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Abstract 13 

Multi-modal biological data integration can provide comprehensive views of gene regulation and cell development. 14 

However, conventional integration methods rarely utilize prior biological knowledge and lack interpretability. To 15 

address these challenges, we developed Pathformer, a biological pathway informed deep learning model based on 16 

Transformer with bias to integrate multi-modal data. Pathformer leverages criss-cross attention mechanism to 17 

capture crosstalk between different biological pathways and between different modalities (i.e., multi-omics). It also 18 

utilizes SHapley Additive Explanation method to reveal key pathways, genes, and regulatory mechanisms. Through 19 

benchmark studies on 28 TCGA datasets, we demonstrated the superior performance and interpretability of 20 

Pathformer on various cancer classification tasks, compared to other integration models. Furthermore, we applied 21 

Pathformer to liquid biopsy multi-modal data integration with high accuracy in cancer diagnosis. Meanwhile, 22 

Pathformer revealed interesting molecularly altered pathways in cancer patients’ body fluid, such as ligand binding 23 

of scavenger receptors, iron transport, and DAP12 signaling transmission, which are related to extracellular vesicle 24 

transport, platelet, and immune response. 25 

Keywords: Multi-modal integration; Transformer; Pathway crosstalk network; Cancer diagnosis; Liquid biopsy. 26 
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Introduction 29 

The rapid progress in high-throughput technologies has made it possible to curate multi-modal data for disease 30 

studies using genome-wide platforms. These platforms can analyze different molecular alterations in the same 31 

samples, such as DNA variances (e.g., mutation, methylation, and copy number variance) and RNA alterations (e.g., 32 

expression, alternative promoter, splicing, and editing). Integrating these multi-modal data offers a more 33 

comprehensive view of gene regulation in diseases (e.g., cancer) than analyzing single type of data1. For instance, 34 

multi-modal data integration is helpful in addressing certain key challenges of cancer diagnosis and prognosis, such 35 

as heterogeneity of intra- and inter-cancer, and complex molecular interactions2. Therefore, there is a pressing need 36 

for advanced computational methods that uncover interactions of multi-modal data in cancer. 37 

 Current algorithms for integrating multi-modal data can be broadly categorized into three groups: early 38 

integration models that merge multi-modal data into a single matrix3,4, late integration models that process each 39 

modality separately and then combine their outputs through averaging or maximum voting5,6, and intermediate 40 

integration models that dynamically merge multi-modal data7,8.  Recently, instead of previous methods that mainly 41 

focus on unsupervised problems, several supervised algorithms have been proposed for classifying diseases. For 42 

example, mixOmics uses latent component analysis to find common features among multi-modal data9. Wang et al. 43 

proposed multi-omics graph convolutional networks (MOGONet), a late integration model that uses graph 44 

convolutional networks for modal-specific learning and view correlation discovery network for multi-modal 45 

integration10. Moon et al. proposed two modal data integration and interpretation algorithm (MOMA) that utilizes 46 

attention mechanisms to extract important modules11. These methods rely on computational inference to capture 47 

relationship between modalities, but ignore the immensely informative prior biological knowledge such as 48 

regulatory networks. 49 

 To improve the interpretability, several studies have attempted to incorporate prior biological knowledge 50 

into deep learning models for multi-modal data integration. For instance, Ma et al. proposed a visible neural network 51 

that combines with biological pathways to model the impact of gene interactions on yeast cell growth12. Meanwhile, 52 

pathway-associated sparse deep neural network (PASNet) was utilized to accurately predict the prognosis of 53 

glioblastoma multiforme (GBM) patients13. Recently, a sparse neural network integrating multiple molecular 54 

features based on a multilevel view of biological pathways, P-net, was published for the classification of prostate 55 

cancer patients14. Another method, PathCNN, was developed to predict survival of GBM patient by using principal 56 

component analysis (PCA) algorithms to define multi-modal pathway images and a convolutional neural network15. 57 

However, these algorithms rarely considered the synergy and nonlinear relationships between pathways. Given the 58 
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complexity of biological systems, understanding the pathway crosstalk is crucial for comprehending more complex 59 

diseases16, which can help deep learning models better capture multi-modal interactions. 60 

 Inspired by these prior works, we propose Pathformer, which combines pathway crosstalk networks and the 61 

Transformer encoder with bias for the interpretation and classification of multi-modal data in cancer. Recently, 62 

Transformer has demonstrated its capability in handling multi-modal tasks in computational fields17. It hasn’t been 63 

applied to the biological multi-modal data for lack of reliable biological embedding methods and solutions to the 64 

memory explosion posed by the vast amount of gene inputs. These challenges are addressed by Pathformer. First, 65 

Pathformer uses multiple statistical indicators of multi-modal data as gene embedding, which comprehensively 66 

describes different perspectives of gene information. Second, Pathformer utilizes a sparse neural network based on 67 

prior pathway knowledge to transform gene embeddings into pathway embeddings, which not only captures 68 

valuable information but also addresses memory explosion issue. Third, Pathformer incorporates pathway crosstalk 69 

networks into the Transformer model with bias to enhance the exchange of information between different modalities 70 

and pathways. 71 

 As far as we are aware, Pathformer is the first biological multi-modal integration model that combines prior 72 

pathways knowledge and Transformer encoder model. We evaluated Pathformer on 28 benchmark datasets of the 73 

Cancer Genome Atlas (TCGA)18 and demonstrated its superior performance and biological interpretability on 74 

various cancer classification tasks, compared to other integration models. Pathformer was applied to liquid biopsy 75 

data, which not only showed high accuracy for noninvasive cancer diagnosis but revealed interesting molecularly 76 

altered pathways in human plasma. 77 

 78 

Results 79 

The Pathformer model 80 

Pathformer utilizes biological pathway network and a Transformer encoder to allow better information fusion. It 81 

has six modules: biological pathway input, pathway crosstalk network calculation, multi-modal data input, 82 

biological multi-modal embedding, Transformer module with pathway crosstalk network, and classification module 83 

(Fig. 1a, see Methods for details). Pathformer uses biological multi-modal data and biological pathway information 84 

as input, and define biological multi-modal embedding (gene embedding and pathway embedding). It then enhances 85 

the fusion of information between various modalities and pathways by combining pathway crosstalk networks with 86 
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Transformer encoder. Finally, a fully connected layer serves as the classifier.  87 

 We curated all pathways from four public databases, then selected 1,497 pathways based on the criterion of 88 

gene number, overlap ratio with other pathways, and the number of pathway subsets. Next, we used BinoX19, a 89 

classic tool for crosstalk analysis, to calculate the crosstalk relationships among the 1,497 pathways. Based on these 90 

relationships, we created a pathway crosstalk network as Pathformer’s input (see Methods and Supplementary 91 

Notes). 92 

 Multi-modal biological data preprocessing and embedding are crucial components of Pathformer (Fig. 1b). We 93 

preprocessed the raw sequence reads of DNA-seq and RNA-seq into multi-modal data, including DNA methylation, 94 

