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Ageing is driven by the accumulation of diverse types of damage that leads to a decline in function
over time. In unicellular organisms, in addition to this damage accumulation within individuals,
asymmetric partitioning of damage at cell division might also play a crucial role in shaping de-
mographic ageing patterns. Despite empirical single-cell studies providing quantitative data at the
molecular and demographic level, a comprehensive understanding of how cellular damage produc-
tion and partition propagate and influence demographic patterns is still lacking. To address this
gap, we present a generic and flexible damage model using a stochastic differential equation ap-
proach which incorporates stochastic damage accumulation and asymmetric damage partitioning
at cell divisions. We provide an analytical approximation linking cellular and damage parameters
to demographic ageing patterns. Interestingly, we observe that the lifespan of the cells follows an
inverse-gaussian distribution whose statistical properties can be expressed with cellular and damage
parameters, as well as easily inferred from empirical single-cell data. Furthermore, we demonstrate
how stochasticity (noise) in damage production and asymmetry in damage partitioning contribute
to shaping lifespans. Applying the model to empirical E.coli data reveals non-exponential scaling in
mortality rates, which cannot be captured by classical Gompertz-Makeham models. Additionally,
we highlight the essential role of stochastic division times in shaping lifespans. Our findings provide
a deeper understanding of how fundamental processes contribute to cellular damage dynamics and
generate demographic patterns. The generic nature and flexibility of our damage model offer a
valuable framework for investigating ageing in diverse biological systems.

INTRODUCTION

Ageing disrupts cellular integrity and leads to func-
tional decline in cells and individuals and affects fitness
components like reproduction and survival [López-Otín
et al. 2013]. Although the consequences of ageing are
ranging from evolution to medicine, a thorough quan-
titative and mechanistic understanding is lacking that
links molecular to demographic levels. Molecular roots
of ageing are considered due to damage accumulation at
cells disrupting cellular processes where damage types
and sources can be diverse including DNA oxidation, pro-
tein aggregation, mitochondrial dysfunction, mutations,
etc. [Gladyshev 2016, Schumacher et al. 2021]. Cellu-
lar damage drives the ageing of organisms and conse-
quently shapes demographic patterns, which are surpris-
ingly diverse across species and populations [Jones et al.
2014]. Molecular studies of ageing mostly focused on ge-
netics and environments and provided important knowl-
edge [López-Otín et al. 2013] but there appears to be
also a neglected stochastic component in ageing [Stein-
saltz et al. 2020]. Individual differences (heterogeneity)
in ageing is observed in genetically identical twin and in-
bred animal studies [Finch and Kirkwood 2000]. At cellu-
lar level, inherently stochastic processes such as gene ex-
pression [Elowitz et al. 2002, Raj and Oudenaarden 2008,
Patange et al. 2018] and asymmetric partition of cellu-
lar content at cell divisions [Huh and Paulsson 2011a,b,
Shi et al. 2020] might produce stochasticity in cellular
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damage accumulations which in turn result in individ-
ual differences. Deciphering the quantitative relationship
between stochastic damage dynamics and individual het-
erogeneity in ageing requires high-throughput single-cell
studies and mathematical models.

In their seminal work, Stewart et al. [2005] showed that
E.coli, a morphologically symmetric dividing microbe, is
also susceptible to reproductive ageing. This illustrates
that ageing goes beyond asymmetric and sexually repro-
ducing organisms and provides us with a model organism
to study individual heterogeneity in ageing with available
molecular, genetic and imaging techniques. Bacterial
ageing has been extensively studied after Stewart’s sem-
inal work (for review, see [Steiner 2021]). Experimental
studies mostly elaborated on cellular growth and division
in ageing by studying external stress conditions [Wang
et al. 2010, Rang et al. 2011, 2012, Łapińska et al. 2019]
and molecular factors such as chaperones associated with
protein aggregation [Winkler et al. 2010, Proenca et al.
2019]. Limited theoretical models of bacterial ageing fo-
cused on various aspects such as the optimality of asym-
metric damage partitioning for maximising fitness [Watve
et al. 2006, Evans and Steinsaltz 2007]; the existence
of distinct reproductive growths [Chao 2010, Blitvić and
Fernandez 2020], and damage repair [Clegg et al. 2014].
It was only recently that longer experiments were also
conducted to study mortality (cell death) events of bac-
terial mother cells which inherit the older cell-wall during
divison [Jouvet et al. 2018, Steiner et al. 2019]. These
studies also confirmed chronological ageing in bacteria
by showing that mortality (i.e. lifespan, survival) pro-
files deviate from random mortality process. However, it
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is still not clear how stochastic damage dynamics leads
to individual differences in ageing and produces such de-
mographic patterns.

