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 2 

ABSTRACT 21 

The precise coordination of gene expression is critical for developmental programs, and histone 22 

modifying proteins play important, conserved roles in fine-tuning transcription for these 23 

processes. One such family of proteins are KDM5 enzymes that interact with chromatin through 24 

demethylating H3K4me3 as well as demethylase-independent mechanisms that remain less 25 

understood. The single kdm5 ortholog in Drosophila is an essential gene that has crucial 26 

developmental roles in a neuroendocrine tissue, the prothoracic gland. To characterize the 27 

regulatory functions of KDM5, we examined its role in coordinating gene expression programs 28 

critical to cellular homeostasis and organismal viability in larval prothoracic gland cells. Utilizing 29 

targeted genetic experiments, we analyzed the relationship between critical cell signaling 30 

pathways, particularly MAPK, and the lethality caused by loss of kdm5. Integrating KDM5 genome 31 

binding and transcriptomic data revealed conserved and tissue-specific transcriptional programs 32 

regulated by KDM5. These experiments highlighted a role for KDM5 in regulating the expression 33 

of a set of genes critical for the function and maintenance of mitochondria. This gene expression 34 

program is key to the essential functions of KDM5, as expression of the mitochondrial biogenesis 35 

transcription factor Ets97D/Delg, the Drosophila homolog of GABPα, in prothoracic gland cells 36 

suppressed the lethality of kdm5 null animals. Consistent with this, we observed morphological 37 

changes to mitochondria in the prothoracic gland of kdm5 null mutant animals. Together, these 38 

data establish KDM5-mediated cellular functions that are both important for normal 39 

development and could also contribute to KDM5-linked disorders when dysregulated. 40 

 41 

  42 
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INTRODUCTION 43 

Transcriptional regulators function as powerful gatekeepers that enable cells to access and utilize 44 

the information stored in the genome. The dynamics of chromatin organization and 45 

transcriptional mechanisms must therefore be carefully coordinated to orchestrate the gene 46 

expression programs required for proper development. Conversely, improper function of 47 

transcriptional regulators can underlie the defective cellular processes that lead to dysfunction 48 

and disease (Mirabella et al., 2016, Lee and Young, 2013). Within this realm of biology, 49 

chromatin-modifying proteins interface with histone protein tails through writing, reading, and 50 

erasing post-translational modifications to organize gene expression. KDM5 (Lysine Demethylase 51 

5) proteins are one such family of chromatin-modifiers that are named for their ability to remove 52 

trimethylation of lysine 4 on histone H3 (H3K4me3), a mark generally found near the 53 

transcriptional start sites of actively expressed genes (Chan et al., 2022). 54 

 55 

Mammalian cells encode four paralogous KDM5 proteins: KDM5A, KDM5B, KDM5C, and KDM5D. 56 

The importance of gene regulation by KDM5 family proteins is demonstrated by their links to 57 

human disorders. All four KDM5 genes have been observed to show altered expression across a 58 

variety of cancer types, of which breast and prostate cancer are the most well characterized 59 

(Ohguchi and Ohguchi, 2022, Blair et al., 2011). The relationship between KDM5A, KDM5B, and 60 

tumorigenesis appears to be primarily oncogenic, with a range of cancers showing increased 61 

expression of either of these two paralogs. Rather than being linked to the regulation of a single 62 

process in malignant cells, KDM5A and KDM5B contribute to many facets of tumorigenesis 63 

including the regulation of genes linked to cell cycle control, DNA repair and angiogenesis (Yoo 64 

et al., 2022, Ohguchi et al., 2021, Taylor-Papadimitriou and Burchell, 2022, Ohguchi and Ohguchi, 65 

2022). The roles of KDM5C and KDM5D in malignancies are less defined, although, in contrast to 66 

KDM5A and KDM5B, it is generally reduction of these proteins that is observed in various cancers, 67 

most notably renal carcinomas (Tricarico et al., 2020). The genetic association between KDM5 68 

proteins and neurodevelopmental disorders, including intellectual disability and autism spectrum 69 

disorders, is more clearly caused by loss of function variants in KDM5A, KDM5B or KDM5C (Hatch 70 

and Secombe, 2021, Yoo et al., 2022). Consistent with this, mouse and cell culture models have 71 
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shown that Kdm5A, Kdm5B and/or Kdm5C are needed for proper neuronal differentiation and 72 

morphology (Iwase et al., 2017, Iwase et al., 2016, Harrington et al., 2022, El Hayek et al., 2020). 73 

However, while KDM5 proteins are clearly required for normal brain function, the transcriptional 74 

programs critical for typical cognitive development remain unknown. It also remains unclear 75 

whether similar or distinct transcriptional programs etiologically link KDM5 to malignancies and 76 

to brain development. In this regard, it is notable that although cancer and intellectual disability 77 

have vastly different clinical manifestations, alterations in the activity of other regulatory factors, 78 

such as members of the MAPK/Ras (mitogen-activated protein kinase) and PI3K signaling 79 

cascades, are also linked to these same two disorders (Borrie et al., 2017). Thus, it remains 80 

possible that dysregulation of overlapping pathways contributes to both altered cognition and 81 

tumorigenesis.  82 

 83 

Defining precisely how changes to KDM5 protein function leads to cancer or intellectual disability 84 

would be greatly facilitated by efforts to understand the fundamental transcriptional activities of 85 

KDM5 proteins. To date, most attempts to define these links have focused on the canonical 86 

histone demethylase activity. However, it is becoming increasingly apparent that KDM5 and 87 

other chromatin-modifying proteins also perform important non-catalytic gene regulatory 88 

functions (Ohguchi and Ohguchi, 2022, Paroni et al., 2018, Cao et al., 2014, Aubert et al., 2019, 89 

Morgan and Shilatifard, 2023). Demethylase-dependent and independent activities of KDM5 90 

proteins have been shown to play roles in both cancer and intellectual disability (Iwase et al., 91 

2007, Vallianatos et al., 2018, Paroni et al., 2018). This is also true in the animal model Drosophila 92 

melanogaster, which encodes a single KDM5 protein that is likely to function incorporating 93 

activities of all four mammalian paralogs. Establishing its critical role in developmental processes 94 

is the fact that a null allele in Drosophila kdm5 (kdm5140) causes lethality during development 95 

(Drelon et al., 2018). The essential functions of KDM5 are independent of its enzymatic 96 

demethylase function, however, as animals harboring loss-of-function mutations in the 97 

enzymatic Jumonji C (JmjC) domain survive to adulthood (Drelon et al., 2018, Li et al., 2010). 98 

Characterizing the role of KDM5 during Drosophila development therefore provides an 99 
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opportunity to uncover new pathways and gene-regulatory mechanisms that will expand our 100 

understanding of this family of multi-domain proteins. 101 

 102 

Several cell types in Drosophila have been shown to require KDM5 during development. 103 

Consistent with the established link between genetic variants in human KDM5 genes and 104 

intellectual disability, KDM5 is necessary for proper neuronal development and functioning 105 

(Belalcazar et al., 2021, Hatch et al., 2021, Zamurrad et al., 2018). However, these neuronal 106 

activities of KDM5 are not necessarily involved in its essential developmental functions, as 107 

restoring kdm5 expression pan-neuronally does not rescue lethality (Drelon et al., 2019). KDM5 108 

has also been linked to immune function in larval hemocytes, but, in a similar manner to neurons, 109 

this cell type does not account for its essential activities (Drelon et al., 2019, Moran et al., 2015). 110 

The only single tissue in which re-expression of kdm5 is sufficient to rescue lethality is the 111 

prothoracic gland (Drelon et al., 2019). kdm5140 (null) animals rescued by prothoracic gland-112 

specific kdm5 expression develop into adult flies, however, they survive at a lower frequency 113 

than animals expressing kdm5 ubiquitously, which indicates that KDM5 also has essential 114 

developmental functions in other tissues. Nevertheless, this rescue demonstrates that within 115 

prothoracic gland cells, KDM5 regulates the expression of genes crucial to proper organismal 116 

development.  117 

 118 

A neuroendocrine tissue, the prothoracic gland serves as a master coordinator of numerous 119 

intracellular cellular processes, tissue growth, and organismal transitions that are essential to 120 

development through its production of the steroid hormone ecdysone (Kamiyama and Niwa, 121 

2022, Texada et al., 2020). This tissue is also a well-established model for understanding how key 122 

signaling pathways are integrated to govern hormone dynamics and animal maturation, including 123 

the MAPK, Salvador-Warts-Hippo-Yorkie (SHW), target of rapamycin (TOR) and insulin and 124 

insulin-like signaling (IIS) cascades. These pathways are known to converge on cellular processes, 125 

such as autophagy, that are critical for regulating metabolism and hormone production in the 126 

prothoracic gland (Texada et al., 2019, Nagata et al., 2022, Moeller et al., 2017). Like KDM5 family 127 

proteins, the dysregulation of these pathways is implicated in human disorders including cancer 128 
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and neurodevelopmental disorders (Vithayathil et al., 2018, Kim and Choi, 2010, Zanconato et 129 

al., 2016, Tian et al., 2019, Williamson et al., 2014). Studying the functions of KDM5 in the 130 

prothoracic gland will therefore provide important information about the relationship between 131 

