differences 242 

between humans and chimpanzees, in the absence of additional data it is very difficult to prioritize 243 

which specific mutations might cause expression divergence. To begin to fill this gap, we generated 244 

ATAC-seq data from five of the six cell types (all except RPE), with each cell type sequenced to an 245 

average depth of 184 million paired-end reads (Supp Fig. 14). ATAC-seq uses a hyperactive Tn5 246 

transposase to cleave DNA that is not bound by nucleosomes to enrich for accessible chromatin (Fig. 3a), 247 

a hallmark of active cis-regulatory elements (CREs) (Buenrostro et al., 2013; Corces et al., 2017). We 248 

estimated ASCA for individual open chromatin peaks by mapping reads to both species’ reference 249 

genomes, correcting for mapping bias, generating a unified list of peaks across all samples, and then 250 

counting reads supporting each allele in each peak (see Methods). Cell types clustered well using PC1 251 

and PC2 of the ATAC-seq data, except for the HP sample which clustered closely with PP samples (Fig. 252 

3b, Supp Fig. 15). However, performing PCA on just the HP and PP samples clearly separates the two cell 253 

types (Supp Fig. 16). Within each cell type, species differences were clearly separated by PC1 or PC2 254 

(Supp Fig. 17). As an example of ASCA, the accessibility of the promoter of CTSF was strongly 255 

chimpanzee-biased, mirroring the chimpanzee-biased ASE for this gene (Fig. 3c).  256 

 257 

As a first step in analyzing the ATAC-seq data, we intersected the peaks we identified with the genomic 258 

annotations of chromatin states. These fifteen categories, predicted across many tissues and cell types 259 

by the chromHMM model (Vu & Ernst, 2022), include terms such as “TSS” (transcription start site) and 260 

“enhancer”. We then plotted the median of the absolute human-chimpanzee ASCA log fold-changes for 261 

each chromatin state and cell type (Fig 3d). The TSS and promoter annotations were the least divergent 262 
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in their accessibility, whereas regions of heterochromatin were the most divergent (Fig. 3d). To explore 263 

the relationship between interspecies differences in ASCA and ASE, we assigned peaks to the nearest 264 

TSS and computed the Pearson correlation between the allelic log fold-change of chromatin accessibility 265 

and expression within each cell type and chromatin state. As expected, TSS and promoter annotations 266 

showed the strongest correlation between ASCA and ASE, and correlations were stronger when 267 

including only differentially accessible peaks (Fig. 3e, Methods). Intriguingly however, ASCA of regions 268 

annotated as heterochromatin, polycomb repressed, or quiescent were as strongly correlated with ASE 269 

as elements identified as enhancers or DNase hypersensitivity sites (Fig. 3e). Notably this result is robust 270 

to how peaks and chromHMM annotations were intersected (Supp Fig. 18a), as well as to removal of all 271 

peaks even slightly overlapping TSS or promoter-related annotations (Supp Fig. 18b). Given that 272 

heterochromatin/quiescent regions are highly divergent in ASCA (Fig. 3d), this suggests that changes in 273 

accessibility of these regions may be particularly important in the evolution of gene expression.  274 

 275 

Next, we investigated whether the analog of the relationship between cell type-specific gene expression 276 

and ASE (Fig. 2d) holds for chromatin accessibility. Since the number of called peaks is largely dependent 277 

on sequencing depth (Supp Fig. 14, 19a), we performed down-sampling to equalize power to detect 278 

peaks across cell types (Supp Fig. 19b, Methods). We then called peaks on the down-sampled data and 279 

identified peaks as cell type-specific if they were called as peaks in only one cell type. In agreement with 280 

the gene expression data, we observed that cell type-specific peaks are enriched for ASCA across all cell 281 

types and this enrichment generally holds when using varying log2 fold-change or p-value cutoffs (Supp 282 

Figs. 20-21). Analogous to our analysis of gene expression, we also applied a broader definition of cell 283 

type-specificity to the ATAC data, in which a peak was considered specific to a cell type if that peak had 284 

an absolute log2 fold-change greater than a chosen threshold (e.g. 0.5 or 1) across all pairwise 285 

comparisons with other cell types. We observe strong enrichment for ASCA in cell type-specific peaks 286 
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using this definition except when using the most stringent cutoffs due to the very low number of peaks 287 

meeting these criteria (Supp Figs. 22-23, Methods). Finally, we observe the same enrichments when 288 

controlling for a recently published metric for constraint on non-coding elements, suggesting that 289 

differences in evolutionary constraint may not be solely responsible for the observed trends (Supp Fig. 290 

24) (S. Chen et al., 2022).  291 

 292 

We next explored the relationship between cell type-specific ASCA and ASE. To do this, we developed a 293 

novel metric called differential expression enrichment (dEE) to quantify how specific the log fold-change 294 

is to a particular cell type or tissue. Our method is based on expression enrichment (EE) (Yu et al., 2006), 295 

a metric that measures how specific gene expression is to a certain cell type/tissue. dEE estimates how 296 

cell type-specific ASE is for a gene (Supp Fig. 25, Methods) and, analogously, dCAE (differential 297 

chromatin accessibility enrichment) measures how cell type-specific ASCA is for a cis-regulatory element 298 

(Supp Fig. 26, Methods). dEE and dCAE are high in a cell type if there is a high absolute log fold-change in 299 

that cell type and much lower absolute log-fold changes or log fold-changes in the opposite direction in 300 

the other cell types. For example, dEE would be close to one for a gene in a cell type if the gene had 301 

strongly human-biased ASE in that cell type and very weakly human-biased or chimpanzee-biased ASE in 302 

the other cell types. On the other hand, if a gene did not have any strong allelic bias, that gene would 303 

have dEE close to zero. dEE is conceptually related to a metric we have previously introduced, diffASE, 304 

and generalizes diffASE to an arbitrary number of cell types and any assay that produces log fold-305 

changes (Combs et al., 2018; Hu et al., 2022; York et al., 2018). Using these metrics, we identified 154 306 

instances in which a gene with cell type-specific ASE (i.e., high dEE) had a peak with cell type-specific 307 

ASCA in the same cell type (i.e., high dCAE, see Additional file 3 for the full list). Of these, 95 showed 308 

ASCA and ASE in the same direction which is more than expected by chance (77 expected; p < 0.005, 309 

binomial test). These results suggest that tissue-specific cis-regulatory divergence in chromatin 310 
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accessibility may often impact tissue-specific gene expression, though this divergence is neither 311 

necessary nor sufficient to do so. 312 

 313 

Identifying candidate causal cis-regulatory variants by integrating ASE and ASCA across cell types 314 

 315 

As high dEE and dCAE in a given cell type might be indicative of a causal link between the change in 316 

chromatin accessibility and the change in expression, we focused on the 95 peak-gene pairs with 317 

matching direction and used two different strategies to identify examples to investigate in detail. First, 318 

we prioritized genes known to play important roles in development. For example, we found that the 319 

promoter of FABP7 has human-biased ASCA specifically in motor neurons (Fig. 4a-b) and that the FABP7 320 

gene has human-biased ASE in motor neurons (Fig 4c). FABP7 is used as a marker of glial cells and neural 321 

progenitor cells (NPCs) and plays a key role in NPC proliferation and astrocyte function (Arai et al., 2005; 322 

