bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541878; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

. Quantitative Models of Molecular Dynamics from Sparse Simulation

: and Experimental Data

3 Christopher Kolloff* and Simon Olsson® *

+  ?*Chalmers University of Technology, Department of Computer Science and Engineering,

5 Rannvagen 6, 412 58 Gothenburg, Sweden

* . .
6 To whom correspondence should be addressed. E-mail: simonols@chalmers.se
7 Preprint compiled on July 10, 2023
8 Abstract
9 Long-timescale behavior of proteins is fundamental to many biological processes. Molecular Dynamics
10 (MD) simulations and biophysical experiments are often used to study protein dynamics. However, high
11 computational demands of MD limit what timescales are feasible to study, often missing rare events,
12 which are critical to explain experiments. On the other hand, experiments are limited by low resolution.
13 We present dynamic Augmented Markov models (dynAMMo) to bridge the gap between these data
14 and overcome their respective limitations. For the first time, dynAMMo enables the construction of
15 mechanistic models of slow exchange processes that have been not observed in MD data by integrating
16 dynamic experimental observables. As a consequence, dynAMMo allows us to bypass costly and extensive
17 simulations, yet providing mechanistic insights of the system. Validated with controlled model systems
18 and a well-studied protein, dynAMMo offers a new approach to quantitatively model protein dynamics
19 on long timescales in an unprecedented manner.

» Introduction

21 Understanding the triad of protein structure—function—dynamics is of paramount importance in many fields,
2 including biochemistry, biophysics, and medicine [1H7]. Thanks to extensive studies of the bovine pancreatic
23 trypsin inhibitor (BPTI), for example, we now understand the atomic details of its essential role in inhibiting
2« serine proteases [8]. This knowledge has been possible by combining findings from the fields of X-ray crystal-
2 lography [9] and Nuclear Magnetic Resonance (NMR) [10H13] with Molecular Dynamics (MD) simulations
s |14H16]. However, reconciling experimental and simulation data in a systematic manner often poses problems
27 due to technical and resource limitations. Enabling such a merger would yield a significant opportunity for
s quantitative structural biology and biophysics.

2 Typically, we model dynamic experiments, [17] such as NMR relaxation dispersion, single molecular
2 Forster Resonance Energy Transfer (FRET), dynamic neutron scattering, or X-ray Photon Correlation Spec-
u  troscopy using simple n-site jump models [18-22]. This approach yields forward and reverse exchange rates
2 for the different states as well as site populations. However, modeling dynamics this way beyond a two-state

13 exchange is challenging, due to experimental limitations and poor timescale separation. In effect, we are
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Figure 1: Schematic of dynamic Augmented Markov Models (dynAMMo). Simulations often fail to reproduce
experimentally observed dynamic observables, such as NMR relaxation dispersion data due to force field
inaccuracies and finite simulation length. Experiments, on the other hand, are often noisy and often don’t
reveal the mechanistic details of kinetic exchange. With dynamic Augmented Markov Models, we take into
account, both, simulation and experimental data to obtain a single mechanistic kinetic model.

s limited to highly simplified models of the complex underlying dynamics of our data where the structure of
s states often remain elusive or ambiguous [23}28].

36 Over the past few decades, molecular dynamics (MD) simulations have become increasingly popular in the
s field of biophysics, providing atomistic insights into the behavior of biological systems at high temporal and
s spatial resolutions . Force field models are steadily improving in quality and their scope is boarding
s to include disordered proteins and nucleic acids . Although not broadly available, the development
w0 of special-purpose computers, like Anton 7 makes it possible to study millisecond timescale molecular
a processes. GPU-accelerated simulations as well as distributed computing initiatives, such as Folding@home
” or GPUGrid are more widely available allow us to access processes on the micro- to millisecond timescale,
»»  in particular when large ensembles of simulations are analyzed using Markov state models (MSM) .
u  MSMs represent the molecular kinetics fully: the relevant structural states, their thermodynamic weights
s and their mutual exchange rates. MSMs have enabled studies of many biological processes, such as protein
s folding, enzymatic activity, or protein—protein interactions .

a7 Despite these advances in force field accuracy and simulation technologies, we often observe a systematic
s discrepancy between the experimental values predicted from Molecular Dynamics (MD) trajectories and
1 experimental data . The origin of these discrepancies is two fold. First, imperfections in the force
so field models remain which lead to skewed populations and altered dynamics. Second, simulations still do
s1  not cover the range of biological timescales of interest. Together these limitations prevent us from directly
52 comparing to many experiments and thus gaining a mechanistic interpretation of our data.