KDM5-regulated gene expression and these critical pathways.  132 

 133 

KDM5 plays at least two distinct roles in cells of the prothoracic gland. The first is in the regulation 134 

of larval growth rate. Although kdm5 null mutants can eventually reach wild-type size and 135 

undergo metamorphosis, they take as much as twice the amount of time to progress through the 136 

stages of development and exhibit corresponding reduced ecdysone levels (Drelon et al., 2018). 137 

In this context, KDM5 promotes the endoreplication of prothoracic gland cells, which increases 138 

ploidy in order to maximally express ecdysone biosynthetic factors (Drelon et al., 2019, Ohhara 139 

et al., 2017, Ohhara et al., 2019). The role of KDM5 in facilitating normal growth rate, however, 140 

is separate to its role in survival, as restoring normal developmental timing to kdm5 mutant 141 

animals does not alter their viability. The role of KDM5 in promoting animal survival does involve 142 

the MAPK signaling pathway, as kdm5 null mutant animals show decreased MAPK signaling and 143 

activating this pathway in the prothoracic gland suppresses kdm5 mutant lethality. However, 144 

whether this effect is specific to the MAPK pathway, and which downstream cellular processes 145 

link KDM5, MAPK, and viability, remain to be established. 146 

 147 

Here we examine KDM5 function in the prothoracic gland as a means to broadly understand how 148 

this chromatin modifier regulates critical cellular processes. Extending from our previous studies, 149 

we explore the role of the MAPK and parallel pathways in mediating the lethality caused by loss 150 

of kdm5 by taking targeted approaches based on the known signaling cascades. We additionally 151 

take unbiased approaches to define the transcriptional targets of KDM5. Among these targets, 152 

we identified mitochondrial biology as a candidate process for which KDM5-mediated regulation 153 

could play critical roles during development. Reinforcing these connections, the lethality of the 154 

kdm5 null allele can be suppressed by expression of Ets97D/Delg, the Drosophila homolog of GA 155 

Binding Protein Transcription Factor Subunit Alpha (GABPα), a known activator of genes 156 

necessary for cellular respiration. Supporting this, prothoracic gland cells of kdm5 mutant animals 157 
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show altered mitochondrial morphology dynamics. Together, this study provides new insights 158 

into the link between KDM5-regulated transcription, mitochondrial function, and vital cellular 159 

processes needed to coordinate development.  160 
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RESULTS 161 

Activating MAPK signaling suppresses kdm5 null lethality independently of autophagy 162 

regulation. 163 

To better understand the critical developmental roles of KDM5, we first sought to further 164 

investigate the link between kdm5-induced lethality and activation of MAPK signaling (Drelon et 165 

al., 2019). From yeast to humans, the MAPK signaling cascade is used by cells to regulate a myriad 166 

of downstream cellular events in a context-dependent manner (Widmann et al., 1999, Yang et 167 

al., 2013, Eblen, 2018, Pan and O'Connor, 2021). In the prothoracic gland of Drosophila, the MAPK 168 

pathway is one of several signaling networks that regulates ecdysone biosynthesis (Fig. 1A). To 169 

further characterize the relationship between KDM5 and MAPK, we took a candidate-based 170 

approach, testing upstream and downstream components of this cascade for an effect on kdm5-171 

induced lethality (Fig. 1B). We used spookier-Gal4 (spok-Gal4) to drive expression of transgenes 172 

in a tissue-specific manner within the prothoracic gland, hereafter written as “spok>transgene” 173 

(Fig. 1C) (Drelon et al., 2019, Shimell et al., 2018, Pan and O'Connor, 2021). As quantified 174 

previously, the ability of tested transgenes to mediate kdm5140 (null allele) survival into 175 

adulthood was calculated, and for these experiments, this survival index was normalized to that 176 

observed by spok-Gal4-driven expression of KDM5 (% spok>kdm5, see Methods).  177 

 178 

Based on the suppression of kdm5140 lethality by expression of the receptor tyrosine kinase (RTK) 179 

Torso and activated Ras (RasV12) in Drelon et al. (2019), we tested whether other RTKs upstream 180 

of MAPK, or whether the downstream kinase ERK, could restore kdm5140 viability (Drelon et al., 181 

2019). In parallel to Torso, which receives neuronal stimulation via the prothoracicotropic 182 

hormone (PTTH) neurotransmitter, the anaplastic lymphoma kinase (Alk), epidermal growth 183 

factor receptor (Egfr), and PDGR and VEGF-receptor related (Pvr) RTKs can also activate MAPK 184 

signaling and impact ecdysone biosynthesis in response to extracellular inputs (Pan and 185 

O'Connor, 2021, Cruz et al., 2020). spok-Gal4-driven expression of wild-type or constitutively 186 

active (CA) forms of each of these receptors resulted in partial suppression of lethality with a mean 187 

survival index of 33.2% (Fig. 1D). Likewise, spok>erk and spok>erkCA resulted in survival indices of 188 

17.4% and 41.8%, respectively (Fig. 1E). While most MAPK transgenes tested significantly 189 
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restored kdm5140 viability, none were as effective as RasV12, which had an average survival index 190 

of 78.1% (Fig. 1E). This possibly reflects stronger activation of signaling by the RasV12 transgene, 191 

particularly due to the role of post-translational modifications in regulating the MAPK cascade. 192 

Similar to the rescue of kdm5140 by expression of KDM5 in the prothoracic gland, adult flies 193 

obtained through expression of RTKs or ERK had successfully formed adult structures but with an 194 

outstretched wings phenotype and reduced lifespan (Supp Fig. 1) (Drelon et al., 2019). Combined, 195 

these data confirm that augmenting MAPK signaling through various means of activation, not 196 

only through the Torso-Ras axis, all restore kdm5140 viability. The downstream effectors that 197 

mediate MAPK signaling in the prothoracic gland remain unknown; however, in other contexts, 198 

regulatory proteins such as Myc, the E2F1/DP heterodimer, and cell cycle mediators can be 199 

regulated by this cascade (Zhang and Liu, 2002). Because these specific transcription factors and 200 

cellular processes have also been associated with mammalian or Drosophila KDM5 function in 201 

other contexts, we next tested their ability to suppress kdm5140 lethality (Secombe et al., 2007, 202 

Benevolenskaya et al., 2005, Drelon et al., 2019). Expression of Myc, E2F1 and DP, or Cyclin E did 203 

not alter kdm5-induced lethality, however, suggesting that other, unidentified regulators of gene 204 

expression function with KDM5 in the context of the prothoracic gland (Fig. 1F).  205 

  206 

To determine whether this relationship with kdm5140 lethality is specific to the MAPK pathway, 207 

we examined other signaling pathways that mediate prothoracic gland function, many of which 208 

show extensive crosstalk (Fig. 1A). Specifically, we tested the insulin and insulin-like growth factor 209 

signaling (IIS), Salvador-Warts-Hippo-Yorkie (SWH), and the target of rapamycin (TOR) pathways. 210 

These three pathways are among the best characterized to date for their roles in the prothoracic 211 

gland, particularly in the regulation of homeostatic metabolic processes such as autophagy and 212 

lipid processing for hormone production (Texada et al., 2019, Danielsen et al., 2013, Danielsen et 213 

al., 2014, Danielsen et al., 2016). To test the IIS cascade, we expressed an activated form of the 214 

insulin receptor (spok>InRCA) or the downstream transcription factor foxo (spok>foxo). 215 

Expression of InR or foxo did result in suppression of kdm5140 lethality with survival indices of 216 

65.6% and 24.8%, respectively (Fig. 1G). Though we previously saw no defective activation of the 217 

IIS pathway by phoso-Akt via Western blot in kdm5140 animals in Drelon et al. (2019), it is possible 218 
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that ectopic insulin signaling activation can act on similar downstream targets or compensate in 219 

some other way for MAPK defects (Drelon et al., 2019). In contrast, SWH signaling, activated by 220 

expression of RNAi against Wts (spok>wts-RNAi #1 and 2) or overexpression of wild-type or 221 

constitutively active yki transgenes (spok>yki, spok>ykiCA) did not consistently suppress lethality 222 

(Fig. 1G). For this pathway, suppression was limited to ykiCA, which, similar to the IIS cascade, may 223 

indicate that activation of these signaling pathways is able to compensate for kdm5140 MAPK 224 

defects. These results could be due to crosstalk between these pathways and/or upregulation of 225 

common inputs involved in regulation of ecdysone biosynthesis and prothoracic gland function. 226 

 227 

Additionally, prothoracic gland cells have distinct energetic and other cellular homeostatic 228 

requirements due to their status as terminally differentiated and large polyploid cells, and 229 

therefore proper balance of TOR signaling has been shown to be critical for tissue function 230 