De Rosa et al., 2012; Ebrahimi et al., 2016; Watanabe et al., 2007). Using previously published single-323 

nucleus RNA-seq data from humans, chimpanzees, and rhesus macaques, we confirmed that FABP7 324 

shows a human-derived up-regulation in several neuronal subtypes but not glial cells (Supp Fig. 27) (Ma 325 

et al., 2022). To investigate the genetic basis of this cell type-specific divergence, we leveraged a 326 

machine learning model, Sei (K. M. Chen et al., 2022), to nominate potentially causal variants in the 327 

promoter of FABP7 (see Methods). Sei is a deep neural network that takes DNA sequence as input and 328 

predicts the probability that the sequence has a particular epigenetic state in a variety of cell types and 329 

tissues (Fig. 4d) (K. M. Chen et al., 2022). While single-base substitutions differing between human and 330 

chimpanzee had only minor impacts on predicted cis-regulatory activity, “chimpanizing” the human 331 

sequence of the FABP7 promoter at two small indels (by deleting one base at chr6: 122,779,291 and 332 

inserting three bases at chr6: 122,779,115) was sufficient to make the Sei predictions for the 333 

chimpanized human sequence closely match the predictions for the complete chimpanzee sequence 334 
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(Fig. 4e-g). Making only one of these changes had substantial but weaker effects in both cases, 335 

suggesting that both mutations might be functionally important (Fig. 4f,g). The 1-base insertion in the 336 

human lineage introduces a binding site for the neuronally expressed transcription factors GLIS2/3, 337 

suggesting a potential molecular mechanism (Calderari et al., 2018; Castro-Mondragon et al., 2022; Ke 338 

et al., 2015). 339 

 340 

As another approach to ranking the 95 peaks, we searched for peaks containing human-chimpanzee 341 

sequence differences in otherwise highly conserved genomic positions, since these could reflect changes 342 

in selective pressure. Using PhyloP scores for 241 placental mammals (Sullivan et al., 2023) to assess 343 

conservation, one of the top-ranked peaks was a putative enhancer six kilobases away from the TSS of 344 

GAD1, which plays a key role in the synthesis of the neurotransmitter GABA (Feldblum et al., 1993). 345 

Notably, part of this peak has been classified as a human accelerated region (HAR) (Girskis et al., 2021; 346 

Hubisz & Pollard, 2014; Pollard et al., 2006)—a short sequence that is highly conserved in mammals yet 347 

contains an unusual number of human-specific mutations. Both the accessibility in the peak and GAD1 348 

expression are only chimpanzee-biased in motor neurons (Fig. 4a-c, Supp Fig. 28). Applying Sei to 349 

estimate the predicted effect of every variant in this region, we found that a single-nucleotide 350 

substitution within the HAR (chr2: 170,823,193) has by far the largest predicted cis-regulatory effect and 351 

most closely matches the differences in Sei predictions between the full human and chimpanzee 352 

haplotypes (Fig. 4d-g). Interestingly, this mutation is predicted to disrupt a binding site for several basic 353 

helix-loop-helix transcription factors that play essential roles in neuronal differentiation such as Ascl1 354 

(Supp Fig. 29) (Castro-Mondragon et al., 2022; Mizuguchi et al., 2006; Yang et al., 2017).  355 

 356 

As GAD1 is only highly expressed in GABAergic neurons (and was therefore lowly expressed in the cell 357 

types studied here, Supp Fig. 30a), we investigated whether this reduced expression of human GAD1 358 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.541747doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.22.541747
http://creativecommons.org/licenses/by-nc/4.0/


also occurs in cortical organoids which contain GABAergic neurons together with other cell types in 359 

which GAD1 is not highly expressed. We analyzed our previously published data from human-360 

chimpanzee hybrid cortical organoids (Agoglia et al., 2021) and found that the expression of GAD1 from 361 

the chimpanzee allele spikes higher than that of the human allele around day 50 of hybrid cortical 362 

organoid differentiation before dropping in expression over time to match the human expression level 363 

(Supp Fig. 30b). Because ASE in the hybrid cells controls for any potential interspecies differences in 364 

differentiation kinetics or cell type composition, this difference must be the result of cis-regulatory 365 

divergence between humans and chimpanzees. This expression difference is also more pronounced in 366 

comparisons of human and chimpanzee parental cortical organoids, with a higher absolute log fold-367 

change at day 50, day 100, and day 150, only returning to equal expression at day 200 (Supp Fig. 30c). 368 

While this could be due to differences in cell type proportion between human and chimpanzee 369 

organoids, it might also be due to a reinforcing trans-acting effect.  370 

 371 

To test whether this difference in expression also occurs specifically during GABAergic neuron 372 

differentiation we examined GAD1 expression in single cell RNA-seq data from human and chimpanzee 373 

cortical organoids (Kanton et al., 2019). We observed a spike in GAD1 expression in less mature 374 

chimpanzee GABAergic neurons that is absent in the corresponding part of the trajectory in human 375 

neurons (Supp Fig. 31). Notably, a similar trend holds regardless of which GABAergic sub-trajectory (i.e., 376 

equivalent to GABAergic neurons from the caudal, lateral, or medial ganglionic eminences) is examined 377 

suggesting this difference is not unique to a particular type of GABAergic neuron (Supp Fig. 31). Finally, 378 

we examined the accessibility of the putative GAD1 enhancer more closely. Consistent with a potential 379 

role for this enhancer in the spike in GAD1 expression during development, the accessibility of this 380 

enhancer mirrors the expression of GAD1 in human cortical and striatal organoids (Supp Fig. 32) with 381 

high accessibility between day 50 and day 100 before decreasing somewhat near day 150 (Trevino et al., 382 
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2020). Overall, our results demonstrate how the combination of RNA-seq, ATAC-seq, and machine 383 

learning models can nominate variants that may be responsible for cell type-specific changes in gene 384 

expression and chromatin accessibility.  385 

 386 

Discussion 387 

 388 

In this study, we quantified human-chimpanzee cis-regulatory divergence in gene expression and 389 

chromatin accessibility in six different cell types representing diverse developmental lineages. Across the 390 

thousands of genes with ASE, we found that most cis-regulatory divergence is specific to one or a few 391 

cell types. Furthermore, we found that divergent cis-regulation is linked to tissue-specificity, with tissue-392 

specific genes being enriched for ASE and tissue-specific regulatory elements being enriched for ASCA. 393 

As this result was largely unchanged when stratifying by evolutionary constraint, our results suggest that 394 

changes in the expression of genes with more cell type-specific expression patterns may be less 395 

deleterious than changes in more broadly expressed genes, supporting the idea that cell-type specific 396 

divergence may be less pleiotropic (Wittkopp & Kalay, 2012). Overall, this suggests that broad changes 397 

in expression in cell type-specifically expressed genes may be an important substrate for evolution. 398 