DNA copy number, and different RNA alterations (see Methods and Supplementary Notes). These multi-modal 95 

data are on different levels, such as nucleotide level, fragment level, and gene level, which significantly influence 96 

data integration. To address this, we used multiple statistical indicators as gene embeddings to retain the gene 97 

diversity across different modalities (see Fig. 1b and Methods). Subsequently, we used the known gene-pathway 98 

mapping relationship to develop a sparse neural network based on prior pathway knowledge (PSNN) to transform 99 

gene embedding into pathway embedding. The PSNN has two layers representing genes and pathways, respectively. 100 

These two layers are not fully connected, but rather share a connection pruned based on the pathway and gene 101 

inclusion relationships. If there is no correlation between a given gene and a given pathway, the connection weight 102 

between two neurons is set to be 0; otherwise, it is learned through training (see Methods). Therefore, pathway 103 

embedding is a dynamic embedding method. The PSNN can not only restore the mapping relationship between 104 

genes and pathways, but also identify important genes in different pathways through trained weights, and can 105 

transfer the complementarity of modalities at the gene level to the pathway level. Additionally, this biological multi-106 

modal embedding step does not require additional gene selection, thereby avoiding bias and overfitting problems 107 

resulting from artificial feature selection. 108 

 Transformer module with pathway crosstalk network bias is the key module of Pathformer model (Fig. 1c). 109 

Inspired by the Evoformer model used in AlphaFold220 for processing multiple sequences, we developed the 110 

Transformer module based on criss-cross attention (CC-attention) with bias for data fusion of pathways and 111 

modalities. Particularly, multi-head column-wise self-attention (col-attention) is used to enhance the exchange of 112 

information between pathways, with the pathway crosstalk network matrix serving as the bias for col-attention to 113 

guide the flow of information. Multi-head row-wise self-attention (row-attention) is employed to facilitate 114 

information exchange between different modalities, and the updated multi-modal embedding matrix is used to 115 

update the pathway crosstalk network matrix by calculating the correlation between pathways. More details of the 116 
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Transformer module are described in Methods. 117 

Pathformer outperforms existing multi-modal integration methods in various classification 118 

tasks using TCGA datasets 119 

To evaluate the performance of Pathformer, we tested model on various cancer classification tasks as benchmark 120 

studies: cancer early- and late- stage classification (10 TCGA cancer datasets), low- and high- survival risk 121 

classification (10 TCGA cancer datasets), and cancer subtype classification (8 TCGA cancer datasets) (see 122 

Supplementary Fig. 1 and Supplementary Notes). For these tasks, DNA methylation, DNA CNV, and RNA 123 

expression were used as input. For model training and test, we performed 2 times 5-fold cross-validation that divided 124 

the data into a discovery set (75%) and a validation set (25%) for each test (see Supplementary Fig. 1 and Methods). 125 

We first optimized hyperparameters using 5-fold cross-validation on the discovery set, with macro-averaged F1 126 

score as the criterion for grid search. The results of optimal hyperparameter combination for each dataset are listed 127 

in Supplementary Fig. 2 and Supplementary Table 1. Then, we trained Pathformer using the discovery set with 128 

early stopping and tested it on the validation set. 129 

 We compared the classification performance of Pathformer with several existing multi-modal integration 130 

methods, including early integration methods based on base classifiers, i.e., nearest neighbor algorithm (KNN), 131 

support vector machine (SVM), logistic regression (LR), random forest (RF), and extreme gradient boosting 132 

(XGBoost); late integration methods based on KNN, SVM, LR, RF, and XGBoost; partial least squares-discriminant 133 

analysis (PLSDA) and sparse partial least squares-discriminant analysis (sPLSDA) of mixOmics9; two deep 134 

learning-based integration methods, MOGONet10 and PathCNN15. MOGONet is a multi-modal integration method 135 

based on graph convolutional neural network. PathCNN is a representative multi-modal integration method that 136 

combines pathway information. During comparison methods, the multi-modal data were preprocessed with the 137 

statistical indicators and features were prefiltered with ANOVA as input (see Supplementary Notes).  138 

 Pathformer consistently outperformed the other integration methods in most classification tasks, evaluated by 139 

macro-averaged F1 score (F1score_macro) (Fig. 2), as well as area under the receiver operating characteristic curve 140 

(AUC) and average F1 score weighted by support (F1score_weighted) (Supplementary Fig. 3 and Supplementary 141 

Table 2). We showed F1score_macro in the main figure because it is a more robust measurement than the other two 142 

scores for the imbalanced classes. In the cancer stage classification and survival classification tasks, Pathformer 143 

achieved the best F1score_macro and F1score_weighted in all the 10 datasets, and the best AUC in 8 of 10 datasets. 144 

In cancer subtype classification of TCGA, Pathformer achieved the best F1score_macro in 7 of 8 datasets, the best 145 
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F1score_weighted in 6 of 8 datasets, and the best AUC in 6 of 8 datasets. Notably, Pathformer substantially 146 

outperformed the other methods in the challenging classification tasks like cancer early- and late- stage classification 147 

and low- and high- survival risk classification, showing average increases of 11% and 15% in F1score_marco 148 

compared with XGBoost, respectively. This highlights Pathformer's exceptional learning ability. Moreover, in terms 149 

of stability, Pathformer also showed significantly better generalization ability than the other deep learning 150 

algorithms, as indicated by the cross-validation variances (Supplementary Fig. 4). 151 

Ablation analysis shows that Pathformer benefits from multi-modal integration, attention 152 

mechanism and pathway crosstalk network 153 

We used ablation analysis to evaluate the essentialities of each type of data and each module of model in the multi-154 

model data integration of Pathformer, based on nine datasets of cancer early- and late- stage classification. First, we 155 

evaluated the essentialities of seven different data inputs, including RNA expression, DNA methylation, DNA CNV, 156 

and a combination thereof (Fig. 3a). By comparing the classification performances of seven models, we discovered 157 

that the model with all three modalities as input achieved the best performance, followed by RNA expression-only 158 

and DNA methylation-only model. Furthermore, we observed that the performances of models with single modality 159 

can vary greatly between datasets. For example, DNA methylation-only model performed better than RNA 160 

expression-only and DNA CNV-only in the KIRC dataset, but the opposite performances were observed in the 161 

LUAD dataset. These findings suggest that different modalities have disparate behaviors in different cancer types, 162 

and emphasized the necessity of multi-modal data integration in various cancer classification tasks. 163 

 Next, we also evaluated the essentialities of different modules in Pathformer. We developed 4 models, namely 164 

CC-attention, Transformer, PSNN, and NN, which successively remove one to multiple modules of Pathformer. 165 

CC-attention is a model without pathway crosstalk network bias. Transformer is a model without either pathway 166 

crosstalk network bias or row-attention. PSNN is a model that directly uses classification module with pathway 167 

embedding as input. NN is a model that directly uses classification module with gene embedding as input. As shown 168 

in Fig. 3b, the complete Pathformer model achieved the best classification performance, while the performance of 169 