(Danielsen et al., 2016, Texada et al., 2019, Pan et al., 2019, Yamanaka, 2021, Pan et al., 2020). 231 

For this reason, we tested several manipulations of TOR signaling and autophagy via both 232 

activation (spok>Rheb, spok>S6K, spok>TSC-RNAi) and repression (spok>TORDN). Interestingly, 233 

none of these TOR pathway manipulations affected kdm5140 lethality (Fig. 1H). Thus, while 234 

regulation of autophagy is one cellular process on which all of these signaling pathways are 235 

known to converge, the lethality of kdm5140 mutants does not appear to be from lack of TOR 236 

pathway regulation. Taken together, there appear to be multiple pathways capable of 237 

suppressing kdm5140 lethality via activity in the prothoracic gland, but it is not yet clear whether 238 

these results are due to crosstalk between pathways or compensatory activation of shared 239 

downstream targets. Moreover, it remains an open question which downstream transcription 240 

factors are responsible for the cellular programs activated by this signaling that are crucial for 241 

development and adult viability. 242 

 243 

kdm5 expression is required during mid to late larval stages for viability. 244 

Our candidate approaches identified regulatory pathways, but not key KDM5-mediated 245 

downstream processes linked to viability. We therefore performed transcriptomic and genomic-246 

binding studies to investigate KDM5 function in an unbiased manner. Prior to carrying out these 247 
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molecular studies, we first needed to determine the periods during development in which KDM5 248 

is required. To do this, we ubiquitously expressed the UAS-kdm5 transgene using Ubi-Gal4 within 249 

defined windows of time during development in the kdm5140 background (Fig. 2A). To facilitate 250 

temporal activation of kdm5 expression, we included a transgene ubiquitously expressing 251 

temperature-sensitive Gal80ts (tub-Gal80ts) (McGuire et al., 2003). At 18°C, the Gal80ts prevents 252 

UAS-kdm5 transgene activation, thus kdm5140 animals with tub-Gal80ts, Ubi-Gal4, and UAS-kdm5 253 

incubated at 18°C fail to reach adulthood (Fig. 2A). At 29°C, Gal80ts is inactivated, which allows 254 

constitutive expression of the UAS-kdm5 transgene and results in adult fly viability (Fig. 2A). At 255 

the permissive temperature of 29°C, we observe protein levels similar to both endogenous KDM5 256 

and to our previously published system in which flies were grown at 25°C without Gal80ts (Fig. 257 

2B) (Drelon et al., 2019). Using this system, kdm5 expression was turned on at progressively later 258 

days during development by transferring the animals from 18°C to 29°C (modeled in Fig. 2A). The 259 

extent to which temporally-restricted expression of kdm5 rescued viability is reported as a 260 

survival index normalized to the rescue observed by continuous expression of kdm5 (Ubi>kdm5 261 

at constant 29°C, see Methods). Temperature shifting animals early in development led to robust 262 

rescue (Fig. 2C). In contrast, activating the UAS-kdm5 transgene in animals that had reached mid 263 

larval stages (2nd-3rd instar) or later resulted in a failure to rescue adult viability (Fig. 2C). Thus, 264 

kdm5 expression is required prior to pupal stages and as early as mid to late larval stages, 265 

although we cannot yet rule out additional roles later in development. Additional complementary 266 

experiments in which UAS-kdm5 transgene expression was inhibited progressively later in 267 

development were also performed by shifting animals from 29°C to 18°C (modeled in Fig. 2A). 268 

These data revealed that transferring animals that had reached mid larval stages (2nd-3rd instar) 269 

or earlier failed to robustly rescue viability, confirming key role(s) for KDM5 during the mid to 270 

late larval window of the Drosophila life cycle (Fig. 2D). Based on this temporal rescue data, we 271 

focused subsequent experiments of KDM5 function during the late larval development. 272 

 273 

KDM5 directly regulates transcription of metabolic processes in the prothoracic gland. 274 

To investigate the roles of KDM5 in regulating gene expression programs within the prothoracic 275 

gland, we identified genomic regions bound by KDM5 in this tissue. Traditional genomic binding 276 
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approaches such as ChIP-seq are limited for this small tissue that is comprised of ~50 cells. We 277 

therefore performed Targeted DamID (TaDa), which requires less input material and can be 278 

carried out with tissue and temporal-specific resolution, to survey the genomic targets of KDM5 279 

in these cells (Hatch et al., 2021, Marshall and Brand, 2015, Marshall and Brand, 2017, Marshall 280 

et al., 2016a). We used spok-Gal4 to drive expression of a UAS transgene encoding a Dam:KDM5 281 

fusion protein (or UAS-dam as the normalization control) exclusively in the prothoracic gland cells 282 

of wild-type animals. Using tub-Gal80ts, expression of Dam:KDM5 was restricted to the KDM5-283 

critical late larval stages by shifting animals from 18°C to 29°C and collecting wander 3rd instar 284 

larvae (120-168 hours after egg laying (AEL) at 18°C) (Fig. 3A). Confirming the robustness of our 285 

data, quadruplicate TaDa replicates showed a very strong correlation, and an average Dam:KDM5 286 

binding profile was used for subsequent analyses (Supp Fig. 2). Similar to prior studies of KDM5 287 

family proteins across species, a majority of KDM5 binding occurred within the proximity of 288 

promoter regions, particularly at nucleosomes bordering transcriptional start sites (TSS) (Fig. 3B, 289 

C) (Hatch et al., 2021, Liu and Secombe, 2015, Lloret-Llinares et al., 2012, Beshiri et al., 2012, 290 

Iwase et al., 2016, Wang et al., 2023). This localization at or near promoters enabled us to 291 

unambiguously identify nearby genes as candidate targets of KDM5 regulation.  292 

 293 

In total, KDM5 peaks within the prothoracic gland mapped to 5815 genes using a cutoff of false 294 

discovery rate (FDR) < 0.01 (Table S1). Gene Ontology (GO) analyses for Biological Processes 295 

enriched in this gene list produced a range of terms including processes related to cellular 296 

transport, metabolism, and signaling (Fig. 3D, Table S3). To assess the KDM5 binding targets in 297 

the prothoracic gland in relation to other contexts, we compared these data to existing ChIP-seq 298 

and TaDa data sets from whole adult flies and ganglion mother cells (neuronal precursors), 299 

respectively (Hatch et al., 2021, Liu and Secombe, 2015) (Fig. 3E). This revealed a highly significant 300 

overlap via comparison between the prothoracic gland TaDa and either data set as well as a total 301 

of 2463 genes that were bound in all three data sets (42.3% of all prothoracic gland targets) (Fig. 302 

3F). This overlap of KDM5 targets may represent genes regulated by KDM5 across developmental 303 

stages and tissues. Overall, KDM5 appears to have the potential to regulate a large portion of the 304 
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coding genome in the prothoracic gland, and these data are consistent with KDM5 having both 305 

tissue-specific functions and functions that are common across cell types. 306 

 307 

To determine the functional relationship between KDM5 binding and target gene expression in 308 

the prothoracic gland, we performed bulk RNA-seq on dissected ring glands of wild-type and 309 

kdm5140 wandering 3rd instar larvae. Similar to previous transcriptional studies, mRNA-seq was 310 

carried out from dissected ring glands to assay the prothoracic gland transcriptome, as this cell 311 

type comprises the majority of the mass of the ring gland (Uryu et al., 2018, Christesen et al., 312 

2017, Ou et al., 2016, Di Cara and King-Jones, 2016, Nakaoka et al., 2017). Using a stringent cutoff 313 

of FDR < 0.01, we identified 2424 differentially expressed genes (DEGs) in kdm5140 ring glands, 314 

1276 of which were downregulated and 1148 that were upregulated (Fig. 4A, Table S2). To 315 

determine which genes were likely to be directly regulated by KDM5, we integrated this gene 316 

expression data with the genomic binding data. 1290 (53.2%) of the kdm5140 DEGs had an 317 

associated KDM5 promoter peak based on the prothoracic gland TaDa data (Fig. 4A, B). As seen 318 

in previous kdm5 mutant RNA-seq experiments, direct KDM5 targets exhibit relatively subtle 319 

changes to gene expression (downregulated direct DEG log2FC (log2 Fold Change) average = -320 

0.660, upregulated = 0.910), and the DEGs with the largest log2FC appear to be indirectly 321 

regulated by KDM5 (Fig. 4A) (Hatch et al., 2021, Belalcazar et al., 2021, Liu and Secombe, 2015, 322 

Zamurrad et al., 2018). Gene Ontology (GO) analyses of the full list of DEGs produced primarily 323 

metabolic terms, including biological processes involving mitochondria and lipid metabolism (Fig. 324 

4C, Table S3). The enrichment for these terms appeared to be driven by downregulated DEGs, as 325 

analysis of that subset produced many of the same GO terms, while upregulated genes featured 326 