 399 

We also identified several sets of genes evolving under lineage-specific selection that may have played a 400 

role in establishing unique facets of human physiology and behavior. Most interestingly, we found 401 

evidence for selection on sodium ion transporters and syntaxin binding proteins that may alter the 402 

electrophysiological properties of motor neurons, and potentially other types of neurons as well (Brose 403 

et al., 2019; Meisler et al., 2021). The complexity of the molecular machinery regulating neuronal 404 

excitability and synaptic vesicle release make it difficult to say what the effects of these gene expression 405 

changes are on the excitability of motor neurons without electrophysiology data from human and great 406 
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ape neurons coupled with perturbation of candidate genes. However, given the divergence in 407 

locomotion and motor skills between humans and chimpanzees, it is tempting to speculate that these 408 

changes may have had some role in the evolution of motor control and learning in humans.  409 

 410 

In this work, we developed two metrics—dEE and dCAE—to quantify the degree of cell type-specific 411 

differential expression and accessibility. These metrics are largely analogous to widely used metrics that 412 

quantify tissue- or cell type-specific expression level and applicable to any comparison of log fold-413 

changes across conditions. They markedly improved our ability to identify matching cell type-specific 414 

ASE and ASCA and led to the identification of 95 peak-gene pairs that had highly cell type-specific 415 

concordant changes in accessibility and expression. 416 

 417 

One such example is a potentially human-derived increase in FABP7 expression in several types of 418 

human neurons. As FABP7 is not highly expressed in adult mouse neurons, the functional consequences 419 

of its higher expression in human neurons are difficult to predict (Yao et al., 2021). FABP7 plays a role in 420 

the uptake of the fatty acid Docosahexaenoic Acid (DHA), an important component of neuronal 421 

membranes (Akbar et al., 2005; Choi et al., 2021). DHA promotes neuronal survival through 422 

phosphatidylserine accumulation, so it is possible that the human-specific FABP7 expression increases 423 

neuronal DHA uptake leading to reduced apoptosis in human neurons during development and 424 

ultimately contributing to a larger number of neurons in humans (Akbar et al., 2005; Choi et al., 2021). 425 

 426 

In addition, we identified a highly conserved developmentally dynamic enhancer near GAD1 that may 427 

have partially lost activity in the human lineage resulting in a decrease in GAD1 expression early in 428 

GABAergic neuron development. By integrating with the deep learning model Sei, we identified a variant 429 

that may account for the chimpanzee-biased ASCA in this region (K. M. Chen et al., 2022). Interestingly, 430 
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the ASE of GAD1 was coupled with a relatively small (though significant) magnitude of ASCA. This could 431 

potentially reflect divergence in transcription factor binding that leaves a “footprint” resulting in subtle 432 

ASCA (Vierstra et al., 2020). Overall, our data suggest that this enhancer has lost activity in the human 433 

lineage, potentially altering the expression pattern of GAD1 during neuronal development. GAD1 is the 434 

rate-limiting enzyme for GABA synthesis so GABA levels are likely responsive to changes in GAD1 435 

expression (Feldblum et al., 1993). GABA release has complex context-specific effects on 436 

neurodevelopment making it difficult to speculate as to what the phenotypic effects of reduced GABA 437 

synthesis during human neurodevelopment might be (Ben-Ari et al., 2012). However, the high 438 

conservation of this cis-regulatory element in placental mammals implies that its human-specific 439 

disruption is likely to have important neurodevelopmental effects. Careful perturbation of this enhancer 440 

and GAD1 expression in mouse models will be required to explore this further. 441 

 442 

Overall, our study provides foundational data, insight, and computational tools that will improve our 443 

understanding of cell type-specific cis-regulatory evolution and the role it has played in the 444 

establishment of human-specific traits.  445 

  446 
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Figure 1: Allele-specific expression across diverse human-chimpanzee hybrid cell types. a) Six cell types 446 

were differentiated from human-chimpanzee hybrid induced pluripotent stem cells. These six cell types 447 

represent diverse body systems, including motor neurons for the central nervous system, retinal 448 

pigment epithelium for eye, skeletal myocytes for skeletal muscle, cardiomyocytes for the heart, 449 

hepatocyte progenitors for the liver, and pancreatic progenitors for the pancreas. b) Heatmap showing 450 

the result of hierarchical clustering performed on genes with highly variable normalized allele counts. c) 451 

Result of running PCA on normalized allelic counts for all samples and cell types. d) Result of PCA 452 

performed on normalized allele counts for each individual cell type separately. Cardiomyocytes and 453 

motor neurons are shown here. e) Expression of marker genes for each cell type. 454 
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Figure 2: Human-chimpanzee ASE is largely cell type-specific. a) Outline of measurement of allele-455 

specific expression. Reads from the human and chimpanzee alleles are counted and differences in read 456 

counts identified. b) Thousands of genes with ASE were identified for each cell type, with many genes 457 

only showing ASE in a single cell type (Conway et al., 2017). c) The neurotrophins and their receptors as 458 

examples of genes showing cell type-specific ASE patterns. DESeq2 estimate of log2 fold-change 459 

(human/chimpanzee) are shown in the heatmap and significance is indicated by asterisks where *** 460 

indicates FDR < 0.005, ** indicates FDR < 0.01, and * indicates FDR < 0.05. Zero asterisks (i.e. a blank 461 

box) indicates FDR > 0.05. d) Plot showing that genes with ASE are enriched for genes showing cell type-462 

specific expression patterns across all cell types. Asterisks indicate p-values rather than FDR using the 463 

same system as in 2c. e) Top gene sets with evidence for lineage-specific selection in cardiomyocytes 464 

and motor neurons are shown. The length of the bars indicates the number of genes in a category with 465 

biased expression in each cell type. 466 

  467 
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Figure 3: Allele-specific chromatin accessibility across diverse human-chimpanzee hybrid cell types. a) 468 

Schematic outlining the ATAC-seq protocol. A hyperactive transposase cleaves accessible DNA and adds 469 

adapters enabling measurement of chromatin accessibility. b) PCA on normalized allelic counts from 470 

ATAC-seq. c) ASCA in the promoter of CTSF, and ASE for the CTSF gene. d) Differences in ASCA were 471 

quantified and plotted separately based on chromHMM annotation. The order is based on the median 472 

of z-score transformed absolute log fold-change between human and chimpanzee across all cell types, 473 

with higher z-scores indicating greater divergence in accessibility. e) Pearson correlation between ASE 474 

and ASCA for all cell types with all peaks (left) or only differentially accessible peaks (right, defined as 475 

peaks with nominal binomial p-value less than 0.05). Pearson’s r values are shown in the heatmap and 476 

significance is indicated by asterisks where *** indicates p < 0.005, ** indicates p < 0.01, and * indicates 477 

p < 0.05. Zero asterisks (i.e. a blank box) indicates p > 0.05. 478 

  479 
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Figure 4: Motor neuron-specific human-biased ASE and ASCA for FABP7 and the promoter of FABP7. a) 480 