CC-Attention, Transformer, PSNN, and NN decreased successively. Transformer had a significantly lower 170 

classification performance compared to CC-Attention, but no significant improvement compared to PSNN. This 171 

indicates that the criss-cross attention mechanism (Fig. 1c) plays a key role in Pathformer, with respect to 172 

information fusion and crosstalk between different biological pathways and between different modalities (i.e., multi-173 

omics). 174 
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Biological interpretability of the Pathformer model  175 

To comprehend Pathformer’s decision-making process, we used averaging attention maps in row-attention to 176 

represent the contributions of different modalities, and SHapley Additive exPlanations21 (SHAP value) to decipher 177 

the important pathways and their key genes (see Methods). SHAP value is a post hoc model interpretation method 178 

that assigns an importance value to each feature to explain the relationship between features and classification21. In 179 

addition, the z-score of SHAP values of different modalities for each pathway and gene can demonstrate modal 180 

complementarity at the gene level and the pathway level. Finally, the hub module of the updated pathway crosstalk 181 

network represents the most critical regulatory mechanism in classification, and is screened by sub-network scores 182 

based on SHAP values of pathways. Links of the updated network indicate crosstalk relationships that affect 183 

classification tasks (see Methods). 184 

 Here, we demonstrated the interpretability of Pathformer using the breast cancer subtype classification task as 185 

an example (Fig. 4). First, at the modality level, we visualized the contributions of different modalities for breast 186 

cancer subtype classification by the attention weights (Fig. 4a). The contribution of transcriptomic data was greater 187 

than 50% in breast cancer subtype classification, which is consistent with the fact that PAM50 is defined based on 188 

transcriptomic data22. Combining with the results of other classification tasks for breast cancer (Supplementary 189 

Figs. 5a, 6a), we observed that transcriptome always played a crucial role in various classification tasks; DNA CNV 190 

had certain contribution in subtype classification; and DNA methylation contributed substantially in early- and late- 191 

stage classification. In addition, the contributions of various statistical indicators in the same modality were also 192 

different for different classification tasks. For example, mean of DNA CNV played an important role in subtype 193 

classification, while minimum of DNA CNV had greater contribution in stage classification and survival 194 

classification. These findings further validated the necessity of multi-modal integration and biological multi-modal 195 

embedding. 196 

 Next, at the pathway and gene level, we identified the pathways with top 15 SHAP value and the genes with 197 

top 5 SHAP value of each pathway as key genes in breast cancer subtype classification (Fig. 4b). Then, we presented 198 

a hub module of the updated pathway crosstalk network (Fig. 4c). Here, complex I biogenesis pathway was 199 

identified as the most critical pathway in breast cancer subtype classification and a key node in the hub module of 200 

the updated pathway crosstalk network. This pathway comprises 57 genes, including mitochondrial genes and 201 

protein-coding genes. Complex I participates in the biosynthesis and redox control during cancer cell proliferation 202 

and metastasis23. Five mitochondrial genes (MT-ND3, MT-ND1, MT-ND4, MT-ND2, and MT-ND6) were identified 203 

as key genes of the complex I biogenesis pathway in breast cancer subtype classification by Pathformer. These 204 
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mitochondrial genes have been reported to exhibit distinct patterns in different breast cancer subtypes24. In addition, 205 

in the hub module of the updated pathway crosstalk network, complex I biogenesis pathway was closely related to 206 

TP53-regulated metabolic genes pathway and signaling by ERBB4 pathway, and has been identified as the most 207 

critical regulatory mechanism for breast cancer subtype classification. According to literatures, TP53 mutation 208 

spectrum25 and ERBB426 are biomarkers for breast cancer subtypes. 209 

 Moreover, many other important pathways identified by Pathformer for breast cancer subtype classification 210 

have also already been reported previously (Fig. 4b). For example, the expression of nucleotide excision repair 211 

pathway is reduced in TNBC, which may affect survival after platinum chemotherapy of patients27. RFC4 is the key 212 

gene of this pathway, and DNA CNV of RFC4 was reported to play a crucial role in determining individual breast 213 

cancer subtypes28, which is consistent with the prediction of the gene’s pillar module by Pathformer. Key genes of 214 

transcription of E2F targets under negative control by p107 and p130 in complex with HDAC1 pathway were 215 

identified as E2F1, HDAC1, RBBP4, CCNA2, and CDK1 by Pathformer. Most E2F family genes expressions are 216 

significantly up-regulated in TNBC, and are predictive biomarkers of neoadjuvant therapies in patients with ER-217 

positive/HER2-negative tumors29. In addition to the transcriptome level, DNV CNV of E2F1 is also a susceptibility 218 

factor for breast cancer30, again consistent with the prediction of the gene’s pillar module by Pathformer. HDAC1 219 

is significantly lower in HER2-positive and TNBC compared to luminal A and luminal B31.  220 

 Similarly, we also analyzed important pathways and hub modules of the updated pathway crosstalk network in 221 

breast cancer early- and late-stage classification and high- and low-risk survival classification (Supplementary 222 

Figs. 5,6). We found that complex I biogenesis pathway always played a crucial role in different classification tasks 223 

of breast cancer, due to its connection between various cancer-related pathways. Particularly, in breast cancer early- 224 

and late-stage classification, iron uptake and transport pathway had the greatest impact. Supportively, the transport 225 

and storage of iron in cells are known to play a key role in carcinogenesis, cell proliferation, and the development 226 

of breast cancer32. Furthermore, we found that some pathways were more important in early- and late-stage 227 

classification than in subtype classification and survival classification, such as collagen biosynthesis and modifying 228 

enzymes pathway, Eph/ephrin signaling pathway, FRA pathway, and G1 pathway. Roles of LAT2/NTAL/LAB in 229 

calcium mobilization pathway was more important in survival classification than in the other classification tasks, 230 

which was consistent with calcium signaling pathway’s function in breast cancer cells’ proliferation, invasion, 231 

apoptosis, and multidrug resistance, and with breast cancer survival33. 232 
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Application of Pathformer to liquid biopsy data for non-invasive cancer diagnosis 233 

Liquid biopsy is a non-invasive detection way with important clinical applications in both cancer diagnosis and 234 

status monitoring, which provides comprehensive information on transcriptome dynamics34. RNA alterations reflect 235 

the complementarity between different levels of information and help to overcome missed detection results of single 236 

data to further improve the accuracy of cancer diagnosis. Therefore, we used Pathformer to integrate multi-modal 237 

data of liquid biopsies for classifying cancer patients from healthy controls. We applied Pathformer to three cell-238 

free RNA-seq datasets derived from three different blood components: plasma, extracellular vesicle (EV), and 239 

platelet datasets (see Methods).   240 

 We calculated seven RNA-level modalities from RNA-seq data as Pathformer’s input, including RNA 241 

expression, RNA splicing, RNA editing, RNA alternative promoter (RNA alt. promoter), RNA allele-specific 242 

expression (RNA ASE), RNA single nucleotide variations (RNA SNV), and chimeric RNA. From results of 5-fold 243 

cross-validation in Supplementary Fig. 7, we found that the model with all modalities as input had the best 244 

comprehensive performance on three datasets, followed by RNA expression-only model and RNA alt. promoter-245 

only model, and some models with other modalities exhibited great fluctuations on different datasets. In order to 246 

effectively integrate information without redundancy, we performed further feature selection based on different 247 

modality combinations evaluated by Pathformer. First, we calculated the contributions of each modality and its 248 

corresponding statistical indicators (Fig. 5a). Similar to results of cross-validation, RNA expression was the core 249 

modality across all datasets. Next, we performed 5-fold cross-validation find an optimal modality combination for 250 

each dataset (Fig. 5b, Supplementary Table 3). We found that plasma dataset with 7 modalities, EV dataset with 3 251 

modalities, and platelet dataset with 3 modalities obtained the best performance. The AUCs were higher than 0.9 252 

for all three datasets. In conclusion, Pathformer effectively integrated multi-modal data from human plasma, and 253 

accurately classified cancer patients from healthy controls. 254 

Pathformer reveals deregulated pathways and genes in cancer patients’ plasma  255 