GO biological processes involving cellular transport and chromatin dynamics (Fig. 4C’-C’’, Table 327 

S3). Among the direct DEGs, there was a similar trend with the top GO analysis terms related to 328 

mitochondrial processes and cellular respiration (Fig. 4D-D’’, Table S3). Taken together, these 329 

genome binding and transcriptomic analyses reveal that gene expression programs under the 330 

direct regulation of KDM5 span various cellular processes in the prothoracic gland, particularly 331 

those involving metabolism and mitochondria. 332 

 333 
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KDM5-regulated transcription is developmentally required for proper mitochondrial dynamics. 334 

Our genome-wide analyses revealed that the transcriptional changes caused by the dysregulation 335 

of KDM5-mediated mechanisms in kdm5140 mutants particularly affected mitochondria-related 336 

genes in the prothoracic gland. In addition to Drosophila, KDM5 proteins have been previously 337 

associated with mitochondrial activity in mammals and humans, although the mechanisms and 338 

biological implications of these connections remain unclear (Liu and Secombe, 2015, Varaljai et 339 

al., 2015, Liu et al., 2023). Within the Gene Ontology database, 353 Drosophila genes are 340 

classified in the mitochondrion biological processes category, and of these, 111 genes were 341 

differentially expressed in kdm5140 animals (FDR < 0.01). Consistent with the GO analyses, the 342 

majority of these mitochondrial genes both showed downregulated expression across our RNA-343 

seq replicates in kdm5140 compared to wild type and were directly bound in the prothoracic gland 344 

TaDa data set (Fig. 4E). Investigation of known physical interactions within this downregulated 345 

mitochondrial gene set identified connections including components of Cytochrome c oxidase 346 

and ATP synthase complexes, as well as mitochondrial translation (Fig. 4F). This transcriptomic 347 

data suggests that a key role for KDM5 may be to maintain the expression of genes critical to 348 

mitochondrial biology, and this could contribute to its essential developmental activities. 349 

 350 

The large size of the polyploid prothoracic gland cells demands significant metabolic 351 

requirements to fuel the cellular processes contained within, and thus these cells may be 352 

particularly sensitive to perturbations in mitochondrial activity. In addition to generating key 353 

cellular metabolites, mitochondria in the prothoracic gland are important sites for Halloween 354 

gene (ecdysone hormone biosynthetic enzymes) activity in processing stored lipid precursors for 355 

hormone production (Sandoval et al., 2014, Jacobs et al., 2020, Pan et al., 2020). To test whether 356 

the gene expression changes associated with mitochondrial function were linked to the lethality 357 

caused by loss of kdm5, we sought genetic approaches aimed at attenuating this deficit. spargel 358 

(srl) and Ets97D (Delg), homologous to mammalian PGC1-α and GABPα/NRF-2, respectively, are 359 

known transcriptional activators of genes required for mitochondrial biosynthesis in Drosophila 360 

(Tiefenbock et al., 2010, Tain et al., 2017, Sainz de la Maza et al., 2022). Previously published 361 

microarray experiments showed that both proteins can activate many of the mitochondrial genes 362 
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found to be downregulated in kdm5140 animals (Fig. 4F, highlighted in darker blue) (Tiefenbock 363 

et al., 2010). In light of this transcriptional data, we tested whether transgenic expression of srl 364 

or Ets97D in the prothoracic gland could restore viability to kdm5140 animals. While spok-Gal4-365 

driven expression of srl failed to suppress kdm5140 lethality, significantly, expression of Ets97D 366 

did restore viability and produce adult flies (Fig. 5A, B’’). This result provides evidence that the 367 

activation of mitochondrial function genes that are necessary for animal survival may be 368 

mediated by KDM5.  369 

 370 

To assess whether kdm5140 animals exhibited visible mitochondrial phenotypes, we expressed a 371 

UAS-mitoGFP reporter with spok-Gal4 to examine mitochondrial networks in prothoracic gland 372 

cells (Fig. 5C). Assaying overall mitochondrial mass by quantifying the mitoGFP signal volume and 373 

mean intensity per cell revealed no differences between kdm5140 and control animals, indicating 374 

no change in mitochondrial abundance (Fig. 5D, E). To assess mitochondrial energetics, we 375 

stained with MitoTracker Red, a reagent that is retained in the mitochondrial matrix of active 376 

mitochondria where the membrane is hyperpolarized (Wong et al., 2020). Similar to mitoGFP, 377 

the MitoTracker Red signal showed no significant changes at a tissue-wide level in terms of sum 378 

intensity per prothoracic gland cell nor mean intensity in kdm5140 animals compared to controls 379 

(Fig. 5F, G). Focusing our analysis to the cellular scale, we examined the morphology of the 380 

mitoGFP-marked mitochondrial networks, defining them as tubular, fragmented, and 381 

intermediate, as has been done in previous studies (Fig. 5H) (Deng et al., 2015, Kashatus et al., 382 

2015). Quantifying the cellular proportion of each morphological category, prothoracic glands 383 

from control animals display a majority of tubular cells with elongated and highly branched 384 

mitochondria (Fig. 5I). In contrast, kdm5140 prothoracic glands showed a significant decrease in 385 

the proportion of tubular cells, with these glands featuring more rounded and isolated 386 

mitochondrial populations of the intermediate and fragmented categories. These results indicate 387 

that although there are no changes to overall abundance, mitochondrial biology is disrupted at 388 

the organelle level in kdm5140 mutants. The increase in fragmented mitochondria in kdm5140 389 

could be due to defects in any of a number of mitochondrial dynamics including biosynthesis, 390 

fusion, or turnover or, alternatively, as a stress response to other cellular defects. Future analysis 391 
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of specific mitochondrial components and bioenergetic processes as well as phenomena such as 392 

ROS (reactive oxygen species) and ER (endoplasmic reticulum) stresses will be fundamental in 393 

better understanding these kdm5-induced defects. Taken together, our data show that KDM5 394 

transcriptional regulation in prothoracic gland cells is needed for mitochondrial homeostasis, and 395 

defects in mitochondria and cellular respiration in the prothoracic gland are key contributors to 396 

the lethality caused by loss of KDM5 (Fig. 6). 397 

 398 

DISCUSSION 399 

In this study, we incorporated unbiased genome-wide data with targeted genetic and cellular 400 

analyses in order to expand our understanding of how KDM5 functions to regulate critical 401 

cellular processes during development. While expression and phenotype data show that KDM5 402 

is important across many cell types, we focused this study on the prothoracic gland, where we 403 

have demonstrated that KDM5-regulated expression programs are important for survival 404 

(Drelon et al., 2019). This work has revealed important roles for KDM5 with respect to 405 

intracellular signaling and processes, notably MAPK and mitochondrial homeostasis. Consistent 406 

with our prior observation that loss of KDM5 resulted in reduced MAPK signaling, prothoracic 407 

gland-specific expression of MAPK-activating RTKs or ERK suppressed kdm5140 (null) lethality 408 

(Drelon et al., 2019). Despite the energy-regulatory pathway of autophagy being one of the 409 

best characterized cellular processes downstream of signaling pathways in the prothoracic 410 

gland, enhancing or attenuating this process had no effect on the lethality of kdm5140 animals. 411 

Instead, our KDM5 genomic binding and gene expression analyses point to a vital role for KDM5 412 

in the regulation of a range of metabolic processes needed for cellular homeostasis, particularly 413 

mitochondrial function. Confirming the importance of KDM5-regulated expression programs 414 

that support mitochondrial activity, we find morphological changes to these organelles. 415 

Moreover, these changes are likely to be important for KDM5’s essential functions, as 416 

expression of the transcription factor Ets97D/GABPα, a known regulator of genes needed for 417 

mitochondrial function, suppressed kdm5140 lethality. 418 

 419 
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This is not the first study to find an association between KDM5 proteins and the regulation of 420 

mitochondrial genes, which we have observed previously in adult flies, and others have seen 421 

with human KDM5A/RBP2 and KDM5C (Lopez-Bigas et al., 2008, Liu and Secombe, 2015, Liu et 422 

al., 2023, Varaljai et al., 2015, Kim et al., 2022). Muscle cells of adult flies harboring a 423 

hypomorphic combination of kdm5 alleles showed abnormal mitochondrial shape, altered 424 

expression of redox-related genes, and increased sensitivity to oxidative stress (Liu et al., 2014, 425 

Liu and Secombe, 2015). Interestingly, most of the genes found to be altered in adult flies 426 

linked to altered cellular redox state do not overlap with those observed here in the prothoracic 427 

gland that were linked to respiratory chain complexes and translation. KDM5 is therefore likely 428 

to play different roles in distinct cell types. In human cells, the KDM5-mitochondria relationship 429 

has primarily been examined during the process of differentiation. While we observed KDM5 to 430 

be required for the activation of mitochondrial gene expression, in promonocytic (monocyte 431 

and macrophage precursors) and myogenic precursor cells, KDM5A represses mitochondrial 432 

genes (Lopez-Bigas et al., 2008, Varaljai et al., 2015). Consistent with the disparate changes to 433 

transcription, loss of Drosophila KDM5 and inhibition of human KDM5A led to distinct changes 434 

to mitochondrial morphology. Reducing KDM5A led to more dense tubular mitochondrial 435 

networks, while we observe mitochondrial fragmentation in prothoracic gland cells lacking all 436 