Allelic ATAC-seq tracks are shown in the peak containing the annotated FABP7 promoter (highlighted in 481 

yellow). b) The top panel shows allelic CPM of the FABP7 promoter across cell types and the bottom 482 

panel shows the log fold-change across cell types. c) The top panel shows allelic CPM of the FABP7 gene 483 

across cell types and the bottom panel shows the log fold-change across cell types. d) Outline of the 484 

process for variant effect prediction with Sei for FABP7. All sequences input to Sei were centered at the 485 

FABP7 promoter. The human sequence, chimpanzee sequence, and partially “chimpanized” human 486 

sequences (modified by systematically switching the human allele to the chimpanzee allele separately 487 

for each human-chimpanzee difference) were fed into Sei to predict the effects of these variants on 488 

chromatin state. e) Histogram of the probabilities of various chromatin states and transcription factor 489 

binding predicted by Sei was plotted for the human sequence, the chimpanzee sequence, and the 490 

human sequence with one human-chimpanzee difference swapped to match the chimpanzee sequence. 491 

The human sequence with SNV26 changed to the chimpanzee allele and the human sequence switched 492 

at both indels are shown as examples. A histone modification (H3K4me3) predicted in two cell types was 493 

labeled to illustrate how the predictions depend on both input sequence and cell type. f) Plot of the 494 

predicted effects of all single nucleotide differences and indels between the human and chimpanzee 495 

genomes in the Sei input window (the FABP7 promoter is highlighted in yellow). g) Scatterplots showing 496 

the correlation of the effects of both indels (left panel), each individual indel (middle two panels), and a 497 

representative SNV (right panel) on Sei predictions with the difference in Sei predictions between the 498 

human and chimpanzee sequences. The root mean square error (RMSE) was computed and shown in 499 

each figure.  500 

  501 
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Figure 5: Motor neuron-specific chimpanzee-biased ASE for GAD1 and ASCA for a HAR near the GAD1 502 

TSS. a) Allelic ATAC-seq tracks are shown for the peak near the GAD1 TSS that contains a HAR 503 

(highlighted in yellow). b) The top panel shows allelic CPM of the CRE near the GAD1 TSS across cell 504 

types and the bottom panel shows the log fold-change across cell types. c) The top panel shows allelic 505 

CPM of the GAD1 gene across cell types and the bottom panel shows the log fold-change across cell 506 

types. d) Outline of the process for variant effect prediction with Sei for GAD1. All input sequences to Sei 507 

were centered at the HAR. The human sequence, the chimpanzee sequence, and modified sequences 508 

with the human sequence altered at each substitution to match the chimpanzee sequence were fed into 509 

the Sei sequence model to predict the effects of these variants on the chromatin state. e) Histogram of 510 

the probabilities of various chromatin states and transcription factor binding predicted by Sei was 511 

plotted for the human sequence, the chimpanzee sequence, and two examples in which the human 512 

sequence with only one SNV “chimpanized” (human w/SNV) was input to Sei. The histogram of the 513 

probability of the sequence having a particular epigenomic annotation (predicted by Sei) was plotted for 514 

human, chimpanzee, human w/SNV1 changed to match the chimpanzee sequence, and human w/SNV21 515 

changed to match the chimpanzee sequence. Two epigenomic annotations were labeled as examples 516 

that show the different values output by Sei with these two different sequence inputs. f) Plot of the 517 

predicted effects of all single nucleotide differences between human and chimpanzee in the Sei input 518 

window centered at the HAR (highlighted in yellow). Positions were switched to the chimpanzee allele 519 

individually. g) Scatterplots showing the correlation of the effects of four SNVs on Sei predictions with 520 

the difference in Sei predictions between the human and chimpanzee sequences. The root mean square 521 

error (RMSE) was computed and shown in each figure. 522 
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Methods: 524 

Generation of multiple human-chimpanzee hybrid cell types 525 

We used two previously described human-chimpanzee hybrid iPS cell lines ( hybrid1 and hybrid2, 526 

previously denoted Hy1-25 and Hy1-30 respectively) (Agoglia et al., 2021). Before differentiation, cells 527 

were routinely cultured on matrigel in mTeSR1 or mTeSR Plus (Stem Cell Technologies cat #85850 or cat 528 

#100-0276). Culture and in vitro differentiation of iPS cells into six cell types (motor neurons (MN), 529 

cardiomyocytes (CM), hepatocyte progenitors (HP), pancreatic progenitors (PP), skeletal myocytes 530 

(SKM), and retinal pigment epithelium (RPE)) was carried out by the Columbia Stem Cell Core Facility 531 

using published protocols (Burridge et al., 2014; Chal et al., 2016; Korytnikov & Nostro, 2016; Mallanna 532 

& Duncan, 2013; Maury et al., 2015; Sharma et al., 2019). 533 

 534 

Preparation of RNA-seq libraries 535 

All samples were cryopreserved in liquid nitrogen before RNA extraction (Milani et al., 2016). Cells were 536 

gently thawed and then washed with PBS and cell pellets were collected via centrifugation at 1,000 RPM 537 

for 5 minutes. Cell pellets were loosened by flicking the tube and an appropriate volume of Buffer RLT 538 

based on the cell count were added following the RNeasy Mini Kit (Qiagen, 74104) protocol. Total RNA 539 

extraction and on-column DNAse digestion were performed using RNeasy Mini Kit (Qiagen, 74104) and 540 

RNase-Free DNase Set (Qiagen, 79254). RNA quality was assessed using the Agilent Bioanalyzer RNA Pico 541 

assay. Only samples with an RNA integrity number (RIN) greater than or equal to 7 were used to prepare 542 

cDNA libraries. All RNA-seq libraries except 3 motor neuron libraries (2 hybrid2 and 1 hybrid1) were 543 

prepared using the TruSeq Stranded mRNA kit (Illumina, 20020594) and the TruSeq RNA CD Index Plate 544 

(Illumina, 20019792) from between 100 ng and 1 ug total RNA following the manufacturer’s protocols. 545 

The other three motor neuron libraries were prepared using Illumina Stranded mRNA Prep (Illumina, 546 

20040532) and IDT for Illumina RNA UD Indexes Set A, Ligation (Illumina, 20040553) due to low yield of 547 
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total RNA. Notably, the four motor neuron libraries did not cluster by library preparation method. All 548 

libraries were normalized, pooled at an equimolar ratio using Qubit measurements, and sequenced on 549 

an Illumina HiSeq 4000 to generate 2x150bp paired-end reads.  550 

 551 

Identification of confident human-chimpanzee SNVs 552 

To identify a confident list of human-chimpanzee SNVs that could be used to quantify allele-specific 553 

expression and chromatin accessibility, we first downloaded hg38-panTro6 MAF files from UCSC and 554 

whole-genome sequencing data generated from the parental human and chimpanzee iPS cells (in the 555 

form of bam files aligned to hg38 and panTro5, generously provided by the Gilad lab). We first 556 

converted them back to fastq files and then mapped reads to panTro6 and hg38 (we mapped both 557 

human and chimpanzee to both reference genomes) using bowtie2 with the flags —very-sensitive-local -558 

p 16 (Langmead & Salzberg, 2012). We then used a modified version of our previous approach to filter 559 

out SNVs that could not be confidently identified as homozygous in the human and chimpanzee parental 560 

lines (Agoglia et al., 2021). Briefly, we extracted SNVs and indels from both human and chimpanzee MAF 561 

files, counted reads in the WGS data that supported the human, chimpanzee, or an alternative base at 562 

that position, then filtered out any SNVs with < 2 reads or < 90% of reads supporting that species’ base. 563 