53 The integration of simulation and experimental data is a big challenge with a long history . Previous
s« methods include post hoc reweighing or sub-selection of simulations data , modeling kinetics with
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s generated ensembles [58], biasing simulations with stationary experimental data [59H68] and dynamic experi-
ss mental data [69], and building Markov state models using experimental and simulation data [70], Augmented
5o Markov models. Augmented Markov Models (AMMSs) combine stationary experimental observables with sim-
ss ulation data to correct for bias in MD data, which improved agreement with complementary stationary and
5o dynamic data [70]. However, AMMs cannot take into account dynamic data, and consequently also cannot
s deal with situations where our simulations have not sampled processes which are important to explain the
s data.

6 Here, we present dynamic Augmented Markov Models (dynAMMo), a new approach that accounts for
s stationary and dynamic experimental data, such as R;, or Carr-Purcell-Meiboom-Gill (CPMG) relaxation
o« dispersion experiments |20, |71} [72], to estimate a Markov model. By combining constrained optimization
s with the principle of maximum entropy, we are able to correctly recover experimental timescales from biased
6 simulations and are able to model exchange between states not seen in the simulation data as long as the states
&7 themselves are known. To our knowledge, this is the first method that enables the construction of mechanistic
¢ models of protein dynamics, even when rare events remain unobserved in the MD data. This achievement
s is made possible through the dynamic experimental data that complement the simulations by reporting on
70 the exchange processes that have not been sampled by the simulations. Consequently, this circumvents the,
7 often very costly, need for (reversibly) sampling rare events in order to establish a kinetic mechanistic model.
72 The method therefore broadens the scope for future research in understanding the complex dynamics of
7z biomolecular systems in general and brings the field closer to the development of data-driven models that

7 accurately capture the underlying mechanisms-of-action.

s Theory

» Dynamic Augmented Markov Models

77 Markov state models are based on the discretization of the state space €2 of a molecule into n states. By
7 following the traversal of a MD trajectory through these states we can estimate the transition probabilities
19 p;; from states ¢ to states j through the analysis of transition counts ¢;;(7) with a lag time 7 [39, |40} 43].
s The resulting transition matrix T(7) € R™*"™ encodes the molecular kinetics of the system, including the
&1 populations of the states and the rates of exchange between them. This information is accessible through the
&2 spectral components of T'(7), the eigenvectors R and eigenvalues A, as well as the stationary distribution 7
& (see Supporting Information, ‘Theory’) [43].

8 Augmented Markov Models [70] aim to estimate a MSM which matches stationary experimental observ-
ss ables, such as NMR, J-coupling or Residual Dipolar Coupling (RDC) data that probe the “true” Boltzmann
s distribution, by reweighing the relative populations of the states through the maximum entropy principle.
&7 Even though this approach does not directly take into account information about the kinetic rates between
s the states, Olsson and Noé observe that the integration of stationary observables has an effect on the predic-
s tion of dynamic observables, such as R{} relaxation dispersion. However, in general we cannot expect AMMs
o to match dynamic experimental data, nor can they consider cases in which not all states of the MSM are
o1 connected.

o Here, we address these limitations with dynamic Augmented Markov models that combine simulation
i3 data, in the form of one or more count matrices C (Supplementary Information, algorithm 1, line 1), and
o dynamic and stationary experimental observables 0°*P to a single kinetic model. By combining these sources

e of information, we aim to obtain a more accurate and comprehensive representation of biomolecular dynamics.
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s Using experimental data that report on the conformational exchange kinetics, we can directly estimate the
o7 forward and reverse rate constants of switching from one state to another. Unlike Brotzakis et al., no prior

e knowledge of the kinetic rates are required nor are we limited to a two-state exchange.

» Connection between experiments and simulations

1w For each experimental observable 0®*P, we assume that there is a corresponding observable function f(-)
1 (forward model) available that maps all configurations, x € , to a complex or real vector space, V, however,
02 often just a scalar, e.g., a distance or a chemical shift. For MSMs, we can average these values over the
s n Markov states yielding a € V" [70]. Here, we focus on dynamic experiments, where we measure time
s correlations of these observables either directly or through a transformation. From an MSM, T(7), we can

s compute the time correlation of f:
(f(x(0) " f(x(kT))) = o™ (k) = a IIT(7)"a, (1)

ws where IT is the diagonal matrix of the stationary distribution v, and T is the transpose or the complex
wr  conjugate. We can compare this quantity directly to experimentally measured counterparts and thereby use
s it to drive the estimation of MSMs. Many dynamic observables, however, are transformations of the time-
w0 correlation, rather than the time-correlation itself. This includes, among others, Carl-Purcell-Meiboom-Gill
o (CPMG) and RY} relaxation dispersion, which measure the convolution of the time-correlation function with
m  aspin-lock field. Here we assume fast chemical exchange, and use previously described closed-form expression
2 for Markov models [73],[74] to predict data and drive MSM estimation (see Supporting Information, ‘Theory’

us  for a more detailed explanation).