KDM5 function. In findings more similar with our data, KDM5C-deficient monocytes and 437 

osteoclasts have decreased mitochondrial gene expression resulting in decreased bioenergetic 438 

metabolism (Liu et al., 2023). Therefore, KDM5 proteins regulate the transcription of genes 439 

integral to mitochondrial function, but it is possible that whether this results in increased or 440 

decreased expression depends on the energy demands of a given cell type and/or the 441 

developmental cellular context. Indeed, it is notable that in muscle cell differentiation, KDM5A 442 

appears to function as part of an E2F/DP/pRb axis to regulate mitochondrial function in 443 

myogenic precursor cells, while we find that E2F1/DP does not suppress kdm5140 lethality 444 

(Varaljai et al., 2015). Integrating these studies, it is apparent that mitochondrial and other 445 

metabolic genes are conserved targets of KDM5-mediated transcriptional regulation across 446 

species. Considering the breadth of KDM5 targets in the prothoracic gland TaDa data as well as 447 

others, KDM5 appears to occupy a large number of loci across the genome and may be utilized 448 
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by the cell in either activating or repressive mechanisms depending on the context of cellular 449 

conditions (Hatch et al., 2021, Liu and Secombe, 2015). Notably, prothoracic gland cells are 450 

terminally differentiated and polyploid, requiring different homeostatic dynamics than the 451 

differentiating precursor cells of the mammalian studies. This may lead to KDM5 interacting 452 

with distinct gene regulatory complexes, or possibly employing histone demethylase-453 

dependent and independent activities to alter transcription. Indeed, based on our observation 454 

that flies lacking KDM5-mediated histone demethylase activity are viable, the regulation of 455 

mitochondrial-related genes in the prothoracic gland is expected to be independent of its 456 

enzymatic function (Drelon et al., 2019).  457 

 458 

The transcription factors srl (ortholog of mammalian PGC1α) and Ets97D (ortholog of 459 

mammalian GABPα) are involved in the activation of many of the same genes required for 460 

mitochondrial function that are regulated by KDM5 (Tiefenbock et al., 2010). While we observe 461 

robust suppression of kdm5140-mediated lethality by expression of Ets97D, srl expression failed 462 

to do the same. This may reflect differences in the function of these transcription activators, or 463 

based on studies of PGC1α, that post-translational modifications are particularly important for 464 

srl activity (Luo et al., 2019, Tain et al., 2017). While ectopic expression of Ets97D can 465 

compensate for the loss of KDM5 in the prothoracic gland, it is not clear whether kdm5140 466 

animals die due to reduced Ets97D activity, as expression of this gene was not altered in our 467 

RNA-seq data (Table S2). It remains possible that the level of Ets97D protein is altered by loss of 468 

KDM5, or that both Ets97D and KDM5 present at mitochondrial function genes promotes 469 

appropriate levels of gene activation. Defining the molecular details of the KDM5-Ets97D-470 

mitochondrial pathway will require additional genetic and cell biological analyses. 471 

 472 

The simplest synthesis of our kdm5140 suppression experiments is that KDM5 is needed for 473 

proper activation of the MAPK pathway and that this alters the activation of genes related to 474 

mitochondrial function, possibly through Ets97D. Similar to Ets97D, our RNA-seq data did not 475 

reveal significant changes to components of the MAPK pathway, thus it remains unknown 476 

precisely how KDM5 leads to altered signaling. The MAPK cascade inputs into many processes 477 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.23.541787doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541787


 19 

across the cell, impacting metabolism through a variety of levels of regulation. While the 478 

relationships between MAPK and metabolic processes such as autophagy and glycolysis are 479 

more established in the literature, some studies have found direct connections between MAPK 480 

signals and mitochondrial biology (Kashatus et al., 2015, Javadov et al., 2014, Galli et al., 2009, 481 

Haq et al., 2013). In fact, most of the existing links between MAPK and mitochondria have been 482 

identified in the context of cancer cells and RASopathy developmental disorders. Mitochondrial 483 

dynamics can be altered in various cancers, and some studies have looked at mitochondria as a 484 

potential target to antagonize MAPK-driven tumors (Serasinghe et al., 2015, Marchetti et al., 485 

2018, Ferraz et al., 2020, Corazao-Rozas et al., 2016). Furthermore, RASopathies, a collection of 486 

rare diseases driven by germline MAPK mutations, exhibit forms of mitochondrial dysfunction 487 

that contribute to bioenergetic defects (Kontaridis and Chennappan, 2022, Dard et al., 2018). In 488 

both instances of cancer and developmental disorders, KDM5 proteins may be involved in the 489 

regulation of this axis of MAPK-mediated metabolic changes. The potential role for KDM5 with 490 

both MAPK signaling and mitochondrial regulation indicates that there’s potential to consider 491 

KDM5 when treating these disorders. 492 

 493 

One outstanding question in these studies of kdm5-induced lethality is what roles KDM5-494 

mediated transcriptional programs play specifically within the prothoracic gland that are 495 

sufficient for these cells to rescue lethality at an organismal level. Anoar et al. (2021) 496 

hypothesize that neurons are particularly susceptible to mitochondrial defects because of high 497 

energetic demands and because as long-lived post-mitotic cells, they cannot dilute out 498 

defective organelles by cell division (Anoar et al., 2021). Similarly, prothoracic gland cells exit 499 

the cell cycle in the embryonic stage and must survive as large, polyploid cells with high 500 

bioenergetic requirements into pupal stages to coordinate the Drosophila developmental 501 

programs. KDM5-mediated mitochondrial regulation may be a key facet in the life cycle of the 502 

prothoracic gland cells in maintaining metabolic homeostasis as the cells undergo 503 

endoreplication and regulated production of the steroid hormone ecdysone. While these data 504 

suggest that raising kdm5140 animals on food supplemented with ecdysone should suppress 505 

their lethality, this is not the case (Drelon et al., 2019). It is possible that ecdysone-506 
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supplemented kdm5140 animals fail to consume enough ecdysone to progress completely 507 

through pupal stages during which they must subsist entirely off stored nutrients. However, 508 

kdm5140 animals are able to undergo metamorphosis and form adult structures when raised on 509 

standard food and therefore must have sufficient prothoracic gland capabilities to generate the 510 

large final metamorphic pulse of hormone. Alternatively, while kdm5140 animals are able to 511 

stimulate gross adult structure formation, some of the finer details of the underlying tissue, 512 

particularly synapse formation between neurons in the brain and into peripheral tissues, may 513 

depend on not just the quantity of ecdysone hormone but also the specific timing of ecdysone 514 

pulses. During metamorphosis, the neuronal networks across the animal undergo significant 515 

growth, pruning, and synapse formation for innervation across the newly formed adult body 516 

(Truman and Riddiford, 2023). This neuronal patterning is coordinated in part by ecdysone-517 

responsive transcriptional elements, and likely hinges on proper timing for synaptic inputs and 518 

outputs to meet appropriately. Overcoming the kdm5-dependent defects by transgene-519 

mediated modulation of mitochondrial dynamics may restore prothoracic gland cell 520 

homeostasis and function sufficiently for the ecdysone production and release program to 521 

successfully guide this neuronal remodeling that needs to occur in pupae. Future studies 522 

analyzing the relationship between KDM5-regulated mechanisms, ecdysone temporal 523 

dynamics, and mitochondrial homeostasis in the prothoracic gland will be key in defining these 524 

essential developmental programs. 525 

 526 

MATERIALS AND METHODS 527 

Fly husbandry 528 

All flies were kept at 25C on standard food at 50% humidity and a 12 hour light/dark cycle unless 529 

otherwise stated. Food (per liter) contained 18 g yeast, 22 g molasses, 80 g malt extract, 9 g agar, 530 

65 g cornmeal, 2.3 g methyl para-benzoic acid and 6.35 mL propionic acid. For studies comparing 531 

wild-type and kdm5140 mutant larvae, animals were matched for developmental stage, not 532 

chronological age, as we have done previously (Belalcazar et al., 2021, Drelon et al., 2018, Drelon 533 

et al., 2019, Hatch et al., 2021). Thus, at 25°C, control wandering 3rd instar larvae were collected 534 