Existing mathematical models for bacterial ageing
mostly rested within an equilibrium assumption and did
not exploit underlying dynamical aspects influencing age-
ing and demography patterns. In demography, lifespan-
related data, e.g. how mortality chances are changing
with age, have been traditionally interpreted with phe-
nomenological models such as the Gompertz-Makeham
model. This does not only fail to capture any non-
exponential mortality rates but usually does not help
understand damage mechanisms as the connection be-
tween molecular and demographic parameters cannot be
known. Anderson [2000] and Weitz and Fraser [2001] in-
dependently developed stochastic models of vitality us-
ing a stochastic differential equation (SDE) approach
which contributed to our understanding of ageing pat-
terns such as mortality plateaus in various organisms. To
our knowledge, a similar SDE modelling framework has
not been adopted for single-cell or bacterial ageing, or re-
mained minimal in applications [Yang et al. 2023]. Such
direct extensions especially require dealing with asym-
metric damage partition, i.e. sudden jumps in damage,
which might play a crucial role in single-cell ageing. Here
we contribute to developing such a general framework
by adapting jump-diffusion type SDEs to single-cell and
bacterial ageing. We construct a simple illustrative SDE
to model damage dynamics along mother bacterial cells
and derive its lifespan-related demographic characteris-
tics. We then explore how demographic outcomes are
influenced by initial conditions and different parameters
of cellular damage: production rate and noise, and parti-
tion asymmetry. Lastly, we use a dataset for E.coli with
mortality events [Steiner et al. 2019] to demonstrate how
such a model can help us interpret bacterial ageing.

MODEL

We build a modelling framework based on the assump-
tion that single-cells deteriorate over time due to the ac-
cumulation and transmission of damage entities which
upon reaching a critical value cause cell death (mortal-
ity). We consider a damage density measure, i.e. num-
ber of damage bodies per cell volume, including the cell
growth, dilution and repair processes. In this manuscript,
we focus on modelling the cellular damage dynamics
along mother cell lineages which receive the older cell wall
at cell divisions and typically receive more damage than
the daughter cells (Fig. 1-a). Our damage dynamics
model considers two important processes: damage pro-
duction and damage partition (Fig. 1-b). The damage
production encapsulates a deterministic net rate and a
stochastic noise for random fluctuations. The damage
partition describes the sudden jumps due to asymmetric

FIG. 1. a) We model the damage and ageing dynamics of
single-cell mother (old pole) lineages, that typically receives
more damage in cell divisions. b) We consider a stochastic
differential equation framework to model damage dynamics
taking account of damage production and partition mecha-
nisms. Each path in the figure exemplifies a damage tra-
jectory realisation in a mother lineage where black and red
colourings correspond to different cellular parameter choices.
Trajectories start from the same initial damage and terminate
at different times at crossing a critical damage level which
defines the time of death, i.e. the lifespan. c) The parame-
ters settings define the damage dynamics that in turn dictate
the ageing dynamics and shape demographic patterns like the
lifespan distribution.

cell content (cytoplasm) partition during a division event
whose timings are stochastic and drawn from a fixed dis-
tribution. Once the parameters of damage dynamics are
set, individual stochastic life trajectories are determined
by imposing initial and final (absorbing) damage levels
(Fig. 1-b). In this manuscript, we focus on a special case
where all the parameters are constants. In other words,
damage will influence the lifespan but will not affect cel-
lular growth and division mechanisms in our model. This
choice is mostly for the sake of mathematical derivations
and serves as a standard stochastic model to link cellular
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TABLE I. Key Notations
Notation Description
xt stochastic variable for damage density at time t
xo initial damage
xc critical damage
ε damage production rate
σ noise strength in damage production
γ asymmetry level (0 for symmetry)
r mean division rate
σr standard deviation of division rate
Wt Wiener (Brownian) process
Jt Jump process
s survival probability
f lifespan probability density
h mortality rate
V MR Variance-to-Mean Ratio (Fano factor)

damage and demography. Future works may relax this
assumption and explore the model extensively.

In mathematical terminology, we consider a jump-
diffusion dynamics [Merton 1976, Kou 2002, Kou and
Wang 2003] which, in its most general form, is expressed
by the following stochastic differential equation (SDE)

dxt = ε(xt, t) xt dt + σ(xt, t) xt dWt + γ(xt, t) xt dJt.
(1)

Here, the damage density x along a lineage realisation at
time t is a stochastic variable and denoted as xt (Fig. 1-
b). ε (xt, t) is the deterministic damage production rate.
σ (xt, t) is the strength of noise which is modelled with
a Wiener (Brownian) process where Wt is a gaussian
random variable with mean and variation as 0 and t,
respectively. The timing of division events and direc-
tion/magnitude of damage jumps are modelled with the
random process Jt and the parameter γ(xt, t), respec-
tively. The γ(xt, t) is the sudden damage jump (asymme-
try) parameter at cell division where γ = 0 is for symmet-
ric division and 1 > γ > 0 is for a mother cell receiving
more damage than daughter cell. During a cell division,
damage density xt will jump to a new damage xt (1 + γ)
along the mother cell lineage, whereas a new daughter cell
will be produced with damage density xt (1 − γ). Note
that −1 < γ < 0 corresponds to the mother’s rejuve-
nation, i.e. receiving less damage (our modelling is also
valid for this regime but the results will not be explored
here). Cell damage level starts from an initial level x0 at
time t = 0 and the cell mortality is defined by the first
crossing of a critical (absorbing) level xc. Note also that
time and age are identical for this manuscript therefore
t refers to both of them.