Because the Pathformer model has biological interpretability, we used Pathformer to predict cancer related pathways 256 

and genes in the above liquid biopsy data (Fig. 6). Then, we can gain insight into the deregulated alterations in body 257 

fluid (i.e., plasma) for cancer patients vs. healthy controls.  258 

 First, in comparison to cancer tissue data (Fig. 4, Supplementary Fig. 6), we found that vesicle transport and 259 

coagulation related pathways occupied an important position in datasets of various blood components, which is 260 

consistent with the characteristics of body fluids (Fig. 6a-c). Furthermore, we also observed that active pathways 261 
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and key genes of plasma dataset were more similar to those in platelet dataset, which is consistent with a recent 262 

report showing platelet is a major origin in the plasma cell-free transcriptome35. 263 

 Next, we examined there interesting pathways: one was found in EV data and the others were revealed from 264 

platelet data. In both EV and plasma datasets, we found that binding and uptake of ligands (e.g., oxidized low-265 

density lipoprotein, oxLDL) by scavenger receptors pathway was identified as the most active pathway (Fig. 6a, b). 266 

It is well established that scavenger receptors play a crucial role in cancer prognosis and carcinogenesis by 267 

promoting the degradation of harmful substances and accelerating the immune response through endocytosis, 268 

phagocytosis, and adhesion36. Scavenger receptors are also closely related to the transport process of vesicles. For 269 

example, stabilin-1, a homeostatic receptor, has the potential to impact macrophage secretion by linking 270 

extracellular signals and intracellular vesicular processes37. Meanwhile, HBB, HBA1, HBA2, FTH1, HSP90AA1 271 

were identified as key genes in this pathway. HBB has been reported as a biomarker in thyroid cancer38, breast 272 

cancer39, and gastric cancer40. It has also been demonstrated that HBB is significantly downregulated in gastric 273 

cancer blood transcriptomics40. HSP90AA1 has also been demonstrated to be a potential biomarker for various 274 

cancers41, especially in the blood42.  275 

 The other interesting pathways are DAP12 signaling pathway and DAP12 interactions pathway revealed in 276 

both platelet and plasma datasets (Fig. 6a, c). DAP12 triggers natural killer cell immune responses against certain 277 

tumor cells43, which is regulated by platelet44. Among the top 5 key genes of DAP12 related pathway in both platelet 278 

and plasma datasets, B2M was reported as a serum protein encoding gene and a widely recognized tumor 279 

biomarker45; HLA-E and HLA-B were reported as cancer biomarkers in tissue and plasma46,47. 280 

 In addition, Pathformer provides insight into the interplay between various biological processes and their 281 

impact on cancer progression by updating pathway crosstalk network (Fig. 6d-e). In the plasma data, the link 282 

between binding and uptake of ligands by scavenger receptors pathway and iron uptake and transport pathway was 283 

a novel addition to the updated network (Fig. 6d). In other words, this crosstalk relationship was newly predicted 284 

by Pathformer. The crosstalk between two pathways was amplified by Pathformer in plasma dataset, probably 285 

because they were important for classification and shared the same key gene, FTH1, one of two intersecting genes 286 

between the two pathways. However, in platelet dataset, this crosstalk between two pathways was not shown, when 287 

the scavenger receptors pathway was not important enough (Fig. 6e). In summary, Pathformer's updated pathway 288 

crosstalk network visualizes the information flow between pathways related to cancer classification task in the liquid 289 

biopsy data, providing novel insight into the cross-talk of biological pathways in cancer patients’ plasma. 290 
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Discussion 291 

Pathformer utilizes a biological multi-modal embedding (Fig. 1b) based on pathway-based sparse neural network, 292 

providing a demonstration of applying Transformer model on biological multi-modal data integration. Particularly, 293 

we showed that the criss-cross attention mechanism (Fig. 1c) contributed to the classification tasks by capturing 294 

crosstalk between biological pathways and potential regulation between modalities (i.e., multi-omics).  295 

 Applications of Pathformer. Pathformer will be usefully in many clinical applications like cancer subtyping, 296 

staging, prognosis, and diagnosis. For instance, we have demonstrated excellent performance of Pathformer on 297 

noninvasive diagnosis of cancer based on multi-modal data of liquid biopsy. The accuracies (AUC scores) of cancer 298 

classification in plasma, EV, and platelet datasets were all higher than 90%. Furthermore, the interpretability of the 299 

Pathformer model can help researchers gain insights into the complex regulation processes involved in cancer.  For 300 

instance, Pathformer has identified active pathways consistent with the characteristics of body fluid data, such as 301 

binding and uptake of ligands by scavenger receptors, and the DAP12 related pathway, which have been reported 302 

to be closely related to extracellular vesicle transport, platelet, and immune response during the development and 303 

progression of cancer. 304 

 Limitations of Pathformer and future directions. Pathformer used genes involved in pathways from four 305 

public databases, all of which consist of protein-coding genes. However, a substantial body of literature has reported 306 

that noncoding RNAs are also crucial in cancer prognosis and diagnosis48. Therefore, incorporating noncoding 307 

RNAs and their related functional pathways into Pathformer would be a potential future work. Another flaw of 308 

Pathformer is the computing memory issue. Pathway embedding of Pathformer has prevented memory overflow of 309 

Transformer module caused by long inputs. However, when adding more pathways or gene sets (e.g., transcription 310 

factors), Pathformer still faces the issue of memory overflow. In the future work, we may introduce linear attention 311 

to further improve computational speed.  312 
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Methods 314 

Data collection and preprocessing 315 

We collected 28 datasets across different cancer types from TCGA to evaluate classification performance of 316 

Pathformer and existing comparison methods, which consists of 8 datasets for cancer subtype classification, 10 317 

datasets for cancer early- and late- stage classification, and 10 datasets for cancer low- and high- survival risk 318 

classification. Besides, to further verify the effect of Pathformer in cancer diagnosis, we also collected three types 319 

of body fluid datasets: the plasma dataset (comprising 373 samples assayed by total cell-free RNA-seq49), the 320 

extracellular vesicle (EV) dataset (comprising 477 samples from two studies assayed by exosomal RNA-seq50,51), 321 

and the platelet dataset (comprising 918 sample from two studies assayed by tumor-educated blood platelet RNA-322 

seq52,53). Through our biological information pipeline, totally 4 and 7 biological modalities are obtained for TCGA 323 

dataset and liquid biopsy dataset, respectively. More details of data collection and preprocessing are described in 324 