. Estimation of dynamic Augmented Markov Models

We estimate dynAMMo models by optimizing a loss function which includes the transition counts from the
between states i and j and the sum of the mean-square difference between the predictions and experimental
data, D, of the [th observable at the kth lag-time,

arg min L(T(7) | D,C(r)) = = c;jlogpi
AR, —

J
+ Z(O?f;d7 dyn O?’);p, dyn)2. (2)
I,k

us  The loss is computed with respect to the spectrum of T(T), i.e., the eigenvalues 5\, eigenvectors R, and
ue the stationary distribution 7 and is subject to several constraints. To estimate A and R, we use gradient
7 descent with additional orthogonality constraints for optimization of the eigenvectors. Rather than enforcing
us orthogonality directly with a penalty term in the loss function, dynAMMo optimizes the eigenvectors on
uo  the Stiefel manifold through Riemannian optimization |75]. Following AMMSs, we further have the option to
1o include stationary experimental observables as described previously [70]. The estimation procedure as well

121 as the theoretical details are explained in more detail in Supporting Information, ‘Theory.’
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Figure 2: Overview of model system benchmark results. Three different scenarios using two model systems,
the Prinz potential (brown background) and the three-well potential (teal background) are shown. The
three different scenarios include biased simulations (A-C, J-L), disconnected trajectories (D-F, M-0O), and
unobserved or missing states (G-I, P-R). Each of the scenarios show the free energy potential, timescales
of exchange, and observable plots. x? values and residuals between the model predictions and the ground
truth data are also shown for the observable plots. The model results are shown in red, the ‘ground truth’
experimental data in yellow, and the naive MSM predictions in blue. AG values of the slowest transition for
the different systems are given in the Supporting Information (Table S4).

» Results and Discussion

»s  Enforcing dynamic experimental constraints on a kinetic model rescues biased

2 simulation data

125 To demonstrate the power of dynamic Augmented Markov Models, we will first examine our model by
s applying it to two one-dimensional energy potentials: the Prinz potential [43] (Fig. 2 brown background)
7 and the three-well potential (Fig. [2] teal background). In both model systems, there is one slow transition
122 as well as one or more faster transition(s) that we aim to model. The Prinz potential has four states with
120 comparable populations with one slow transition between the first and last two states, whereas the three-well
10 potential has two fast-interchanging low-energy states and one state with a high energy barrier. In both model
1 systems, we used the slowest eigenvectors as an observable function as they encode near perfect information
12 about the slowest process.

133 We will first examine the scenario where we have biased simulations, which we compare with the ex-
3¢ perimental data derived from a “ground truth” model. In this case, all states were reversibly sampled in

135 the simulations. However, due to, for example, force field inaccuracies and finite sampling, the timescales
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s of exchange between the processes and the thermodynamics of the system do not correspond to the “true”
1w ensemble. By investigating the free energy profiles of the two systems (Fig. [2A/J), we see that the pop-
s ulations of the MSM (blue) match the ground truth well (yellow). Consequently, we would not expect
130 reweighing considering only the stationary observables, as is done in AMMSs, will not have a big effect on
1w the prediction of the dynamic observables since the timescales show significant discrepancies (Fig. 2B/K)
w1 between the MSM and the ground truth. Using dynAMMo, we can perfectly match the slowest timescales
w2 (Fig. 2B/K). We find a similar mismatch between the MSMs estimated on the biased data and the “ground
us  truth data” (Fig. [2C/L). Since our observable function inherently informs about the slowest process we find
e that, dynAMMo does not substantially modify the timescale of the faster processes (Fig. ) This implies
s that the model does not introduce unnecessary bias into the estimation if it is not reflected in the observable.
us As opposed to the Prinz potential, we find that the predicted kinetics in the model trained on biased data
w7 from the three-well potential (Fig. [2) panels J-L) are accelerated compared to the ground truth (Fig. )
us  This mismatch in timescales manifests itself as poor agreement with the observable time correlation functions
us  (Fig. 2L) between the ground truth (yellow) and the naive MSM (blue). Integrating the correlation function
10 data and the biased simulation data with dynAMMo, we are in agreement with the ground-truth data and

151 match the underlying rates.