~120 hours after egg laying (AEL), while kdm5140 larvae were collected ~168 hours AEL. For all 535 
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analyses, we used equal numbers of male and female animals and pooled data since we did not 536 

observe any sex-specific effects. In all experiments testing suppression of kdm5140 lethality, vials 537 

resulting in n<12 or n>80 total eclosed adult flies were excluded from final analyses. This vial 538 

density was experimentally determined to be optimal for potential survival of kdm5140 animals 539 

as under- or overcrowding outside this density introduced additional variables, including 540 

inconsistent food conditions and larval competition with control CyO-GFP (heterozygous) 541 

animals. 542 

 543 

Fly strains and genetics 544 

A detailed list of the genotypes of the flies used in each figure is included in the Key Resources 545 

Table in the Appendix.  546 

The kdm5140 mutant allele, kdm5:3xHA, UASp-kdm5:HA, UAS-LT3-dam:kdm5, and genomic 547 

region kdm5:HA transgenes have previously been described (Drelon et al., 2018, Hatch et al., 548 

2021, Navarro-Costa et al., 2016). The spok-Gal4, UAS-torso, UAS-Alk, and UAS-AlkCA lines were 549 

kindly shared by Michael O’Connor (U. Minnesota). The UAS-srl line was kindly shared by Grace 550 

Zhai (U. Miami) with permission from Christian Frei (U. Zurich). The UAS-Ets97D line was kindly 551 

shared by Martine Simonelig (Institut de Genetique Humaine) with permission from Christian 552 

Frei. The UAS-LT3-dam line was kindly shared by Andrea Brand (U. Cambridge, Gurdon). All other 553 

strains were obtained from the Bloomington Drosophila Stock Center (see Key Resources Table 554 

in the Appendix). 555 

 556 

Immunohistochemistry 557 

Wandering 3rd instar larval brain-ring gland complexes were dissected in ice cold 1X phosphate 558 

buffered saline (PBS) and fixed in 4% paraformaldehyde (PFA) in PBS at room temperature for 20 559 

min.  Samples were washed three times in 1X PBST (PBS + 0.1% Triton) for 10 min each.  Brain-560 

ring gland complexes were transferred to 0.5 μL tubes for blocking in 1X PBST + 5% normal 561 

donkey serum (NDS) for 30 min, followed by primary antibody incubation overnight while 562 

rotating at 4°C. After three 15 min washes in 1X PBST, samples were incubated in secondary 563 

antibodies at room temperature rotating for 2 hours. Samples were then washed three times in 564 
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1X PBST and ring glands were dissected from brain tissue in ice cold 1X PBS. Finally, ring glands 565 

were mounted with Fluoromount-G DAPI (Southern Biotech), and slides were stored at 4°C for 566 

imaging within 1-3 days.  567 

A similar protocol was followed for mitochondrial immunostaining with the following exceptions. 568 

Larval brain-ring gland complexes were dissected in ice cold 1X Schneider’s Medium (Gibco, 569 

Thermo Fisher Scientific), and then incubated in 500 nM MitoTracker Red CMXRos (Invitrogen, 570 

diluted in 1X Schneider’s Medium) for 30 min protected from light. After two 1X PBS washes, 571 

samples were fixed in 4% PFA in PBS. Additionally, after secondary antibody incubation, samples 572 

were washed five times in 1X PBST prior to mounting.  573 

The following primary antibodies were used: mouse anti-HA (1:100, Cell Signaling Technology) 574 

and rabbit anti-GFP (1:100, Invitrogen). Primary antibodies were prepared in 5% NDS/PBST. The 575 

following secondary antibodies were used: goat anti-mouse Alexa-568 (1:500, Thermo Fisher 576 

Scientific) and goat anti-rabbit Alexa-488 (1:500, Thermo Fisher Scientific). Secondary antibodies 577 

were prepared in 5% NDS/PBST. 578 

 579 

Image Acquisition and Processing 580 

Images of prothoracic gland signaling pathway, pupal brain, and the model of KDM5 function in 581 

the prothoracic gland were created with BioRender.com. All tissue images were taken on a Nikon 582 

CSU-W1 Spinning Disk confocal microscope using a 100X immersion lens (NA = 1.45 oil) and 0.2 583 

um Z-step size. Adult fly images were obtained using a stereomicroscope Carl Zeiss Stereo 584 

Discovery V12 with 12.5X magnification and captured using AxioVision Release 4.8 software. All 585 

images were processed with ImageJ. All Venn diagrams were generated using the R package 586 

BioVenn (v1.1.3) (Hulsen et al., 2008). Figures were composed using Adobe Illustrator. 587 

 588 

kdm5140 Lethality Suppression Experiments 589 

To identify signaling pathway components that suppressed kdm5140 lethality, kdm5140 /CyO-GFP; 590 

spok-Gal4 flies were crossed with kdm5140 flies carrying a UAS transgene and allowed to lay eggs 591 

for 48 hours at 25°C. Animals were kept at 25°C, and all eclosed adults were scored. Using 592 

Mendelian ratios, we estimated the number of kdm5140 animals expected in each cross based on 593 
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the total internal control (CyO-GFP) adults eclosed as done previously (Drelon et al., 2019). The 594 

survival index was calculated as a percentage of the total viable (lethality-suppressed) kdm5140 595 

adults eclosed over the estimated number of kdm5140 animals in the cross. Graphed survival index 596 

data points represent biological replicate crosses normalized to the positive control spok>kdm5 597 

rescue. 598 

 599 

Western Blotting 600 

For each sample, three male and three female adult heads (age 1-3 days) were homogenized in 601 

PBS, denatured in 1X loading buffer (3X Laemmli sample buffer containing 187.5 mM Tris, 6% 602 

SDS, 30% glycerol, 0.03% bromophenol blue, and 10% β-mercaptoethanol) at 95°C for 5 min, run 603 

on a 6% 1.5 mm gel, and transferred to a PVDF membrane. The following primary antibodies 604 

were used: mouse anti-HA (1:2000, Cell Signaling Technology) and mouse anti-αTubulin 605 

(1:10000, DSHB). Secondary antibody used was rabbit anti-mouse (1:1000, Invitrogen). Blots 606 

were scanned and processed using Kwik Quant Imager (Kindle Biosciences) scanner. 607 

 608 

KDM5 Temporal Experiments 609 

To identify the developmental windows requiring kdm5 expression, kdm5140, Ubi-Gal4 / CyO-GFP 610 

flies were crossed with tub-Gal80ts, kdm5140 / CyO-GFP ; UAS-kdm5:HA flies and allowed to lay 611 

eggs for ~12 hours at either 18°C or 29°C. Animals raised at 18°C were transferred to 29°C to 612 

induce the expression of the kdm5 transgene, and all eclosed adult flies were scored. Conversely, 613 

animals raised at 29°C were transferred to 18°C to repress the expression of the kdm5 transgene, 614 

and adults were scored in the same way. For 18°C to 29°C shifts, days 1-15 were tested with, n > 615 

100 flies eclosed for each day of shift. For 29°C to 18°C shifts, days 1-12 were tested in the same 616 

manner. The survival indices for these crosses were calculated in the same method as the 617 

kdm5140 lethality suppression experiments. Graphed survival index data points represent vial 618 

replicates normalized to the positive control Ubi>kdm5 at constant 29°C rescue. 619 

 620 

Targeted DamID and analyses 621 
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To profile the genomic regions bound by KDM5 in prothoracic gland cells, tub-Gal80ts ; spok-Gal4 622 

flies were crossed with flies carrying UAS-LT3-dam or UAS-LT3-dam:kdm5 and allowed to lay eggs 623 

for 24 hours at 18°C. Animals were kept at 18°C for 5 days then transferred to 29°C for 2 days to 624 

induce the expression of the transgenes. Wandering 3rd instar larvae were collected, flash frozen 625 

on dry ice, and stored at -80°C. 626 

Tissue processing was performed as previously described with the following modifications 627 

(Marshall et al., 2016a). TaDa was performed in quadruplicate with replicates of 100 larvae that 628 

were homogenized and digested in Proteinase K in samples of 50 larvae then pooled into 629 

replicates of 100 larvae prior to DNA extraction. Larvae were homogenized in 75 uL UltraPure 630 

Distilled Water and 20 uL 500 mM EDTA then digested with Proteinase K for 1.5 hours. DNA 631 

extraction was performed using the Zymo Quick-DNA Miniprep Plus Kit. DpnI digestion, PCR 632 

adaptor ligation, DpnII digestion, and PCR amplification were performed as described. DNA was 633 

sonicated using a Diagenode Bioruptor Pico for 6 cycles (30 sec on/90 sec off at 4°C), and DNA 634 

fragments were analyzed using an Agilent Bioanalyzer to confirm ~300 bp fragment size. DamID 635 

adaptor removal and DNA cleanup were performed as previously described, and samples were 636 

submitted to BGI Genomics for library construction and sequencing. 637 

Libraries were prepared at BGI Genomics following a ChIP-seq workflow. DNA fragments were 638 

first end-repaired and dA-tailed using End Repair and A-Tailing (ERAT) enzyme. Adaptors were 639 

then ligated for sequencing and ligated DNA purified using AMPure beads. DNA was then PCR 640 

amplified with BGI primers for 8 cycles and PCR purified with AMPure beads. DNA was then 641 

homogenized, circularized, digested, and again purified. DNA was then prepared into proprietary 642 