Supplementary Fig. 1 and Supplementary Notes. 325 

The Pathformer model 326 

As shown in Fig. 1, Pathformer consists of the following six modules: biological pathway input, pathway crosstalk 327 

network calculation, multi-modal data input, biological multi-modal embedding, Transformer module with pathway 328 

crosstalk network bias, and classification module.  329 

Biological pathways and crosstalk network 330 

We collected 2,289 pathways of four public databases including Kyoto Encyclopedia of Genes and Genomes 331 

database (KEGG)54, Pathway Interaction database (PID)55, Reactome database (Reactome)56, and BioCarta 332 

Pathways database (BioCarta)57. Then, we filtered these pathways by three criteria: gene number, the overlap ratio 333 

with other pathways (the proportion of genes in the pathway that are also present in other pathways), and the number 334 

of pathway subsets (the number of pathways included in the pathway). Following the principle of moderate size and 335 

minimal overlap with other pathway information, we selected 1,497 pathways with gene number between 15 and 336 

100, or gene number greater than 15 and overlap ratio less than 1, or gene number greater than 15 and the number 337 

of pathway subsets less than 5. Next, we used BinoX to calculate the crosstalk relationship of 1,497 pathways and 338 

build a pathway crosstalk network with adjacency matrix 𝑷 ∈ ℝ!!×!!, 𝑁#=1,497 (more details in Supplementary 339 

Notes).  340 

Biological multi-modal data input and embedding 341 
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Pathformer supports any number of modalities as input which may have different dimensions, including nucleotide 342 

level, fragment level, and gene level. For example, Pathformer’s input for TCGA datasets includes gene-level RNA 343 

expression, fragment-level DNA methylation, and both fragment-level and gene-level DNA CNV. Pathformer’s 344 

input for liquid biopsy datasets includes gene-level RNA expression; fragment-level RNA alternative promoter, 345 

RNA splicing, and chimeric RNA; and nucleotide-level RNA editing, RNA ASE, and RNA SNV. We represented 346 

multi-modal input matrix of a sample as 𝑴 , and converted matrix 𝑴 into gene encoding 𝑬$  and pathway encoding 347 

𝑬%.  First, we used a series of statistical indicators in different modalities as gene embedding. These statistical 348 

indicators include gene level score, count, entropy, minimum, maximum, mean, weighted mean in whole gene, and 349 

weighted mean in window. Gene embedding is calculated as follows: 350 

𝑬$ = 𝑭&(𝑴) = +𝑓𝑬𝟏(𝑮(), 	𝑓𝑬𝟐(𝑮)),⋯ , 𝑓𝑬$(𝑮*)1 ∈ ℝ
!%×+% 351 

, where 𝑮, is modality i, 𝐷-  is length of gene embedding for all modalities, 𝑭&  is a series of gene embedding 352 

functions. 𝑭& uses a series of statistical indicators to uniformly convert the data of different modalities into the gene 353 

level, and the embedding functions corresponding to different modalities are different (more details in 354 

Supplementary Notes). Then, we used the known biological pathways to construct a sparse neural network for 355 

converting the gene embedding 𝑬$  into the pathway embedding 𝑬%, as described below: 356 

𝑬𝑷 = 𝑾𝒔𝒑𝒂𝒓𝒔𝒆
𝑻 𝑬𝑮 +𝑩,𝑬𝑷 ∈ ℝ!𝒑×+𝒑 357 

, where 𝑁#  is the number of pathways, 𝐷# = 𝐷-  is the length of pathway embedding, 𝑾6#7869 ∈ ℝ!%×!!  is a 358 

learnable sparse weight matrix, and 𝑩 is a bias term. 𝑾6#7869  is constructed based on the known relationship 359 

between pathways and genes. When the given gene and the pathway are irrelevant, the corresponding element of 360 

𝑾6#7869 will always be 0. Otherwise, it needs to be learned through training.  361 

Transformer module with pathway crosstalk network bias 362 

We employed the Transformer module based on criss-cross attention with pathway crosstalk network bias, which 363 

has 3 blocks. Each block of Transformer module contains the following processes: multi-head column-wise self-364 

attention (col-attention), multi-head row-wise self-attention (row-attention), layer normalization, GELU activation, 365 

residual connection, and network update. Multi-head column-wise self-attention contains 8 heads, each head is a 366 

mapping of 𝑸𝟏,𝑲𝟏,𝑽𝟏,𝑷, which are query vector, key vector, and value vector of multi-modal embedding and 367 

pathway crosstalk network matrix, respectively. 368 

 First, we represented the hth column-wise self-attention by 𝑨;<=
(?), calculated as follows: 369 

𝑨(
(?) = (𝑸(𝑲(A)/√𝑑 370 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.23.541554doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541554


𝑨;<=
(?) = dropoutB.)(softmax(𝑨(

(?) + 𝑷)) ∙ 𝑽(
(?) 371 

, where ℎ = 1,2,⋯ ,𝐻 is the hth head; H is the number of heads; 𝑸( = 𝑬%𝑾D'
(?) , 	𝑲( = 𝑬%𝑾E'

(?), 	𝑽( = 𝑬%𝑾F'
(?)	are 372 

linear transformations of the input 𝑬%; 𝑾D'
(?) ∈ ℝ+!×G, 𝑾E'

(?) ∈ ℝ+!×G, 𝑾F'
(?) ∈ ℝ+!×G are the weight matrices as 373 

parameters; d is the attention dimension; dropoutB.) is a dropout neural network layer with a probability of 0.2; and 374 

softmax is the normalized exponential function. 375 

 Next, we merged multi-head column-wise self-attention and performed a series of operations as follows: 376 

𝒈(
(?) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑬%𝑾-'

(?)) 377 

𝑼( =T(𝒈(
(?) ∘ 𝑨;<=

(?)) ∙ 𝑾H'
(?)