Under constant parameter choice, the SDE is reduced

to a simpler form:

dxt = ε xt dt + σ xt dWt + γ xt dJt, (2)
where an explicit solution is known as

xt = xo e(ε− 1
2 σ2) t+σWt

nt∏
j=1

(1 + γ). (3)

with nt being a random variable for the total number of
division (jump) events until time t in a realisation. The
following iterative equation can be used for simulations
of this jump-diffusion dynamics.

xt+∆t = xt e(ε− 1
2 σ2) ∆t+σ

√
∆t Zt (1 + γ)dnt (4)

where Zt is a random number from a unit normal dis-
tribution and the jump process takes dnt = 1 or 0 at
each discrete time step depending on the jumping pro-
cess Jt. One can simulate many individual paths and
obtain a statistical description but we further seek an
analytical expression and rewrite the last term of the
exact solution in Eq. 3 as exp

(
log(

∏nt

j=1(1 + γ))
)

=
exp

( ∑nt

j=1 log(1 + γ)
)

= exp
(
nt log(1 + γ)

)
. Eq. 3 is

therefore transformed into

xt = xo e(ε− 1
2 σ2) t+σWt ent log(1+γ) (5)

If we assume the number of divisions per unit time (i.e.
division rate) follows a gaussian distribution N (r, σ2

r),
then nt follows also a gaussian distribution N (rt, σ2

r t).
This assumption allows us to rewrite the above expres-
sion in an approximate compact solution form

xt = xo eε̃ t+σ̃Wt (6)

where the modified drift and diffusion terms are

ε̃ = ε − 1
2σ2 + r log(1 + γ) (7)

σ̃ =
√

σ2 + σ2
r (log(1 + γ))2 (8)

Therefore, the original SDE in Eq. 2 is approximated to
the following geometric Brownian motion

dxt = (ε̃ + 1
2 σ̃2) xt dt + σ̃ xt dWt (9)

We can also express it in arithmetic Brownian form as
d(ln xt/xo) = ε̃ dt + σ̃ dWt, from which we obtain the
probability density function for damage level p(x, t) by
applying the Fokker-Planck equation with initial and
boundary conditions of p(x, t = 0) = δ(x − xo) and
p(x = xc, t) = 0 as
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p(x, t|xo, xc, ε̃, σ̃) = 1√
2πσ̃2t

[
exp

(
−

(
ln(x/xo) − ε̃ t

)2

2σ̃2 t

)
− exp

(2 ln(xc/xo) ε̃

σ̃2 −
(

ln(x/xo) − 2 ln(xc/xo) − ε̃ t
)2

2σ̃2 t

) ]
.

(10)

Expressing the probability density function for lifes-
pans f(t) is equivalent to determining the first passage
time to the absorbing level xc. Interestingly it follows a
distribution of an inverse gaussian (IG) as

f(t|xo, xc, ε̃, σ̃) = ln(xc/xo)√
2π σ̃2 t3

exp
(−

(
ε̃ t − ln(xc/xo)

)2

2 σ̃2 t

)
(11)

Following Weitz and Fraser [2001], we make a connection
from molecular (cellular) to macroscopic (demographic)
parameters by rewriting this 4 parameter expression in
terms of 2 parameters as

f(t|µ, τ) =
√

τ

2πt3 exp
(−τ

(
t − µ

)2

2µ2t

)
(12)

where µ and τ are respectively the mean and shape pa-
rameters and can be expressed in terms of cellular pa-
rameters as

µ = ln(xc/xo)
/

ε̃ (13)

τ =
( ln(xc/xo)

σ̃

)2
(14)

The variance of IG distribution is µ3/τ which is in terms

of cellular parameters

V ar = ln(xc/xo) σ̃2/
ε̃ 3 (15)

We observe that ln(xc/xo) plays a role of time scaling for
the mean and variance of the lifespan distribution. The
variance-to-mean ratio (VMR, also named the index of
dispersion or Fano factor) of lifespans therefore becomes
a damage-free measure, i.e.

VMR =
(
σ̃

/
ε̃)2 (16)

It can be helpful to interpret empirical data and molec-
ular mechanisms as initial and critical damage levels can
be difficult to measure. It quantifies the dispersion level
of the lifespans and compares it to an underlying Poisson-
like mechanism where VMR = 1 (i.e. as if all death
events are due to an external mortality). VMR < 1 and
VMR > 1 indicate under- and over-dispersed distribu-
tions, respectively.