We then reformatted files, merged with indels for use in Hornet, and generated a modified bed file of 564 

SNVs that includes the human and chimpanzee base at the SNV position (van de Geijn et al., 2015).  565 

 566 

Generation of allele-specific count tables  567 

An allele specific expression mapping and calling pipeline adapted from Agoglia et al. and our updated 568 

high-confidence SNV list was used. The whole pipeline was carried out twice independently using hg38 569 

or panTro6 as the reference genome. This approach was taken to eliminate genes showing strong 570 

mapping bias, defined here as genes with an absolute difference in log fold-change between the 571 
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panTro6 referenced and hg38 referenced runs greater than one. All sequencing reads were trimmed 572 

with SeqPrep (adapters specified by the manufacturer for the different library preparation kits) and 573 

mapped using STAR with two passes and the following parameters: --outFilterMultimapNmax 1 (Dobin 574 

et al., 2013; John St. John, n.d.). Uniquely aligned reads were deduplicated with Picard and Hornet (an 575 

implementation of WASP which first removes reads overlapping indels) was used to correct for mapping 576 

bias (Broad Institute, n.d.; van de Geijn et al., 2015). Reads were assigned to either the human allele if 577 

they contained one or more human-chimpanzee single nucleotide differences that matched the human 578 

sequence and zero positions that matched the chimpanzee sequence (and vice versa for assigning reads 579 

to the chimpanzee allele) and counted per gene as previously described (Agoglia et al., 2021).  580 

 581 

Detection of aneuploidy on chromosome 20 and slight chimpanzee parental contamination in PP 582 

hybrid2 samples  583 

In our quality control process, we plotted the log fold-change for each gene along every chromosome 584 

and inspected the results. This revealed a clear bias toward the human allele on a part of chromosome 585 

20 for hybrid2 samples, suggesting chromosome 20 aneuploidy which was also reported by Agoglia et al 586 

(Agoglia et al., 2021). As a result, we excluded chromosome 20 from all downstream analyses. In 587 

addition, we found that PP hybrid2 samples had a slight bias toward the chimpanzee allele across every 588 

chromosome which was most likely due to a small fraction of contaminating chimpanzee cells in these 589 

samples. Rather than removing these samples, we normalized the allele-specific count tables by 590 

subtracting a small number of reads from the chimpanzee allele counts calculated based on the biased 591 

ratio summarized from genome wide human and chimpanzee allele counts, to force a global log fold-592 

change (across all autosomes except chromosome 20) of zero between the human and chimpanzee 593 

alleles. We applied this normalization to all other samples as well. To evaluate the success of this 594 

strategy, we took hybrid and chimpanzee parental iPSC RNA-seq from Agoglia et al (Agoglia et al., 2021) 595 
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from the same iPS cell lines as used in this study, and then simulated chimpanzee parental 596 

contamination by mixing chimpanzee parental data into hybrid 2 data to reach similar a similar degree 597 

of chimpanzee bias level to that observed in the PP hybrid2 samples. We then identified genes showing 598 

ASE (see “Identifying genes with ASE”) using the counts from the original hybrid samples, simulated 599 

contaminated samples, and corrected simulated contaminated samples respectively and compared the 600 

outputs (Supp Fig. 4). 601 

 602 

PCA and hierarchical clustering 603 

Allelic counts were normalized by DESeq2 rlog and principal components analysis (PCA) was performed 604 

on rlog normalized allelic counts with default centering and scaling (Love et al., 2014). The top 1,000 605 

variable genes with the highest variance of normalized allelic counts across all cell types were used to 606 

compute Euclidean distance matrices. The R package pheatmap was used to do hierarchical clustering 607 

and heatmap plotting.  608 

 609 

Identifying genes with ASE  610 

DESeq2 was used to measure allele-specific expression (ASE) in each cell type (Love et al., 2014). All 611 

reads from chromosome 20 were removed (as mentioned above). Two replicates per hybrid line per cell 612 

type (plus one additional replicate for SKM hybrid2 for a total of 3 samples) were used by DEseq2 with 613 

model ~hybLine+Species to measure differential expression level. A likelihood ratio test (test="LRT", 614 

betaPrior=FALSE) was used to compute p-values. P-values were then false discovery rate adjusted using 615 

an implementation of the Benjamini-Hochberg correction in the R package qvalue (Benjamini & 616 

Hochberg, 1995; Storey Lab, n.d.). Log fold-changes were shrunk as recommended by the DESeq2 617 

pipeline (Zhu et al., 2019). Differentially expressed genes were defined as those with FDR < 0.05 when 618 
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aligned to hg38 and panTro6 as well as an absolute difference in log fold-change <= 1 when comparing 619 

the results from the two alignments.  620 

 621 

Identifying cell type-specifically expressed genes 622 

For the more traditional definition of cell type-specific genes, we required transcripts per million (TPM) 623 

< 1 for a gene in every cell type except one. In the cell type with TPM > 1, we varied how highly 624 

expressed the gene had to be in that cell type (again using a TPM cutoff, varying between one and five) 625 

to consider that gene to be specific to that cell type. A similar process to the one described in 626 

“Identifying differentially expressed genes” was used to identify cell type-specific genes based on the 627 

broader definition described in the main text. Rather than using allelic counts, total counts for each 628 

sample (i.e. all uniquely mapping deduplicated reads regardless of their allelic origin) were computed by 629 

summing all allelic and non-allelic counts. These counts were inputted to DESeq2 and the expression of 630 

each gene was compared pairwise between all cell types (Love et al., 2014). Genes were defined as cell 631 

type-specifically expressed in a cell type only if all pairwise comparisons between that cell type and 632 

other cell types resulted in an FDR < 0.05 using both hg38 and panTro6 aligned counts. Due to the 633 

markedly lower number of differentially expressed genes identified in SKM, results were computed both 634 

including and excluding SKM. An analogous procedure was used to identify more broadly defined cell 635 

type-specific peaks in the down-sampled ATAC-seq dataset. Peaks were defined as specific to a cell type 636 

if the absolute log fold-change was greater than 0.5 across all pairwise comparisons with the other cell 637 

types. We also tested an absolute log fold-change threshold of 1 to ensure that our results were not 638 

sensitive to the choice of cutoff. 639 

 640 

Enrichment test for genes with cell type-specific expression patterns and genes showing ASE 641 
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Odds ratios were calculated using the unconditional maximum likelihood estimate implemented in the R 642 