DNA nanoballs (DNB™) for sequencing on a DNBSEQ-G400 platform with 50 bp single-end read 643 

length and 20M clean reads passing filter. 644 

For targeted DamID analyses, sequencing data were aligned to the Dm6 Drosophila melanogaster 645 

genome and processed using damidseq_pipeline as previously described (Marshall and Brand, 646 

2015, Marshall et al., 2016a, Marshall and Brand, 2017). After converting to bedgraphs via 647 

damidseq_pipeline, peaks were called using find_peaks (using the parameters fdr = 0.01, 648 

min_quant = 0.9) on the averaged replicates, and genes overlapping peaks identified using 649 

peaks2genes (Marshall et al., 2016a, Marshall et al., 2016b). 650 
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For genome localization analyses, the R package ChIPseeker (v1.34.1) was used with the average 651 

KDM5 binding BED file to generate profiles (Wang et al., 2022). Gene Ontology (GO) enrichment 652 

analysis of KDM5 bound genes (FDR < 0.01) utilized GO DAVID database (v2021), specifically 653 

annotation GOTERM_BP_DIRECT (Sherman et al., 2022). Genome browser image was generated 654 

using pyGenomeTracks (v3.8) utilizing BedGraph or bigWig files from: adult fly KDM5 ChIP-seq 655 

(SRX1084165) and larval neuronal precursor KDM5 TaDa (GSE166116) (Lopez-Delisle et al., 2020). 656 

 657 

RNA sequencing 658 

RNA sequencing (RNA-seq) was carried out on pooled ring glands dissected from control (w1118) 659 

and kdm5140 wandering 3rd instar larvae. Ring glands were dissected and washed three times in 660 

ice cold 1X PBS, transferred to TRIzol, flash frozen on dry ice, and stored at -80°C.  80 dissected 661 

ring glands were pooled to form each of the four replicates. Total RNA was isolated with TRIzol 662 

and Phasemaker tubes (Invitrogen), and quality was assessed by Agilent Bioanalyzer before 663 

sending to Novogene for library construction and sequencing. mRNA was purified from total RNA 664 

using poly-T oligo-attached magnetic beads. After mRNA fragmentation, first strand cDNA and 665 

second strand cDNA were synthesized, and cDNA fragments were purified with AMPure XP 666 

system to select for suitable sizes for PCR amplification.  Library quality was assessed on the 667 

Agilent Bioanalyzer 2100 system. Libraries were sequenced on the Ilumina NovaSeq PE150 668 

platform (2 x 150bp cycles). Alignment of raw reads to the reference genome (dm6) was 669 

performed using Hisat2 (v2.0.5) for mapping, assembly via StringTie (v1.3.3b), quantification via 670 

featureCounts (v1.5.0-p3), normalized, and differential expression was determined with the 671 

DESeq2 package (1.20.0) (Pertea et al., 2016, Love et al., 2014, Liao et al., 2013). 672 

Gene Ontology enrichment analysis of protein-coding genes found to be dysregulated in kdm5140 673 

RNA-seq data (1% FDR cutoff) was carried out using GO DAVID annotation GOTERM_BP_DIRECT 674 

(Sherman et al., 2022). The heatmap was generated using the R package pheatmap (v1.0.12) 675 

(Kolde, 2012). Physical interaction networks were determined using String and visualized using 676 

Cytoscape (v3.9.1) (Shannon et al., 2003). 677 

 678 

Quantification and statistical analyses 679 
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All experiments were carried out in biological  triplicate (minimum) and numbers (n) are provided 680 

for each experiment in the Figure Legends. 681 

For kdm5140 lethality suppression experiments, a Fisher’s exact test was performed in R Studio 682 

(v2023.03.0) comparing survival index of each genotype to the no UAS control genotype as done 683 

previously with ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05; ns, not significant (Drelon et al., 684 

2019, RStudio, 2020). For KDM5 binding Venn Diagram overlap, a Fisher’s exact test was 685 

performed in R Studio. 686 

For mitoGFP and MitoTracker Red fluorescent images, the control genotype used was 687 

kdm5140/CyO-GFP heterozygous animals that developed from the same cross alongside the 688 

kdm5140 homozygous animals because we have not seen the same developmental and lethality 689 

phenotypes from these animals (Drelon et al., 2019). Volocity software was used to quantify the 690 

intensity and 3-dimensional volume of the fluorescent signal in each channel. Student’s t-test 691 

comparing control and kdm5140 genotypes was performed in GraphPad Prism (v9.5.1) (GraphPad, 692 

2023). mitoGFP morphological quantifications were performed as follows. All images were 693 

blinded to genotype and analyzed at two Z-slice locations positioned 33% and 66% through the 694 

full Z-plane of the sample. At each Z-slice, all cells with nuclei clearly visible by DAPI signal at that 695 

Z-position were identified and classified for mitochondrial morphology of tubular, intermediate, 696 

or fragmented by scrolling through the Z-slices occupied by each identified cell. Tubular 697 

morphology consisted of zero visible fragmented round mitochondria, intermediate morphology 698 

consisted of primarily tubular morphology with >1 visible fragmented mitochondria, and 699 

fragmented morphology consisted primarily of fragmented mitochondria. The proportion of cells 700 

with each morphological classification was calculated per sample (individual prothoracic gland), 701 

and a parametric unpaired t-test was performed in GraphPad Prism comparing each 702 

morphological category between control and kdm5140 animals. 703 
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 738 

FIGURE LEGENDS 739 

Figure 1: MAPK signaling robustly suppresses kdm5140 lethality independent of autophagy 740 

regulation. 741 

(A) Schematic summarizing major cellular signaling pathways known to regulate prothoracic 742 

gland cell function. Potential crosstalk interactions and common targets between 743 

pathways indicated by black arrows. Created with BioRender. 744 

(B) Schematic summarizing previous findings from Drelon et al. (2019) of kdm5140 pupal 745 

pharate lethality suppression by transgene expression, including MAPK signaling via 746 

RasV12. 747 

(C) Maximum intensity Z-projection image of brain-ring gland complex of wandering L3 748 

larva shows expression of endogenously-tagged KDM5:HA in the nuclei of the 749 

prothoracic gland. Prothoracic gland marked by spok-Gal4-driven GFP expression and 750 

nuclei marked by DAPI stain. Scale bars represent 50 μm. 751 

(C) Quantification of survival index for expression of MAPK-activating RTKs in kdm5140 752 

background relative to spok-Gal4>UAS-kdm5 (green data points). n = 191-722 (mean n = 753 

509) per genotype tested. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05; ns, not 754 

significant (Fisher’s exact test compared to no UAS control (black data points)). Error 755 

bars: mean + s.e.m. 756 

(D) Quantification of survival index for expression of MAPK signaling components in kdm5140 757 

background relative to spok-Gal4>UAS-kdm5. n = 467-800 (mean n = 627) per genotype 758 

tested. ****p<0.0001, **p<0.01; ns, not significant (Fisher’s exact test compared to no 759 

UAS control). Error bars: mean + s.e.m. 760 

(E) Quantification of survival index for expression of candidate factors downstream of 761 

MAPK in kdm5140 background relative to spok-Gal4>UAS-kdm5. n = 283-484 (mean n = 762 

378) per genotype tested. ns, not significant (Fisher’s exact test compared to no UAS 763 

control). Error bars: mean + s.e.m. 764 

(F) Quantification of survival index for expression of IIS (insulin and insulin-like signaling) 765 

and SWH (Salvador-Warts-Hippo-Yorkie) signaling components in kdm5140 background 766 
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relative to spok-Gal4>UAS-kdm5. n = 292-921 (mean n = 466) per genotype tested. 767 

***p<0.001, *p<0.05; ns, not significant (Fisher’s exact test compared to no UAS 768 

control). Error bars: mean + s.e.m. 769 

(G) Quantification of survival index for expression of autophagy-regulating components of 770 

TOR signaling in kdm5140 background relative to spok-Gal4>UAS-kdm5. n = 352-926 771 

(mean n = 638) per genotype tested. ns, not significant (Fisher’s exact test compared to 772 

no UAS control). Error bars: mean + s.e.m.  773 

 774 

Figure 2: Temporally-restricted rescue KDM5 expression reveals requirements for KDM5 in 775 

mid-to-late larval stages. 776 

(A) Schematic demonstrating vial shifts between restrictive (18°C) and permissive (29°C) 777 

temperatures to constrain rescue KDM5 expression within defined developmental 778 

windows.  779 

(B) Western blot of adult heads showing comparable KDM5:HA protein levels (top) across 780 

control (kdm5:3xHA or Ubi>kdm5:HA (kdm5140 background)) and temporal experiment 781 