The IG nature of lifetimes was first discovered in haz-
ard analysis by Chhikara and Folks [1977] but the impor-
tance in demography was highlighted by Anderson [2000]
and Weitz and Fraser [2001], to our knowledge. Thanks
to the IG form, we can express the survival probability
density easily as

s(t|µ, τ) = 1 − 1
2

(
erfc

(
−

√
τ

2t

(
t/µ − 1

))
+ exp(2τ/µ) erfc

(√
τ

2t

(
t/µ + 1

)))
(17)

where erfc is the complementary error function. The mor-
tality rate function, i.e. h(t) = f(t)

s(t) = −d log s(t)
dt can also

be expressed as

h(t|µ, τ) =
2
√

τ
2πt3 exp

( −τ(t−µ)2

2µ2t

)
2 −

(
erfc

(
−

√
τ
2t

(
t/µ − 1

)
+ exp(2τ/µ) erfc

(√
τ
2t

(
t/µ + 1

)) (18)

Lastly, we also integrate a damage-independent mor-
tality term into our model by adding a constant killing
rate ho to the mortality rate function. The modified func-
tions for mortality rate, survival and lifespan distribution
respectively become

h̃(t|µ, τ) = h(t|µ, τ) + h0. (19)

s̃(t|µ, τ) = s(t|µ, τ) e−h0 t (20)

f̃(t|µ, τ) = f(t|µ, τ)e−ho t + s(t|µ, τ) h0 e−h0 t (21)

Note that the obtained mortality rate function is different
than the classical phenomenological Gompertz-Makeham
law of mortality where it has a simple exponential form
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FIG. 2. The dynamics of damage and ageing according to our
model is demonstrated with parameters xo = 0.1, xc = 1.0,
ε = 0.1, σ2/ε = 1.0, γ = 0.1, r = 2.5, σr = 0.5 by us-
ing both the simulations of the exact solution (N = 105,
∆t = 1/15) and the analytic expression of the approxima-
tion method. a) The grey damage trajectories are randomly
selected realisations in the simulation. The blue circles and
shading correspond to the mean and one standard deviation
of 105 realisations (the death cells are fixed to xc for this
calculation). The red solid and dashed curve stand for the
mean and one standard deviation obtained from the analytic
expression (Eq 10) by numerical integration. The inset plots
the coefficient of variation of the damage levels for the living
cells (i.e. the death cells are excluded) where the blue circles
and the dashed curves correspond the the simulation and ana-
lytical results. b) Left y-axis: the lifespan probability density
function is shown with the light blue circles (simulations) and
the red dashed curve (analytic expression, Eq. 11). Right y-
axis: the same data is represented with the hazard function
(mortality rate) measure with the brown circles (simulations)
and the black dashed curve (analytic expression, Eq. 18). The
inset shows the lifetime reproductive output, LRO, (i.e. the
total number of offspring of an individual until death) of a
mother lineage that ends (mother cell dies) at time t. As pa-
rameterised, LRO, it is distributed along the linear curve rt
(red dotted line) with a gaussian dispersion of a variation σ2

r t
(red dashed line: ±3 sd).

with three parameters (α, β, λ):

hGM (t) = αeβt + λ. (22)

RESULTS

Biologically relevant parameter ranges
We obtain our results considering biologically relevant

parameter ranges oriented on bacterial species. Divi-

sion rate r in bacteria varies depending on conditions
where E.coli in rich media have r ∼ 3.0 divisions per
hour whereas under natural conditions it is much slower,
including frequent growth arrest. The damage parti-
tion asymmetry is controlled by parameter γ assuring
that mothers take over more damage. We consider the
full range of asymmetry levels, i.e. γ = 0 − 1 where
0 refers to full symmetry and 1 full asymmetry at cell
divisions. γ ∼ 1 can be a very rare situation requir-
ing an active energy-dependent process, as has been sug-
gested for S. cerevisae [Kaeberlein 2010]. The damage
production rate ε and fluctuation σ are hard to estimate
and probably are integrated into complex gene expres-
sion dynamics and gene regulatory networks taking into
account of transcription, translation, decay and dilution
mechanisms that are, in addition, influenced by the en-
vironment. We start with the condition that σ is related
to ε with a constant noise factor. Here we consider a
relative noise measure similar to the variance-to-mean
(also called Fano factor or noise-to-signal) as Ff = σ2/ε,
which takes values from no noise (Ff = 0) to high noise
(Ff = 2). The net damage rate may range from ε = 0,
i.e. when unwanted damage entities are efficiently elim-
inated or diluted, to an extremely high value where the
damage level quickly escalates resulting in sudden death
before the cell divides again.In order to set a numeric
value for the critical damage production rate, we can re-
fer to Eq. 13 where the case of ε ≪ r log(1 + γ) states
that the dominant damage drift factor is the asymmetric
division process. Considering a typical value of division
rate r = 2 − 3 and maximal asymmetry γ = 1 we ar-
gue that ε ∼ 1 reflects high damage production. We
consider ε ≫ 1 for extreme damage rate, referring to a
sudden death case which is trivial and not interesting for
ageing studies, but might be of relevance for evaluating
the efficacy of anti-infective substances that do not allow
single cells to escape treatment. We consider ε ∼ 0.1
for an example of a low damage production rate. The
logarithmic ratio between the critical and initial damage
level ln(xc/xo) scales time (see Eq. 13 and Eq. 15 for the
mean and variance of lifespan distribution), so whenever
suitable we present our results with this time scaling unit.