package epitools function oddsratio.wald (), and 95% confidence intervals and p-values were calculated 643 

using the normal approximation. A directly analogous procedure was performed to test for enrichment 644 

of peaks with ASCA and cell type-specific peaks. 645 

 646 

Enrichment test stratified by expression level or evolutionary constraint 647 

Enrichment tests were carried out as in ‘Enrichment test of cell type-specific expression patterns and 648 

genes showing ASE’ except that genes were split into five equal size bins depending on which factors 649 

were used to stratify genes, and tests were done in each bin. When stratifying by expression level, genes 650 

were ordered in ascending order based on expression level (TPM) and then split into 5 equal size bins 651 

where genes in the 0-20% bin are the most lowly expressed genes and genes in the 80-100% bin are the 652 

most highly expressed genes. When stratifying by constraint metrics such as ASE variance or pHI, genes 653 

were ordered in ascending order based on ASE variance values and then split into five equal size bins 654 

where the 0-20% bin contains genes with the lowest ASE variance (i.e. most evolutionarily constrained) 655 

and the 80-100% bin contains genes with highest ASE variance (i.e. least evolutionarily constrained). To 656 

stratify the ATAC data by constraint, we used the “QCed genomic constraint by 1kb regions” computed 657 

by the gnomAD consortium (S. Chen et al., 2022). We further removed any regions that overlapped 658 

protein coding exons from the human gtf file using bedtools subtract  (Quinlan & Hall, 2010). If a peak 659 

overlapped two or more 1 kilobase windows, it was assigned to the window with the highest constraint, 660 

mirroring the procedure used by the gnomAD consortium to assign peaks to ENCODE regulatory 661 

elements (S. Chen et al., 2022). Once the peaks were ranked by this metric, a procedure identical to that 662 

for the gene expression constraint metrics outlined above was performed.  663 

 664 

Identification of lineage-specific selection on gene expression 665 
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We used a modified version of our previously published pipeline, which uses ASE values from many 666 

individuals of a single species to estimate cis-regulatory constraint of each gene (Starr et al., 2023). We 667 

restricted these ASE values to GTEx samples from the tissue (s) of origin for each cell type (with the 668 

exceptions of RPE which was compared to all GTEx samples and MN which was compared to all brain 669 

and peripheral nerve samples as more closely matches tissues such as eyes for RPE are not available in 670 

GTEx). We then used the Mann-Whitney U test to compare the human population ASE distribution to 671 

the human-chimpanzee ASE distribution as previously described (Starr et al., 2023). We then used the 672 

previously described signed ranking by Mann-Whitney p-value that incorporates whether a gene has 673 

human or chimpanzee-biased ASE with GSEAPY and the binomial test to identify instances of lineage-674 

specific selection (Starr et al., 2023). Due to the focus on tissue-specificity, we did not filter redundant 675 

gene sets with GSEAPY FDR < 0.25 in multiple cell types (Starr et al., 2023; Subramanian et al., 2005).  676 

 677 

Preparation of ATAC-seq libraries 678 

We used the OmniATAC protocol with the only modification being the use of 25,000 cells instead of 679 

50,000 since the fused iPS cells are tetraploid (Corces et al., 2017). All samples for ATAC-seq prep were 680 

from the same vials used in RNA-seq library preparation except for the motor neuron libraries due to the 681 

low yield of total RNA extracted from motor neurons. After library preparation and running samples on a 682 

Bioanalyzer, we noticed a considerable number of fragments greater than 1000 bases in length. To 683 

reduce these fragments, we size selected with Ampure beads using the protocol from the Kaestner lab 684 

available here: https://www.med.upenn.edu/kaestnerlab/assets/user-content/documents/ATAC-685 

seq-Protocol- (Omni)-Kaestner-Lab.pdf. 686 

After size selection and rerunning on the Bioanalzyer, we pooled the libraries together and sequenced 687 

them to compute quality control metrics. We used the R package ChrAccR to compute TSS enrichment 688 

scores (Mueller, Fabian, n.d.). We pooled all libraries with TSS enrichment score greater than 3.5. This 689 
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resulted in 2 CM libraries, 2 MN libraries, 2 PP libraries, 1 SKM library, and 1 HP library. After pooling, 690 

libraries were sequenced on an Illumina Hiseq 4000 to produce 2x150 paired-end reads. 691 

 692 

Mapping the ATAC-seq data 693 

We trimmed reads using SeqPrep and then mapped them to the hg38 and panTro6 reference genomes 694 

with bowtie2 in paired-end mode (John St. John, n.d.; Langmead & Salzberg, 2012). The following 695 

parameters were used: -X 2000 --very-sensitive-local -p 16. After mapping, duplicates were removed via 696 

Picard MarkDuplicates (Broad Institute, n.d.). We then removed multi-mapping reads with the command 697 

samtools view -b -q 10 (Li et al., 2009). Due to the format of bowtie2’s output, running Hornet on all 698 

reads at once was excessively RAM intensive. Therefore, we split the bam files by chromosome and ran 699 

Hornet on each of the chromosomes separately. We used the files of SNVs and indels generated as 700 

described above as input to Hornet. After Hornet finished running, we used samtools merge to merge all 701 

autosomes and sex chromosomes (we excluded the mitochondrial genome) to create a final bam file for 702 

downstream analysis (Li et al., 2009).  703 

 704 

Peak calling and filtering 705 

As only one replicate was available for SKM and HP, we generated two pseudo-replicates by randomly 706 

assigning reads to one of two files using Picard SplitSamByNumberOfReads (Broad Institute, n.d.). We 707 

then called peaks on each file separately, as well as a merged file containing all the reads from a 708 

particular cell type. For example, for MN, both replicates were pooled and peaks were called on that file 709 

as well as the two replicates separately. Before peak calling, all bam files were converted to bed files. 710 

We called peaks using MACS2 callpeak with the following arguments: -f BED -p 0.01 --nomodel --shift 75 711 

--extsize 150 -B --SPMR --keep-dup all --call-summits (Y. Zhang et al., 2008, p. 2). We called peaks on 712 

both the chimpanzee-referenced and human-referenced bam files. After peak calling, we sought to filter 713 
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peaks using a modified version of the ENCODE pipeline designed to eliminate peaks that lack a one-to-714 

one ortholog between humans and chimpanzees. The following pipeline was run on each cell type 715 

separately. We first filtered peaks that were not called in both replicates as well as the pooled file using 716 

code from the ENCODE pipeline based on bedtools and awk (Quinlan & Hall, 2010). We then used a 717 

custom Python script to merge overlapping peaks and used UCSC LiftOver to lift the peaks from hg38 to 718 

the panTro6 and back to hg38 as well as from panTro6 to hg38 (Kuhn et al., 2013). We then used 719 

bedtools to intersect the resulting human referenced files and filtered out any peaks that did not have at 720 

least 25% overlap with a peak in the other file (Quinlan & Hall, 2010). After filtering out peaks 721 

overlapping ENCODE blacklisted regions and merging overlapping peaks again, we lifted the file that was 722 

originally chimpanzee-referenced back to the chimpanzee genome (Amemiya et al., 2019). Finally, we 723 

removed human-referenced peaks if their chimpanzee-referenced counterpart failed to LiftOver (Kuhn 724 

et al., 2013).  725 

 726 

Annotating the peak lists 727 

To annotate the peaks, we used the list of TSS defined by Horlbeck et al. to annotate peaks (Horlbeck et 728 

al., 2016). We lifted over each TSS to hg38, expanded 1000 bases on either side of the midpoint of each 729 