I

?J(

 378 

𝑼(K = 𝑼( + 𝑬% 379 

𝑶( = dropoutB.)(GELU(LayerNorm(𝑼(K ) ∙ 𝑾L'')) ∙ 𝑾L'( +𝑼(
K  380 

, where ℎ = 1,2,⋯ ,𝐻 is the hth head; H is the number of heads; ∘ is the matrix dot product; 𝑾-'
(?) ∈ ℝ+!×G, 𝑾H'

(?) ∈381 

ℝG×+!, 𝑾L'' ∈ ℝ
+!×<, 𝑾L'( ∈ ℝ

<×+! are the weight matrices as parameters; o is a constant; LayerNorm is the 382 

layer normalization function; GELU is the distortion of RELU activation function; and dropoutB.)is a dropout 383 

neural network layer with a probability of 0.2. 384 

 Multi-head row-wise self-attention enables information exchange between different modalities. It is a regular 385 

dot-product attention without pathway crosstalk network bias. The hth row-wise self-attention, i.e., 𝑨8<M
(?) , is 386 

calculated as follows: 387 

𝑨)
(?) = (𝑸)𝑲)

A)/√𝑑 388 

𝑨8<M
(?) = dropoutB.)(softmax(𝑨)

(?))) ∙ 𝑽)
(?) 389 

, where ℎ = 1,2,⋯, h is the hth head; H is the number of heads; 𝑸) = 𝑬%A𝑾D(
(?) , 	𝑲) = 𝑬%A𝑾E(

(?), 	𝑽) = 𝑬%A𝑾F(
(?)	are 390 

linear transformations of the input 𝑬%A ; 𝑾D(
(?) ∈ ℝ!!×G, 𝑾E(

(?) ∈ ℝ!!×G, 𝑾F(
(?) ∈ ℝ!!×G are the weight matrices as 391 

parameters; d is the attention dimension; dropoutB.) is a dropout neural network layer with a probability of 0.2; and 392 

softmax is the normalized exponential function. 393 

 Subsequently, we merged multi-head row-wise self-attention and performed a series of operations. The 394 

formulas are as follows: 395 

𝒈)
(?) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑬%A𝑾-(

(?)) 396 
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𝑼) =T(𝒈)
(?) ∘ 𝑨8<M

(?) ) ∙ 𝑾H(
(?)

I

?J(

 397 

𝑼)K = 𝜷 ∗ 𝑼) + 𝑬%A  398 

𝑶) = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡B.)(GELU(LayerNorm(𝑼)K ) ∙ 𝑾L(')) ∙ 𝑾L(( +𝑼)
K  399 

, where ℎ = 1,2,⋯, h is the hth head; H is the number of heads; ∘ is the matrix dot product; 𝑾-(
(?) ∈ ℝ!!×G, 𝑾H(

(?) ∈400 

ℝG×!! , 𝑾L(' ∈ ℝ
!!×< , 𝑾L(( ∈ ℝ

<×!!  are the weight matrices as parameters; o is a constant; 𝜷 is a constant 401 

coefficient for row-attention; LayerNorm is the layer normalization function; GELU is the distortion of RELU 402 

activation function; and 𝑑𝑟𝑜𝑝𝑜𝑢𝑡B.) is a dropout neural network layer with a probability of 0.2. 𝑶) is pathway 403 

embedding input of the next Transformer block. In other words, when 𝑬%  is 𝑬%
(B), 𝑶) is 𝑬%

((), superscripts with 404 

parenthesis represent data at different block. 405 

 Then, we used the updated pathway embedding 𝑶) to update the pathway crosstalk network. We exploited the 406 

correlation between embedding vectors of two pathways to update the corresponding element of the pathway 407 

crosstalk network matrix. The formula is as follows: 408 

𝑷K = (𝑷 ∙ 𝑷A)/𝑁# 409 

, where 𝑷K is the updated pathway crosstalk network matrix of next Transformer block. In other words, when 𝑷K is 410 

𝑷((), 𝑷 is 𝑷(B), superscripts with parenthesis represent data at different block. 411 

Classification module 412 

In order to solve the classification tasks, we used the fully connected neural network as the classification module to 413 

transform pathway embedding encoded by the Transformer module into the probability for each label. Three fully 414 

connected neural networks each have 300, 200, and 100 neurons, with dropout probability 𝑑𝑟𝑜𝑝𝑜𝑢𝑡;, which is 415 

hyperparameter. More details of the classification module are described in Supplementary Notes. 416 

Model training and test 417 

In this study, we implemented Pathformer's network architecture using the “PyTorch” package in Python v3.6.9, 418 

and our codes can be found in the GitHub repository (https://github.com/lulab/Pathformer). For model training and 419 

test, we divided the labeled dataset into the discovery set (75%) and the validation set (25%) hierarchically. We 420 

implemented model training, hyperparameter optimization and model early stopping on the discovery set and tested 421 

on the validation set (Supplementary Fig. 1). 422 

 When training the model, we used a normal model learning strategy. We applied cross-entropy loss with class-423 
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imbalance weight as the label prediction loss, the ADAM optimizer to train Pathformer, and the cosine annealing 424 

learning rate method to optimized learning rate. For hyperparameter optimization, we used grid search with 5-fold 425 

cross-validation in the discovery set. We used the macro-averaged F1 score as the selection criterion to find the 426 

optimal combination of maximum of learning rate∈[1e-4, 1e-5], dropout probability of classification (c)∈[0.3, 0.5], 427 

and constant coefficient for row-attention (𝜷)∈[0.1,1]. For early stopping, we divided the discovery set into the 428 

training set (75%) and the test set (25%) hierarchically, and used the macro-averaged F1 score of the test set as the 429 

criterion for stopping training. When testing the model, we used the best model trained with optimal hyperparametric 430 

combination in the validation set. More details of model training and test are described in Supplementary Notes. 431 

Model interpretability 432 

To better understand Pathformer’s decisions, we increased the interpretability of Pathformer by calculating 433 

contributions of different modalities, important pathways and their key genes, and hub module of the updated 434 

pathway crosstalk network.  435 

Contribution of each modality 436 

In Pathformer, row-attention is used to facilitate information interaction between different modalities, that is, row-437 

attention map can represent the importance of each modality. According to the trained model, we obtained row-438 

attention maps of 8 heads in 3 blocks for each sample. For the contribution of each modality, we first integrated all 439 

matrices of row-attention maps into one matrix by element-wise average. Then, we averaged this average row-440 

attention matrix along with columns as the attention weights of modalities, i.e., the contribution of modalities. The 441 

calculation is as follows: 442 

𝑨7N98 =
1
𝑁T

1
𝐵𝐿T

1
𝐻

OP

QJ(

!

RJ(

T𝑠𝑜𝑓𝑡𝑚𝑎𝑥([[𝑨)
(?)](Q)](R)

I

?J(

) 443 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	𝑤𝑒𝑖𝑔ℎ𝑡, =
(
+!
∑ 𝑎,S
+!
SJ( , 𝑎,S is the ith row and the jth columns of  𝑨7N98 444 

, where N is the number of samples, BL is the number of blocks, H is the number of heads, softmax is a normalized 445 

exponential function, and 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	𝑤𝑒𝑖𝑔ℎ𝑡, is the attention weight of dimension i of pathway embedding. 446 

Important pathways and their key genes 447 

SHapley Additive exPlanations21 (SHAP) is an additive explanation model inspired by coalitional game theory, 448 

which regards all features as "contributors". SHAP value is the value assigned to each feature, which explains the 449 

relationship between pathways, genes and classification, implemented by “SHAP” package of Python v3.6.9. 450 

 Specifically, we calculated SHAP values of the gene embedding and the pathway embedding encoded by 451 
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Transformer module corresponding to each sample and each category, denoted as 𝑺-R
(S) ∈ ℝ+!  and 𝑺#R

(S) ∈ ℝ+! 452 

respectively. The SHAP values of genes and pathways are calculated as follows: 453 

SHAP- = TT
1
𝑁Ts𝑠-R9

(S) s
!