Analytical expressions vs numerical simulations
for the dynamics of damage and ageing

In Fig 2 we show an example of the combined dy-
namics of damage and ageing for particular parameter
choices. The results are obtained both from our ana-
lytical approximation approach and from numerical sim-
ulations obtained using the discrete-time version of the
explicit solution for the SDE model (Eq. 4). Fig 2-a
illustrates how cellular damage level, and its substan-
tial among lineage variance in damage levels, changes
over time from a defined initial value until reaching a
critical value defining the time of death in our model.
The demographic statistics are shown in Fig 2-b with a
lifespan distribution that follows an inverse-gaussian dis-
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FIG. 3. a) Our analytic expression maps molecular damage parameters to demographic statistics. The figure here shows
how relative noise in damage production (measured with σ2/ε) and damage partition asymmetry level γ determine the lifespan
statistics of mean, variance and variance-to-mean ratio (VMR). Settings for this figure are r = 2.5 and σr = 0.5, and we plot
the results (contours) with ln xc/xo scaling in log10 scale. The top and bottom panel rows are for high and low damage rates,
respectively (ε = 1.0 and = 0.1). In the VMR plots we show the V MR ∼ 1 region corresponding to Poisson-like dispersion as
well as under- and over-dispersion regions (V MR < 1 and > 1, respectively). b) For high damage rate (ε = 1.0, , top panels
of a) and selected σ2/ε and γ values, the lifespan distributions and the mortality rate curves are shown as in Fig. 2 (xo = 0.01,
xc = 1.0, N = 105, ∆t = 1/15).

tribution and a mortality rate measure that exemplifies
a rapid early-age increase followed by a constant prob-
ability of death at older ages. Additionally, Fig 3-b
highlights the demographic fates for different parame-
ter ranges. The small difference between numerical sim-
ulations and analytic approximation is partially due to
time-discretisation as seen in the error convergence inves-
tigation in SI (Fig. 6). Overall, our approximate mathe-
matical solution is in close agreement with the numerical
simulations obtained with the more explicit solution and
proves to be insightful to understand how molecular pa-
rameters influence demographic patterns.

Lifespan statistics for different asymmetry and
noise levels

Our analytical derivation provides an exact mapping
from cellular damage parameters to demographic statis-
tics where lifespan distribution follows an inverse gaus-
sian function whose mean and shape parameter are ex-
pressed in terms of cellular parameters (i.e. Eqs. 13, 14).
Using this mapping, we can ask how asymmetry in dam-
age partition and noise in damage production influence
the lifespan distribution. In Fig 3-a we show how dif-
ferent lifespan statistics (mean, variation, variance-to-
mean) change with the noise and asymmetry parameters
in low and high damage rate cases. For the case of high
damage production, both noise and asymmetry influence
the lifespan distribution significantly. Higher asymme-
try facilitates quicker damage deposition along mother
lineages and therefore shortens both the mean and varia-
tion of lifespan. Similarly increase in damage production

noise will result in a drastic shift and spread of lifetimes.
For the case of low damage production, the noise factor
affects less, and a quick damage accumulation and early
mortality is only possible if there is significant partition
asymmetry, otherwise, cell lineages are likely observed
as very long living, even as immortal if they start from
initially low damage.

As a damage-free measure, the variance-to-mean ratio
(VMR) of the lifespan distribution provides additional
insights into the underlying mechanisms. The dispersion
level of a standard Poisson process is a reference point
as VMR = 1. We can draw a direct link from molecular
relative noise level (Ff = σ2/ε ) to observed lifespan
dispersion by adapting the Eq. 16 as

VMR = (Ff + σ2
r/ε log(1 + γ))2(

1 − 1
2 Ff + r/ε log(1 + γ)

)2 (23)

In case of complete damage partition symmetry (i.e.
γ = 0), the above expression is reduced to VMR =(
2Ff

/
(2−Ff )

)2. Interestingly this sets a threshold dam-
age noise level as Ff = σ2/ε = 2/3 which leads to a
lifespan distribution as if a Poisson-like mortality mech-
anism holds. Fig 3-a indicates which cellular parameter
regions exhibit a Poisson-like behaviour as if lifespans are
generated by a constant and external killing mechanism
(see Fig 3-b for flat mortality rates corresponding this
VMR ∼ 1 region). VMR > 1 and VMR < 1 parameter
regions correspond to over- and under-dispersed lifespan
distributions with respect to a Poisson process.
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FIG. 4. A demonstration of how expected lifetime and life-
time reproductive output change with mean division rate r.
Different asymmetry parameters γ = 0.1, 0.2, 0.5, 1.0 are used
for each corresponding curves. Other fixed parameters are
xo = 0.01, xc = 1.0, ε = 1.0, σ2/ε = 2/3.