(G80ts Ubi>kdm5:HA (kdm5140 background)) animals at standard (25°C) and 782 

experimental (29°C) temperatures. α-tubulin loading control. 783 

(C) Quantification of survival index for induction of expression of KDM5 at progressively 784 

later days during development (18°C to 29°C) in tub-Gal80ts / + ; kdm5140, Ubi-Gal4 / 785 

kdm5140 ; UAS-kdm5:HA / + animals relative to that of control vials kept at constant 786 

29°C. X-axis schematic demonstrates developmental progression of kdm5140 animals at 787 

18°C at each day after egg lay (AEL).  n = 101-275 (mean n = 153) per genotype tested. 788 

Error bars: mean + s.e.m. 789 

(D) Quantification of survival index for inhibition of expression of KDM5 at progressively 790 

earlier days during development (29°C to 18°C) in tub-Gal80ts / + ; kdm5140, Ubi-Gal4 / 791 

kdm5140 ; UAS-kdm5:HA / + animals relative to that of control vials kept at constant 792 

29°C. X-axis schematic demonstrates developmental progression of kdm5140 animals at 793 

29°C at each day after egg lay (AEL). n = 103-210 (mean n = 128) per genotype tested. 794 

Error bars: mean + s.e.m. 795 
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 796 

 797 

Figure 3: Genome binding profiling of KDM5 by targeted DamID identifies both conserved and 798 

tissue-specific target genes.  799 

(A) Schematic demonstrating time course of Targeted DamID (TaDa) experiment, which 800 

restricted spok-Gal4-driven transgene expression (UAS-dam:kdm5 or UAS-dam) to last 801 

48 hours of larval development. The TaDa experiment was performed in quadruplicate 802 

for each genotype with n=100 larvae per sample. 803 

(B) Genomic binding localization of average Dam:KDM5 TaDa profile (generated from four 804 

normalized replicates) showing enhanced binding near the TSS. 805 

(C) Distribution of Dam:KDM5 binding genomic regions showing enrichment for promoter-806 

proximal regions. 807 

(D) Gene Ontology Biological Process (GO-BP) analyses of candidate KDM5 target genes 808 

identified from Dam:KDM5 TaDa. Representative terms shown, full list in Table S3. 809 

(E) Representative genome browser image showing binding of KDM5 in prothoracic gland 810 

TaDa experiment juxtaposed with published data sets from whole adult KDM5 ChIP-seq 811 

and ganglion mother cell TaDa. 812 

(F) Venn diagram showing strong overlap of KDM5-bound genes in prothoracic gland cells, 813 

whole adults, and ganglion mother cells. Prothoracic Gland TaDa: Whole Adult ChIP 814 

bound gene overlap p<0.00001; Prothoracic Gland TaDa: GMC TaDa bound gene overlap 815 

p<0.00001 (Fisher’s exact test). 816 

 817 

Figure 4: Changes to the transcriptome via bulk RNA-seq reveals transcriptional dysregulation 818 

of mitochondrial genes in kdm5140 mutants. 819 

(A) Volcano plot of differentially expressed genes (DEGs) between kdm5140 and wild-type 820 

wandering 3rd instar larval ring glands. Genes with a false discovery rate (FDR) < 0.01 are 821 

colored blue (downregulated) and red (upregulated), and those directly bound in KDM5 822 

TaDa are highlighted as bolded circles. RNA-seq was performed in quadruplicate for 823 

each genotype with n=80 ring glands per sample. 824 
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(B) Venn diagram showing overlap of DEGs in kdm5140 ring glands and direct KDM5 targets 825 

identified in prothoracic gland TaDa. 826 

(C-C’’) Gene Ontology Biological Process (GO-BP) analyses of DEGs in kdm5140 ring glands. All 827 

DEGs (B), downregulated DEGs (B’), and upregulated DEGs (B’’) subsets were analyzed 828 

using GO DAVID. Representative terms shown, full lists in Table S3. 829 

(D-D’’) Gene Ontology Biological Process (GO-BP) analyses of DEGs that were directly bound 830 

in Dam:KDM5 prothoracic gland TaDa. All direct DEGs (B), downregulated direct DEGs 831 

(B’), and upregulated direct DEGs (B’’) subsets were analyzed using GO DAVID. 832 

Representative terms shown, full lists in Table S3. 833 

(E) Heatmap showing RNA-seq FPKM (Fragments Per Kilobase of transcript per Million 834 

mapped reads) of 111 genes from the mitochondrion GO term that were differentially 835 

expressed (FDR <0.01) in kdm5140 ring glands. KDM5-bound genes in prothoracic gland 836 

TaDa are annotated in green in the column on the left side. 837 

(F) Physical protein interaction networks of mitochondrial genes downregulated in kdm5140 838 

ring glands. Genes potentially regulated by both KDM5 and srl/Ets97D (from microarray 839 

data in Tiefenbock et al. 2010)) are highlighted with darker blue nodes. Single nodes 840 

without physical connection edges excluded from image. Created with Cytoscape.  841 

 842 

Figure 5: KDM5 regulates mitochondrial dynamics in the prothoracic gland that are critical for 843 

development. 844 

(A) Quantification of survival index for expression of mitochondrial biogenesis factors in 845 

kdm5140 background relative to spok-Gal4>UAS-kdm5. n = 757-922 (mean n = 840) per 846 

genotype tested. **p<0.01; ns, not significant (Fisher’s exact test compared to no UAS 847 

control). Error bars: mean + s.e.m. 848 

(B-B’’) Representative images of kdm5140 adult flies with lethality suppressed by genomic 849 

region kdm5:HA transgene (B), spok>kdm5 (B’), and spok>Ets97D (B’’) . Scale bars 850 

represent 750 μm. 851 
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(C) Representative images (single Z slices) of larval ring glands expressing spok>mitoGFP 852 

and stained for GFP and MitoTracker Red. Scale bars represent 20 μm. Control genotype 853 

is kdm5140/CyO-GFP heterozygous internal control animals. 854 

(D) Quantification of total mitoGFP signal volume in each prothoracic gland normalized by 855 

number of nuclei in that sample. a.u. = arbitrary units. n = 7-13 per genotype tested. ns, 856 

not significant. (Wilcoxon rank sum test). Error bars: mean + s.e.m. 857 

(E) Quantification of mean mitoGFP signal intensity across each prothoracic gland. a.u. = 858 

arbitrary units. n = 7-13 per genotype tested. ns, not significant. (Wilcoxon rank sum 859 

test). Error bars: mean + s.e.m. 860 

(F) Quantification of total MitoTracker Red signal sum intensity in each prothoracic gland 861 

normalized by number of nuclei in that sample. a.u. = arbitrary units. n = 7-13 per 862 

genotype tested. ns, not significant. (Wilcoxon rank sum test). Error bars: mean + s.e.m. 863 

(G) Quantification of mean MitoTracker Red signal intensity across each prothoracic gland. 864 

a.u. = arbitrary units. n = 7-13 per genotype tested. ns, not significant. (Wilcoxon rank 865 

sum test). Error bars: mean + s.e.m. 866 

(H) Representative image (single Z slice) of larval ring gland expressing spok>mitoGFP and 867 

stained for GFP. Insets demonstrate representative cells of each morphological 868 

classification. Yellow arrows indicate fragmented mitochondria within example 869 

Intermediate morphological cell.  Scale bars represent 20 μm. 870 

(I) Quantification of mitoGFP morphological classifications normalized to number of cells 871 

quantified per sample. n = 9-17. *p<0.05; ns, not significant (nonparametric unpaired t 872 

test). Error bars: mean + s.e.m. 873 

 874 

Figure 6: Model for KDM5-mediated transcriptional regulation of mitochondrial biology in 875 

prothoracic gland cells. 876 

(A) KDM5 regulates gene expression programs in the prothoracic gland coordinating proper 877 

MAPK signaling and mitochondrial morphology that are critical for development. 878 

Created with BioRender. 879 

 880 
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Supplemental Figure 1: kdm5140 adults with lethality suppressed by MAPK components. 881 

(A-A’’) Representative images of kdm5140 adult fly with lethality suppressed by spok>EgfrCA 882 

(A), spok>RasV12 (A’), spok>erkCA (A’’). Scale bars represents 750 μm. 883 

 884 

Supplemental Figure 2: Targeted DamID replicate correlations. 885 

Plot showing correlation across binding profiles of Dam:KDM5 TaDa replicates. 886 

 887 

Supplemental Table S1: Targeted DamID-identified KDM5 target genes. 888 

List of Dam:KDM5-bound genes identified in Targeted DamID. 889 

 890 

Supplemental Table S2: RNA-seq analysis of kdm5140 ring glands. 891 

wild type vs kdm5140 ring gland RNA-seq data. 892 

 893 

Supplemental Table S3: Gene Ontology analyses of gene sets. 894 

Full lists of Gene Ontology (GO) terms generated via GO DAVID analyses. 895 

 896 
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Figure 4
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Figure 5
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Figure 6
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