»» Disconnected simulations can be combined to a single Markov model using dy-

55 namic constraints

152 Many systems are characterized by timescales which are impractical to sample with statistical confidence.
155 However, we may have access to multiple experimental structures of each of the states in isolation, some of
155 which we can sample transitions between, others which are infeasible to sample. An example is the bovine
157 pancreatic trypsin inihibitor (BPTI), for which numerous studies have reported slow millisecond timescale
158 dynamics [76H79], and a millisecond long MD simulation only sampled the suspected slow transition once
150 [16]. In many other cases, sampling such a transition in an unbiased fashion remains impractical.

160 To test such a scenario, we designed two experiments where we discard the transition counts of the
o slowest transition (Fig. PD-E/M-N, gray dotted line) and split the trajectory in two. We build two Markov
12 state models corresponding to the, now, disconnected subregions of the state space (Supporting Information,
163 ‘Materials and Methods’). After reweighing the populations using the stationary AMM procedure |70], we
16« perfectly match the model (red) and the ground truth (yellow) populations (Fig. [2D/M). Despite not having
165 prior information on the slowest process, we can correctly identify the missing timescale using dynamic
s experimental observables (Fig. [2E/N). This discovery is guided by the correlation function (Fig. 2F/O).
17 Since we can match, both, the kinetics and the thermodynamics of the systems, we can also fit the observable
s prediction (Fig. 2JF/O red, solid) to the ground truth (Fig. PJF/O yellow, dashed). Using experimental
10 dynamic observables, we can thereby merge disconnected simulation statistics and estimate a single model

o which faithfully reproduces all the available data.

n dynAMMo does not overfit when relevant states are missing

w2 Next, we consider the case where one or more states that contribute to a measurable experimental signal is
73 missing from the MD simulation data. This situation is common in MD simulation studies as the simulation
s time is often insufficient to sample all the relevant states, and is an edge case related to the ‘disconnected’

s situation discussed above. However, contrary to the previous case, we do not have all structural information
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ws to support a reliable prediction of the observable here. We therefore anticipate that dynAMMo is unable to
v yield a model perfectly fitting these data. To simulate this scenario, we discard transition counts from one
s state completely. Concretely, this procedure discards simulation data about states above 0 (Fig. [2G-1I) in
w the Prinz potential and states below 2.5 in the asymmetric triple well potential (Fig. fR). In this case,
1o models built with dynAMMo cannot match (Fig. / R) the data, which translates into missing timescales
w, (Fig. / Q). Mismatching predictions indicate that the model is failing, which suggests that one or more

12 states that give rise to a measurable signal are missing.

s A mechanistic model of BPTI disulfide isomerization dynamics with dynAMMo
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Figure 3: Integrating BPTT simulations and CPMG NMR data to build a quantitative kinetic model with
dynAMMo. (A) Representative structures of the major BPTI states with the structural characteristics
highlighted. Aromatics are shown for orientation. (B) Kinetic network between macrostates. The colors of
the nodes correspond to the structural representatives shown above. The size of the nodes and the arrow
widths are proportional to the size of the populations as well as the reaction rate, respectively. Rates are
shown above / below the arrows in ms~!. (C) Timescales of exchange as a function of the slowest processes.
dynAMMo is shown in red and the MSM from the simulation data is colored blue. The time constant of the
experimentally determined exchange is shown in yellow with the standard deviation shown as shaded area.

184 To test how our model performs in a realistic scenario, we turned to BPTI as a protein system. BPTI
s is a H8-residue protein whose dynamics has been extensively studied, both experimentally
1 and computationally . BPTI is known to have micro- to millisecond conformational exchange
w7 83|, centered mainly on different isomerizations of the disulfide bond between Cysl4 and Cys38. In addition,
188 there is a 1-ms long MD trajectory available at a temperature of 300 K . In this simulation, all known
19 major conformations of BPTI are sampled, and the transitions between them show a distinct separation of
100 timescales. Analysis of the trajectory shows conformational exchange in the fast microsecond regime
101 , which is much faster than what the experimentally determined rates are suspected to reflect these
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Figure 4: CPMG relaxation dispersion data of BPTI >N spins. Nine representative examples of CPMG
plots are shown. The fitted model (red, solid) is in high agreement with the experimental data (yellow circles).
x? values between the prediction and the experiments are shown for each subplot. The dagger t refers to the
dataset that has been recorded at a Larmor frequency of 600 MHz. Conversely, the double dagger I refers
to the dataset recorded at 500 MHz [76]. Residuals between the experiments and predictions are shown in
pink.