Fig 3-b shows the actual lifespan distribution and
mortality rate curves for selected parameters in high
damage rate in our model and exemplifies the capabil-
ity of producing different mortality rate scalings. They
demonstrate the cases of a rapidly increasing scaling, an
increasing scaling with a plateau and a first increasing
then decreasing scaling where the last is not a possible
pattern in classical exponential models such as in the
Gompertz-Makeham model but observed in nature [Jones
et al. 2014, Steiner et al. 2019, Weitz and Fraser 2001].

Mean division rate vs mean lifespan
Furthermore, our model provides also a direct rela-

tionship between mean division rate and mean lifespan
(Eq. 13). Keeping all other parameters fixed and hav-
ing an asymmetric partition case (γ > 0), a higher di-
vision rate will result in higher damage accumulation in
mother lineages causing earlier death events, i.e. shorter
lifespans, as demonstrated in Fig 4-a. This observa-
tion is in agreement with the classical pattern observed
between the reproduction and longevity [Kirkwood and
Rose 1991]. However, reducing the mean division rate is
likely not a permanent escape from mortality in an evo-
lutionary strategy as it trades off with the fitness compo-
nents such as the lifetime reproductive output, i.e. the
number of offspring in the entire lifespan (Fig 4-b).

Application to empirical data:
Using our model we revisit previously published single-

cell E.coli ageing data where the authors [Steiner et al.
2019] reported mortality and division events of mother
and last daughter cell lineages (a last daughter is the
last offspring of a mother cell lineage, see Fig. 1-a). In
Fig. 5-a, we plot the demographic statistics (i.e. the
lifetime, survivorship and mortality rate) of this dataset.

The mother and the last daughter lineages exhibit clearly
distinct ageing features as originally emphasised by the
authors. The lifespans of the mother lineages show a
spread distribution (average lifetime: ∼ 13 hours) and
the mortality rate curve exhibits a late-age plateau after
an early-age exponential increase. In contrast, the life-
time distribution of the last daughter lineages exhibits
a sharp decreasing exponential decline (i.e. majority of
the last daughters die in the first hours, average lifetime:
∼ 7 hours). Dissimilar initial damage between these two
lineage cohorts was considered the main factor behind
the intriguing difference, however, mechanistic damage
models are needed for better elucidation. Therefore, we
fit both our damage model (using the modified version
including a constant external killing rate, i.e. Eq. 21),
as well as the Gompartz-Makeham model (Eq. 22) for a
comparison, to the lifespan datasets using a maximum
likelihood method (see the caption of Fig. 5 for the de-
tails of fitting). Our damage model catches the mother
lineages’s non-exponential mortality curve that cannot be
captured by a Gompartz-Makeham model. It also better
encapsulates the excess of last daughter deaths at early
ages.

In our model, the logarithmic ratio of critical and ini-
tial damage levels ln(xc/xo) is directly proportional to
the average lifetimes. In a simple scenario where all other
parameters are kept constant, an expected increase in the
initial damage of the daughter lineages in comparison to
initial damage of the mother lineages can decrease the av-
erage lifespan significantly. But does our model support
the initial damage argument as the only fact underly-
ing the difference in the observed lifespan distributions?
The variance-to-mean (VMR) measures the dispersion of
lifespans and according to our model is a damage-free
measure (Eq.16). If the observed differences depend only
on the differences in the initial damage, we expect to
see a similar dispersion level. However, the calculated
dispersion values are highly distinct, i.e. VMR = 3.6
and 8.2 respectively for mother and last daughter lin-
eages (based on Variation/Mean in the lifespan dataset
directly). These values represent slightly over-dispersed
and highly over-dispersed distributions in comparison to
a standard Poisson distribution. Note that if our model’s
fitted distribution is used in VMR calculations, the re-
sults even indicate a bigger difference in dispersion char-
acteristics (mother: VMR = 2.1 (1.3 − 3.7) and last
daughter: VMR = 29.5 (13.2 − 63.0)). Therefore, other
factors are expected to contribute to the differences in
lifespan statistics in light of our model.