TSS to generate promoters, and merged any promoters that overlapped while retaining all unique gene 730 

names associated with the promoter (Kuhn et al., 2013). We then used reciprocal LiftOver with panTro6 731 

to filter out non-orthologous promoters and used bedtools intersect to link peaks to promoters and 732 

expanded the peak to include the entirety of the promoter if necessary (Quinlan & Hall, 2010). Through 733 

this process, we also outputted a list of non-promoter CREs (sometimes labeled as enhancers as 734 

enhancers are thought to be the most common type of CRE). We took this list and used bedtools closest 735 

to link them to the two closest protein coding genes (Quinlan & Hall, 2010). Notably, the gene naming 736 

conventions differ for the Horlbeck et al. TSS list and the GTF file used for RNA-seq processing. We 737 
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altered all gene names in peaks to match those found in the GTF file. In some cases, the gene no longer 738 

existed in the updated hg38 GTF in which case the gene name was replaced with NAN.  739 

 740 

Generating a unified peak list 741 

We next merged our cell type-specific peak list across all five cell types to create a unified peak list. To 742 

do this, we iteratively intersected all the peaks with bedtools and then merged any overlapping peaks 743 

(Quinlan & Hall, 2010). Finally, we added back any peaks that did not intersect a peak found in any other 744 

cell types. We then took the chimpanzee and human-referenced versions of these peak lists and ran 745 

them through the LiftOver-based non-homologous peak filtering pipeline described above to generate a 746 

final file of all identified peaks as well as which cell type (s) they were called in (Kuhn et al., 2013). Then, 747 

we reran the annotation pipeline described in ‘Annotating the peak lists’ on this new set of peaks.  748 

 749 

Counting reads in peaks and further peak filtering 750 

First, we split the bam files into reads that we could confidently assign to the chimpanzee genome and 751 

reads we could assign to the human genome. We used our bed file of high-confidence SNVs and 752 

required at least one SNV matching the human genome as well as no SNVs matching the chimpanzee 753 

genome for a read to be assigned to human (and vice versa for chimp). We then used a custom Python 754 

script to reformat the peak list bed files as GTF files and used HTSeq to count reads in peaks using the 755 

following parameters: -s no -m union -r pos (Anders et al., 2015). We only kept peaks if they had a mean 756 

read count across replicates within a cell type of at least 25 from either allele. For example, if a peak has 757 

an average of 27 reads from the human allele and an average of 10 reads from the chimpanzee allele in 758 

MN, that peak would be kept in MN. On the other hand, if the same peak had an average of 24 reads 759 

from the human allele and an average of 10 reads from the chimpanzee allele in CM, that peak would be 760 

discarded for CM.  761 
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 762 

We next filtered the reads to remove peaks that might be differentially accessible but show evidence of 763 

mapping bias or do not agree between replicates. To do this, we removed any peaks with an absolute 764 

log fold-change greater than one in one replicate but with a fold-change of any magnitude in the 765 

opposite direction in the other. This was not done for SKM or HP as we had only one replicate. We then 766 

removed any peaks that had a log fold-change in opposite directions with an absolute difference greater 767 

than 1 in at least one replicate when comparing the human-referenced and chimpanzee-referenced 768 

counts. Finally, as described in section ‘‘Detection of aneuploidy on chromosome 20 and slight 769 

chimpanzee parental contamination in PP hybrid2 samples’ for RNA-seq data analysis, we removed any 770 

peaks on chr20 and took this as our final list of peaks for downstream analyses. Allelic counts were 771 

normalized as described in the RNA-seq data analysis. We tested for allele-specific chromatin 772 

accessibility (ASCA) using the binomial test applied to the normalized allelic counts (summed by species 773 

within a cell type). We considered any peaks with a binomial p-value less than 0.05 to be nominally 774 

differentially accessible. 775 

 776 

Down-sampling to identify cell type-specific ATAC-seq peaks 777 

As the number of peaks detected by ATAC-seq is generally a function of read depth and our read depth 778 

varied widely across cell types, we restricted to one replicate (always hybrid1 if two replicates were 779 

available) and down-sampled reads to match the SKM sample with lowest sequencing depth. We then 780 

called peaks for cell types with a single ATAC replicate as described above. 781 

 782 

Allelic chromatin accessibility tracks 783 

Allelic bam files with reads originating from the human allele and the chimpanzee allele (respectively) 784 

were obtained as described in ‘Counting reads in peaks and further peak filtering’. Two replicates in CM, 785 
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MN, and PP were pooled by cell type. Bam files were converted into bigWig files using python package 786 

deepTools bamCoverage with options: --binSize 1 --normalizeUsing CPM --effectiveGenomeSize 787 

2862010578 --ignoreForNormalization chr20 --extendReads (Ramírez et al., 2014). Tracks were 788 

visualized and plotted using the python package pyGenomeTracks (Lopez-Delisle et al., 2021). When 789 

comparing human and chimpanzee log fold-change track differences in each cell type, deepTools 790 

bigwigCompare was used to compare between human bigWig and chimpanzee bigWig with options: --791 

pseudocount 1 --skipZeroOverZero --operation log2 -bs 1 (Ramírez et al., 2014).  792 

 793 

ChromHMM annotation and correlation with ASE 794 

A universal chromHMM annotation was obtained for each peak based on overlap with any of the 15 795 

categories in chromHMM (excluding the blacklist category, for which peaks had already been removed) 796 

(Ernst & Kellis, 2017; Vu & Ernst, 2022). Divergence was measured as the z-score transformed median of 797 

the absolute log fold-change of human and chimpanzee normalized counts in each peak. Each peak was 798 

assigned to the closest gene and then Pearson correlation was computed between the chromatin 799 

accessibility log fold-change and the expression log fold-change for each peak and its nearest gene. 800 

Pearson correlation was computed only on categories including at least 15 peaks. When showing results 801 

for differentially accessible peaks, only peaks with binomial p-values less than 0.05 were kept and used 802 

in computing the Pearson correlation. When assigning a unique chromHMM to each peak, the 803 

chromHMM category that covered the largest portion of each peak was used. When filtering out 804 

promoter-related annotations, peaks covering any promoter-related chromHMM categories (“TSS”, 805 

“flanking promoter” and “bivalent promoter”) were filtered out and the analysis described above was 806 

repeated. 807 

 808 
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Computation of differential expression enrichment (dEE) and differential chromatin accessibility 809 

enrichment (dCAE) 810 

For each target cell type, taking CM as an example, the log fold-change for gene A was fixed as target log 811 

fold-change, and the log fold-changes for gene A in the remaining cell types with an opposing sign 812 