RJ(

+!

9J(

G)*+

SJ(

, 𝑠-,9
(S) ∈ 𝑺-,

(S) 454 

SHAP# = TT
1
𝑁Ts𝑠#R9

(S) s
!

RJ(

+!

9J(

G)*+

SJ(

, 𝑠#,9
(S) ∈ 𝑺#,

(S) 455 

, where 𝑔 = 1,2,⋯ ,𝑁-is the gth gene,	𝑔 = 1,2,⋯ ,𝑁# is the pth pathway, 𝑛 = 1,2,⋯ ,𝑁 is the nth sample, 𝑒 =456 

1,2,⋯ , 𝐷# is dimension e of pathway embedding, and 𝑗 = 1,2,⋯ , 𝑑<TU is the jth category of sample. 457 

 In addition, we calculated SHAP values of pathways and genes in different modalities, described as follows: 458 

SHAP-, = T T
1
𝑁Ts𝑠-R9

(S) s
!

RJ(

9,

9J9'V⋯V9,-'

G)*+

SJ(

, 𝑠-,9
(S) ∈ 𝑺-,

(S) 459 

SHAP#, = T T
1
𝑁Ts𝑠#R9

(S) s
!

RJ(

9,

9J9'V⋯V9,-'

G)*+

SJ(

, 𝑠#,9
(S) ∈ 𝑺#,

(S) 460 

, where 𝑖 = 1,⋯ ,𝑚 is the ith modality, 𝑒, is the length of gene embedding and pathway embedding for modality i. 461 

 Finally, pathways with the top 15 SHAP values in the classification task are considered as important pathways. 462 

For each pathway, genes with top 5 SHAP values are considered as the key genes of the pathway. The core modality 463 

on which one gene depends indicates that the SHAP value of that gene ranks higher on this modality than on the 464 

others. 465 

Hub module of the updated pathway crosstalk network 466 

In Pathformer, pathway crosstalk network matrix is used to guide the direction of information flow, and updated 467 

according to encoded pathway embedding in each Transformer block. Therefore, the updated pathway crosstalk 468 

network contains not only prior information but also multi-modal data information, which represents the specific 469 

regulatory mechanism in each classification task. We defined the sub-network score through SHAP value of each 470 

pathway in sub-network, so as to find foremost sub-network for prediction, that is, hub module of the updated 471 

pathway crosstalk network. The calculation of the sub-network score can be divided into four steps: average pathway 472 

crosstalk network matrix calculation, network pruning, sub-network boundary determination, and score calculation. 473 

More details of sub-network score calculations are described in Supplementary Notes. 474 
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Figure Legends 629 

 630 

Figure 1. Overview of the Pathformer model. 631 

a. Model architecture of Pathformer. 𝐹&, statistical indicators in the gene embedding. b. Calculation of biological 632 

multi-modal embedding. Circles, neurons in the neural network; arrows, represent the direction of information flow; 633 

G, gene; P, pathway; W, weight of pathway-based sparse neural network. The weights of the pathway-based sparse 634 

neural network represent the importance of different genes in different pathways. c. A block of Transformer module 635 

with pathway crosstalk network bias (3 blocks used in a). The pathway embedding matrix is used as input and the 636 

pathway crosstalk network matrix is used as bias. 𝑁# , number of pathways; 𝐷# , dimensionality of pathway 637 

embedding; h, number of attention heads; d, attention dimension; 𝑽(, 𝑲(, 𝑸(, 𝑨(: vale, key, query and attention 638 

map of col-attention; 𝑽), 𝑲), 𝑸),	𝑨): vale, key, query and attention map of row-attention; +, element-wise addition; 639 

×, matrix multiplication; ∘, matrix dot product; 𝛽, constant coefficient for row-attention. 640 

 641 

Figure 2. Performance comparison between Pathformer and other multi-modal integration methods 642 

Bar charts show the macro-averaged F1 score of different multi-modal integration methods in different classification 643 

tasks of TCGA datasets. Error bars are from 2 times 5-fold cross-validation, representing 95% confidence intervals. 644 

XGBoost refers to the early integration methods based on gradient boosted tree, while XGBoost (late) refers to the 645 

late integration methods based on gradient boosted tree.  646 

 647 

Figure 3. Ablation analysis of Pathformer for the classification of early- and late-stage cancer patients. 648 

a. Different types of data (modalities) were used as input for TCGA cancer early- and late-stage classification. b. 649 

Ablation analysis of different modules in Pathformer. Error bars are from 2 times 5-fold cross-validation across 8 650 

datasets, representing 95% confidence intervals. CC-attention, Pathformer without pathway crosstalk network bias; 651 

Transformer, Pathformer without either pathway crosstalk network bias or row-attention; PSNN, Pathformer 652 

without Transformer module; NN, classification module only. 653 

 654 

Figure 4.  Breast cancer subtype related modalities, pathways and genes revealed by Pathformer.  655 

a. Contributions of different modalities for breast cancer (BRCA) subtype classification calculated by attention 656 

weights (averaging attention maps of row-attention). b. Important pathways and their key genes with top SHapley 657 

Additive exPlanations (SHAP) values. Among the key genes, different colors represent different pillar modalities 658 
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of the genes. c. A hub module of pathway crosstalk network for BRCA subtype classification. Color depth and size 659 

of node represents the degree of node. Line thickness represents the weight of edge. All links are predicted by 660 

Pathformer, where known links are reported by the initial crosstalk network and new links are new predictions. 661 

 662 

Figure 5. Pathformer integrates multi-modal liquid biopsy data for non-invasive cancer diagnosis. 663 

a. Contributions of different input features and their statistical indicators when classifying cancer patients from 664 

healthy controls using three liquid biopsy datasets. All mean represents the sum of mean, weighted mean and 665 

window weighted mean. Each type of RNA splicing is the sum of all statistical indicators in this type. b. 666 

Classification performance of different input combinations. Each value is the mean of 5-fold cross-validation. 667 

 668 

Figure 6. Interpretation of the liquid biopsy data using Pathformer. 669 

Important pathways and their key genes revealed by Pathformer in the datasets of (a) plasma (b) EV (c) platelet 670 

when classifying cancer patients from healthy controls. The pathways and their key genes were selected with top 671 

SHAP values. Among the key genes, different colors represent different pillar modalities (e.g., RNA expression, 672 

RNA editing, etc) of the genes. Hub modules of pathway crosstalk network are shown for (d) plasma and (e) platelet 673 

data. Color depth and size of node represent the degree of node. Line thickness represents the weight of edge. All 674 

links are predicted by Pathformer, where known links are reported by the initial crosstalk network and new links 675 

are new predictions. 676 

 677 
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Figure 1. Overview of the Pathformer model.