Upon close inspection of our derived expression for
VMR in our damage model, i.e. Eq. 16, we see that
the mean and variation of division rates influence the
dispersion. Therefore we checked the reported average
division rates along each lineage in this dataset as shown
in Fig. 5-b for both mother and last daughter lineages.
It is striking that average division rates are very sim-
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FIG. 5. Demographic data for E.coli mother and last daughter lineages [Steiner et al. 2019]. a) We replot the lifespan data
as lifetime pdf, survival probability and mortality rate for both the mother (N = 516) and last daughter (N = 516) lineages.
Mean ± standard deviation of lifetimes: 13.4 ± 6.9 for the mothers and 7.0 ± 7.6 for the last daughters. Note that we added
1.4 hour to the reported lifetimes to compensate for pre-recorded time durations (see SI of Steiner et al 2019 et al.). The
grey circles and the dashed curves are for the binned data (1 hour) and smoothed data (5 hours). The red and blue curves
are for the fitted models using maximum likelihood estimation (with 95% CI), respectively, for our damage model (mother:
µ̂ = 18.3 (17.2−194), τ̂ = 159.1 (101.7−216.5), ĥo = 0.035 (0.027−0.042) ; last daughter: µ̂ = 12.8 (9.7−15.9), τ̂ = 5.5 (4.0−7.1),
ĥo = 0.042 (0.032 − 0.052)) and the Gompartz-Makeham model (mother: α̂ = 0.03(0.02 − 0.04), β̂ = 0.09(0.07 − 0.10),
λ̂ = 0.0(−0.01 − 0.01); last daughter: α̂ = 0.14(0.09 − 0.19), β̂ = 0.0(−0.01 − 0.01), λ̂ = 0.0(−0.04 − 0.04)). Note that we
confined the constant killing rate parameter (ho and λ) estimation of the last daughters into the obtained 95%CI estimatates
of the mothers. b) The division rate histograms (bin = 1/2 hour) and the fitted gaussian pdfs are shown for the mother (black,
N = 93) and last daughter (gray, N = 85) lineages. The mean value for both distributions is very similar: 2.53 (2.45 − 2.62)
and 2.38 (2.22 − 2.55) div/hour but the variations differ substantially: sd= 0.41 (0.36 − 0.48) vs 0.77 (0.67 − 0.91) div/h (the
parentheses are 95%CI in estimations).

ilar (∼ 2.4 − 2.5 div/hour), probably due to general
cellular restrictions as mentioned above, but the varia-
tion in division rates are very distinct with a ratio of
σ2

r
(l)

/σ2
r

(m) = 3.5. This ratio is in agreement with the
observed VMR increase in the last daughter lineages ac-
cording to our Eq. 16. Although average division rates
are similar, more widespread division timings might have
contributed to dispersed damage accumulation patterns
via asymmetric damage partition in different stochastic
realisations of the last daughters, therefore, providing
an over-dispersed lifetime distribution with a substan-
tial number of early deaths as interestingly observed for
the last daughter lineages. Although this is not a rig-
orous quantitative justification due to unknown damage
parameters (i.e. ε and σ) in this dataset, our model is
still instructive to guide the interpretation of the empir-
ical data.

DISCUSSION

Single-cell ageing studies, which successfully produced
remarkable quantitative data in recent years, need
also complementary mathematical models to draw the
causative link between cellular damage and ageing at
demographic levels. However, we still need a better
understanding of how damage characteristics affect the
patterns of ageing and demography. This especially re-
quires a bridging from the stochasticity at the cellular
level to individual heterogeneity at a larger scale, even
when genetic and environmental factors are fixed. To fill
such a gap, we introduced a generic damage model us-
ing stochastic differential equations (SDEs) that is flexi-
ble to hold and explore further various damage facts or
assumptions. Our damage model takes the parameters
for damage production rate and noise strength as well
as damage partition asymmetry and outputs stochastic
damage trajectory along a mother cell lineage. For this
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manuscript, we focused on a constant parameter case of
the SDE (Eq. 2) and successfully obtained interpretable
analytical solutions for important measures like the prob-
ability density of damage (Eq. 10) and the probability
density of lifespans (Eq. 12) as a function of age and
in terms of molecular damage parameters. Our analyti-
cal expressions successfully match numerical simulations
(as exemplified in Fig 2 and Fig 3-b) and prove to be
therefore instructive in an understanding of how molec-
ular damage dynamics scale up to macroscopic demo-
graphic patterns. Remarkably, our modelling with jump-
diffusion SDE results in the lifespan distribution having
an inverse-gaussian (IG) form (Eq.12) where its statistics
can be expressed explicitly with cellular damage parame-
ters as well as inferred from empirical lifetime data using
standard methods like maximum likelihood. This allows
one to connect molecular damage parameters to demo-
graphic measures in a direct way, providing more mech-
anistic estimates in cellular processes. IG lifespan distri-
bution and its potential application in demographic data
were already discussed by Anderson [2000] and Weitz and
Fraser [2001] with their arithmetic Brownian SDE mod-
elling of vitalities for classical demographic data. Our
modelling successfully extended their approach to bac-
terial or single-cell ageing by incorporating damage par-
tition asymmetry. As highlighted in Fig 3, we showed
how asymmetry and relative noise affect the lifespan dis-
tribution where particular arrangements for these param-
eters can yield in different lifespan characteristics. This
not only determines the early and late life mortality ex-
pectations but also shapes the distribution with respect
to a standard Poisson-like process (as similar, or over-
and under-dispersed lifespans). Such diverse lifespan be-
haviours likely alter the population and evolutionary dy-
namics as well. Apart from the mathematical contribu-
tions we developed, our modelling can be insightful for
quantitative understanding in bacterial ageing as such
in immortality conditions of bacterial cells [Wang et al.
2010, Rang et al. 2011, 2012, Łapińska et al. 2019]. We
quantitatively exemplified in Fig 3 that if the bacterial
cells start from damage-free initial levels and are kept un-
der low damage production conditions, one can observe
very large lifespans of a mother lineage unless a very ex-
treme asymmetry exists. Typical demographic models
such as the Gompartz-Makeham model are largely phe-
nomenological not providing mechanistic interpretations
and also are limited to exponential rates for mortality
missing for example a mortality plateau pattern as ob-
served in the bacterial lifespan data [Steiner et al. 2019]
and captured by our model as revealed in Fig 5-a. In
this empirical data application, we also revealed in Fig 5-
b how stochasticity (different variation levels) in division
times can be affected in mother and last daughter cell lin-
eages with different lifespan characteristics. This might
indicate a different transmission of heterostasis to off-
spring born to older individuals, probably triggering the