(compared to the target log fold-change) were set to zero. Then, the dEE value was calculated as the 813 

proportion of the target log fold-change in the sum of the zeroed log fold-changes across all cell types. 814 

For example, the dEE for gene A in CM would be abs (target LFC)/sum (abs (LFC after zeroing))). dEE 815 

ranges from zero to one and low dEE value indicates differential expression with similar magnitude and 816 

direction across cell types, and/or the gene does not have any strong allelic bias, whereas a high dEE 817 

value indicates that this gene is only strongly differentially expressed (with the sign the log fold-change 818 

has in that cell type) in a particular cell type. dCAE uses the same procedure as dEE except the table is 819 

populated with the log fold-changes derived from chromatin accessibility measurements. dEE and dCAE 820 

are sensitive to the inclusion or exclusion of cell types (by definition), so we excluded RPE when 821 

integrative analysis combining results from dEE and dCAE was performed (to match the cell types for 822 

which dCAE could be computed, Supp Fig. 25b). After restricting to genes defined as having significant 823 

ASE or significant ASCA, we defined genes with dEE >= 0.75 in a particular cell type as showing cell type-824 

specific ASE and peaks with dCAE >= 0.75 in one cell type as showing cell type-specific ASCA. We used 825 

bedtools intersect to intersect the peaks with our list of human-chimpanzee single nucleotide 826 

differences and the 241-way placental mammal PhyloP scores (Quinlan & Hall, 2010; Sullivan et al., 827 

2023). We also checked whether peaks that contained human-chimpanzee differences in sites with high 828 

PhyloP scores were in the list of HARs described in Girskis et al (Girskis et al., 2021).  829 

 830 

Predicting regulatory activity with single-variant resolution  831 
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We used sequences in fasta format as input to the deep neural network model Sei (K. M. Chen et al., 832 

2022). Sei requires a 4096 base pair input sequence, so we put the center of our region of interest at the 833 

center of the input window and expanded equally on either side to contain 4096 base pairs. The human 834 

sequence was retrieved from hg38 and the corresponding chimpanzee sequence was retrieved from 835 

panTro6. The effect size when comparing the probabilities of each sequence having a particular 836 

chromatin state was computed as the log of the human sequence probability divided by the chimpanzee 837 

sequence probability. Only annotations for which either the chimpanzee sequence or the human 838 

sequence had a probability value greater than or equal to 0.5 were kept for downstream analysis. All 839 

SNVs between human and chimpanzee in this input window were identified and ordered based on 840 

coordinates. For each SNV position, the human sequence was changed to the chimpanzee allele at that 841 

position to generate a new sequence that was input to Sei. The log fold-change for each chromatin 842 

annotation was computed for each input sequence as described above and used as a measure of the 843 

effect of this change on the sequence. Similarly, an indel can be introduced to modify the human 844 

sequence and input to Sei. With indels, the center of the regions of interest (promoter or HAR) were 845 

always at the center of the input window and the start or end of the sequence inputted to Sei could 846 

possibly lose or gain base pairs. However, we found that for the small indels shown here this had 847 

essentially no effect on the Sei output. 848 

 849 

Processing of publicly available datasets 850 

The data from Blake et al. and Pavlovic et al. were processed as previously described (Blake et al., 2020; 851 

Pavlovic et al., 2018; Starr et al., 2023). For the Pavlovic et al. data, log fold-changes were computed in 852 

DESeq2 with the scaled proportion of cardiomyocytes present in each sample (available in the 853 

supplemental materials of Pavlovic et al.), sex, and whether cardiomyocytes were treated with T3 as 854 

covariates (i.e. using the model ~sex+scaled_proportion_cardiomyocytes+T3_Treatment+species) 855 
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(Pavlovic et al., 2018). No covariates were included for Blake et al. as they had little impact on the data 856 

(Blake et al., 2020). The log fold-changes and FDR corrected p-values were directly downloaded from the 857 

supplemental materials of Kozlenkov et al. (Kozlenkov et al., 2020). 858 

 859 

The processed data from Ma et al. (Ma et al., 2022) were downloaded from 860 

http://resources.sestanlab.org/PFC/. We pseudobulked the data by cell type by summing counts within 861 

each individual. We then separately input each pairwise comparison of two species (human to 862 

chimpanzee or human to rhesus macaque) into DESeq2 with no covariates to test for differential 863 

expression and compute log fold-changes. 864 

 865 

The counts tables from Kanton et al.12 were downloaded from 866 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-7552 and processed with SCANPY 867 

(Kanton et al., 2019, p. 29409532; Wolf et al., 2018). The data were filtered by removing cells with 868 

n_genes_by_counts > 2500 and >5% mitochondrial reads. We also removed cells with fewer than 200 869 

unique genes and genes that had non-zero counts in fewer than 3 cells. After filtering, any chimpanzee 870 

cells not falling in the category (defined by Kanton et al. (Kanton et al., 2019)) “ventral forebrain 871 

progenitors and neurons” were eliminated and human cells not in the categories "ventral progenitors 872 

and neurons 1", "ventral progenitors and neurons 2", or "ventral progenitors and neurons 3" were 873 

similarly eliminated. We then merged the two counts tables, normalized/logarithmized the counts, 874 

computed PCA, used harmony to integrate cells from different species (human and chimpanzee), and 875 

found nearest neighbors with the harmonized principal components (Korsunsky et al., 2019). We then 876 

ran Leiden clustering with resolution = 0.5 to identify 7 subclusters (one of which appeared to be a 877 

technical artifact with very low counts that was removed) (Traag et al., 2019).  878 
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 879 

We identified cell types and lineages using canonical marker genes (MKI67 and HES5 for progenitors, 880 

NKX2-1 and LHX6 for the medial ganglionic eminence or MGE, MEIS2 and ZFHX3 for the lateral 881 

ganglionic eminence or LGE, and SCGN and NR2F1 for the caudal ganglionic eminence or CGE) (Su-Feher 882 

et al., 2022). We then used the implementation of PAGA in SCANPY to compute pseudotime using the 883 

first cell in the progenitor subcluster as the root (Wolf et al., 2019). We binned cells into five equal bins 884 

along pseudotime and compared the expression of cells with non-zero counts for GAD1 in each 885 

pseudotime bin. Within each bin, we used a Wilcoxon test to test for higher expression of GAD1 in 886 

chimpanzee cells compared to human cells. We repeated the pseudotime analysis, binning, and 887 

comparing of GAD1 gene expression for each subtrajectory (MGE, LGE, and CGE).  888 

 889 

Description of Additional file 1: This file contains an extended evaluation of the success of the 890 

differentiations in generating the desired cell type and other cell types likely to be present in each 891 

sample. 892 

 893 

Description of Additional file 2: This file contains the results of running the test for selection described 894 

by Starr et al on each cell type. 895 

 896 

Description of Additional file 3: This file contains the peak-gene pairs that had concordant high dCAE 897 
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