a

Biological Pathways

Transformer module with 
pathway crosstalk network bias

3 blocks

Fu
lly

 c
on

ne
ct

ed
 la

ye
r

Cancer 
candidates  
Healthy

Cancer

Pathway crosstalk network

KEGG
PID

Reactome
BioCarta

Pathway 1

Pathway n

Pa
th

w
ay

s

Pathways

Multi-modal data

Pathway-based 
sparse neural network

Biological multi-modal embedding

Sequence reads
Gene 

embedding

G
en

es

Multi-modal  
embedding

Pathway 
embedding

Pa
th

w
ay

s

Multi-modal  
embedding

Classification

𝑭!
Genome

ATCTAC

Multi-modal data

Pathway 
embedding

Pa
th

w
ay

s

Criss-Cross Attention

Pa
th

w
ay

s

Pa
th

w
ay

s

Pathways

Pathway crosstalk 
network bias

Pa
th

w
ay

s

Pathways

Update

Update

U
pd

at
e

Pa
th

w
ay

s

Pathways

Pa
th

w
ay

s

Genome

ATCTAAC

Sequence reads

①,②, ③, ④, ⑤

①

②, ③, ④, ⑤

②, ③, ④, ⑤, ⑥, ⑦, ⑧

(②, ③, ④, ⑤, ⑥) * 5 AS type

②, ③, ④, ⑤, ⑥, ⑦, ⑧

②, ③, ④, ⑤, ⑥, ⑦, ⑧

②

Gene embedding methodsMulti-modal data

DNA methylation

DNA CNV

RNA Expression

RNA alternative promoter

RNA editing

RNA splicing

RNA ASE

RNA SNV

Chimeric RNA

( ) * 
gene body or promoter

① Gene level score 
② Count of events (sites) ratio
③ Minimum of events (sites) ratio
④ Maximum of events (sites) ratio

Gene embedding

G
en

es …

⑤ Mean of events (sites) ratio
⑥ Entropy of events (sites) ratio
⑦Weighted mean of events (sites) ratio
⑧Window weighted mean of events (sites) ratio

Pathway 
embedding

Pa
th

w
ay

s

PSNN
…

Pathway-based sparse neural network
Genes layer Pathways layer

Modal 1 & 3 depended 

Modal 2 depended 

Modal 1 depended 

P1

P2

PNp
GNg

G4

G3

G2

G1

...

W1(+)

W2(+)

W3(+)

W4(-)

WNg(-)
...

...

...

...

...

...

...

...

...

②, ③, ④, ⑤

①③④⑤⑥…②③④⑥

①③④⑤⑥…②③④⑥

b

𝑽"
(𝑁! ,d,h)

𝑸"
(𝑁!,d,h)

𝑲"
(𝑁!,d,h)

Pathway embedding
𝑁!* 𝐷!

Col-attention
of CC-attention

Pa
th

w
ay

s

𝑨"
(𝑁!, 𝑁!,h)

Pathway crosstalk 
network bias

𝑁!*𝑁!

Pa
th

w
ay

s

Row-attention
of CC-attention

𝑽$
(𝐷!,d,h)

𝑸$
(𝐷!,d,h)

𝑲$
(𝐷! ,d,h)

𝑨$
(𝐷!,𝐷!,h)linear 𝐷!

→(d,h)

linear 
(d,h)→ 𝐷!softmax

linear 𝑁!
→(d,h)

linear 𝑁!
→(d,h)

linear 𝑁!
→(d,h)

softmax
linear

(d,h)→ 𝑁!

Pa
th

w
ay

s

Pi

Mean

Update

La
ye

rn
or

m
 &

G
EL

U
&

A
dd

Update

linear 𝐷!
→(d,h)

linear 𝐷!
→(d,h) Pj

Pi Pj

Pa
th

w
ay

s Pathways

Pa
th

w
ay

s Pathways

La
ye

rn
or

m
 &

G
EL

U
&

A
dd

𝛽

c



Figure 2. Performance comparison between Pathformer and other multi-modal integration methods

Cancer early- and late- stage classification

BRCA KIRC LUAD LUSC STAD BLCA LIHC SKCM THCA All
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
sc

or
e_

m
ac

ro

BRCA HNSC KIRC LGG LUAD LUSC BLCA LIHC SKCM All
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
sc

or
e_

m
ac

ro

Cancer high- and low- risk survival classification

NSCLC KIPAN BRCA LGG HNSC STAD CESC SARC

F1
sc

or
e_

m
ac

ro

0.2

0.4

0.6

0.8

1.0

Cancer subtype classification
sPLSDA
XGBoost (late)
XGBoost

Traditional methods

Deep learning methods
MOGONet
PathCNN
Pathformer



Figure 3. Ablation analysis of Pathformer for the classification of early- and late-stage cancer patients. 
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Figure 4. Breast cancer subtype related modalities, pathways and genes revealed by Pathformer
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Figure 5. Pathformer integrates multi-modal liquid biopsy data for non-invasive cancer diagnosis
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Figure 6. Interpretation of the liquid biopsy data using Pathformer
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The role of Nef in HIV-1 replication and disease pathogenesis

Iron uptake and transport
Nef-mediates down modulation of cell surface receptors…

Interferon gamma signaling
Antigen processing and presentation

DAP12 interactions
IL12 2 pathway

Infection with Mycobacterium tuberculosis
Mitochondrial Fatty Acid Beta-Oxidation

CD8 TCR downstream pathway
P53 hypoxia pathway

Signaling by BRAF and RAF1 fusions
Antigen presentation folding and peptide loading of class I MHC

RAS pathway

Important pathways and key genes on platelet data classification by SHAP

B2M, RAC1, HLA-E, GRB2, GRAP2
B2M, RAC1, ARF1, FYN, HLA-A
FTH1, UBB, RPS27A, UBC, SKP1
B2M, ARF1, HLA-A, AP2S1, AP2M1
B2M, HLA-E, PRKCD, HLA-B, HLA-A
B2M, HLA-E, HSP90AA1, HLA-B, HLA-A
B2M, RAC1, HLA-E, GRB2, GRAP2
B2M, FOS, HLA-A, STAT1, STAT3
B2M, UBB, RPS27A, UBC, UBA52
HADHA, ACOT7, ACADVL, ECHS1, ACADM
B2M, FOS, PRKCB, HLA-A, IL2RG
CDKN1A, RPA1, HSP90AA1, BAX, GADD45A
ITGA2B, ACTB, VCL, ITGB3, CALM1
B2M, HLA-E, HLA-B, HLA-A, CANX
RAC1, RHOA, CDC42, BAD, RAF1

Important pathways Top5 genes of each pathway

Known links 
New links

Links predicted by
Pathformer

Z-score of SHAP
RNA expression

0 1
RNA alt. promoter
0 1

Chimeric RNA
0 1

RNA editing
0 1

RNA splicing
0 1

RNA SNV
0 1

RNA ASE
0 1

Pillar modality of gene
RNA expression

RNA alt. promoter
RNA splicing
RNA editing

RNA ASE
RNA SNV

Chimeric RNA
RNA editing + Chimeric RNA

RNA alt. promoter + Chimeric RNA
RNA SNV + RNA ASE