noise in division decisions in cells.
Our approach directly models the stochastic dynamics

of cellular damage and is not bound to an equilibrium
assumption as largely held in previous bacterial ageing
modellings [Watve et al. 2006, Evans and Steinsaltz 2007,
Chao 2010, Blitvić and Fernandez 2020], therefore, it is
more promising to explore or address various phenom-
ena responsible for individual (cell-to-cell) heterogene-
ity observed in ageing. Recent studies with single-cells
show rich intrinsic cell-to-cell variation in gene expres-
sion [Elowitz et al. 2002, Foreman and Wollman 2020,
Urchueguía et al. 2021]. One possible application is to
relate damage to gene regulatory context and make a
connection from cell-to-cell variation in gene expression.
The relation between gene expression and ageing has
been investigated mostly based on transcriptome anal-
yses on humans and other model organisms. The impor-
tance of down-regulation of genes encoding mitochon-
drial proteins; downregulation of the protein synthesis
machinery; dysregulation of immune system genes; re-
duced growth factor signalling; constitutive responses to
stress and DNA damage; dysregulation of gene expres-
sion and mRNA processing have been already underlined
[Frenk and Houseley 2018]. However, to our knowledge,
no connection between stochastic dynamics of gene ex-
pression and individual heterogeneity in ageing has been
investigated. Our modelling can be also insightful for de-
signing experiments to understand the context of cellu-
lar damage better. Simultaneous measurements of both
cell fates and damage-related gene expression signals are
promising [Sampaio et al. 2022] where we can utilise the
stochastic features of gene regulation to understand the
mechanisms and feed our modelling choices.

The analyses in this manuscript were limited to a con-
stant parameter case in the generic stochastic differen-
tial equation setting. Future applications can relax this
assumption and explore, at least with numerical simu-
lations, biologically more plausible scenarios. Time or
damage-dependent parameters can be integrated into our
model as damage production rate, noise and asymmetry
levels, as well as division rate, might alter with cellular
damage levels. As we also see in our application to the
empirical data (Fig 5), division rate characteristics are
likely influenced by damage. Such extension will not only
make our modelling framework more comparable to exist-
ing models by others [Chao 2010, Blitvić and Fernandez
2020] but also will provide elaborative results on evolu-
tionary trade-offs between reproduction and longevity as
extensively discussed in evolution of ageing [Kirkwood
and Rose 1991]. Our assumption on a critical damage
level defining the time of cell death can also be altered in
future applications, for example, by using a killing rate
depending on the damage level such as in the form of a
linear function [Evans and Steinsaltz 2007], or of a Hill
function as typically observed in cellular environments
due to the thermodynamics of finite particles. A more
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direct extension of our modelling and analyses would be
to project damage dynamics into population dynamics.
This will require following the damage dynamics of an
entire population descending from a single mother cell
where each newborn daughter is itself a mother lineage
starting from a different initial damage. Albeit challeng-
ing in rigorous calculations, approximations may bring us
valuable grounds for answering population-related and
evolutionary questions such as damage distribution in
population or the optimal damage characteristics for a
higher fitness [Watve et al. 2006, Evans and Steinsaltz
2007]. This theoretical achievement will complement the
recent attempts to collect data simultaneously at single-
cell tracking and batch population [Bakshi et al. 2021]
and will advance our evolutionary understanding.
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FIG. 6. Error convergence is presented here. The simu-
lations with N = 104 realisations are conducted with the
same parameter selection as in Fig. 2 for different ∆t val-
ues (the asterix shows the value (∆t = 1/15 ) used in
the main text). The weak error is calculated by obtaining
abs(Maxt(sanal,t − ssimul,t)). The error bars show the mean
and standard obtained by repeating the simulations 10 times.
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