12 processes. The discrepancy between the experiments and the simulation data makes BPTI an ideal test case
13 for demonstrating dynAMMo as an avenue to reconcile the data.

104 By integrating simulation [16] and experimental CPMG data |76] from NMR spectroscopy with dynAMMo,
s we build a kinetic model of BPTI (Fig. . In line with previous analyses,[70} |85], we used time-lagged In-
s dependent Component Analysis (tICA) [86] to define a low dimensional space which we discretized into 384
w7 states and aggregated into 4 metastable structural states. Consistent with previous analyses, the major
s structural substates display isomerization of the disulfide bridges between residues 14 and 38 (Fig. ) We
100 show the most populated states colored purple and light blue (a total population of approximately 90 %),
20 while the remaining population is shared by the green and orange states (Fig. ) The state connectivity is
21 dense and rates vary across an order of magnitude (Fig. ), which we show with arrows of varying thickness
22 between the states colored by identity and scaled by their relative populations. The slowest rates correspond
203 to the transitions to the two minor states (Supporting Information, Fig. S6a) and we expect to occur in
24 the low millisecond regime. The implied timescales computed from our dynAMMo model are systematically
205 shifted compared to those of the naive Markov state model that only takes simulation statistics into account
2 (Fig. BIC). For the MSM, the slowest processes are barely on the order of hundreds of microseconds (dark
207 blue crosses) [73]. On the other hand, the slowest implied timescale estimated by dynAMMo is on the order
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28 of magnitude of approximately 3.2ms. This timescale matches well with those estimated from experimental
20 data at the same temperature using a two-state fit, where Millet et al. determined a chemical exchange of
20 the order of 2 — 3ms [76].

om In Fig. 4] we show representative examples of some key observables. The plots show CPMG relaxation
22 dispersion curves, which measure the effect of chemical exchange on >N spins. The chemical shift predictions
zs  that were used as observables for the backbone amides were obtained by the PPM algorithm [87]. The
au - experimental CPMG data are shown in yellow, whereas the predictions of the model are shown in red and
25 the predictions were scaled according to the values reported in the Supporting Information (Fig. S7). All
216 observables show an excellent overall agreement with the data, suggesting that the underlying model is capable
a7 of explaining the data in a meaningful way (see Supporting Information, Fig. S8 and S9). We note that all
a8 relevant residues involved in the exchange display a relatively strong dispersion, which we are able to perfectly
20 match using dynAMMo. This observation strengthens the argument that the conformations sampled in the
20  MD simulation constitute the relevant configurations needed to explain the experimental data. We stress that
21 dynAMMo uses all observables to fit one global kinetic model. Therefore, the predictions of the relaxation
2 dispersion curves for the backbone nitrogens differ only by the observable used for each residue. Here, we
23 demonstrate how dynAMMo can be used to combine experimental NMR relaxation data with simulation data
24 from molecular dynamics simulations. Therefore, we obtain a detailed mechanistic explanation of how the
»s  different metastable states observed in the MD trajectory contribute to the experimentally probed chemical

26 exchange.

» Quantitative molecular kinetics from disconnected simulation statistics with
228 dynAMMO

20 Above we saw how dynAMMo could recover the correct kinetics on a controlled test system. To evaluate
20 whether dynAMMo generalizes to more complex protein systems, we establish a similar benchmark, system-
2 atically removing simulation statistics that connect the major and minor populated states of BPTI. For this
22 case, we similarly find that dynAMMo can quantitatively recover the exchange rates between the disconnected
= states (Fig. [fJA), and recover the implied timescales accurately (Fig. [fB). The MSM in this case is missing
au  the slowest process (Fig. , dashed cross), however, dynAMMo can recover this process and quantitatively

25 predict the timescale. We show a detailed analysis of this scenario in the Supporting Information (Fig. S6b).

» Conclusion

27 Here we have introduced dynamic Augmented Markov Models (dynAMMo), a new method to improve the ac-
28 curacy of mechanistic biomolecular models by incorporating dynamic experimental measurements to correct
239 for biases in the kinetics and thermodynamics of MD simulations. However, most intriguingly, dynAMMo
20 also allows us to build quantitatively predicted model of molecular kinetics even in the absence of simu-
21 lation statistics on (slow) conformational transitions. We show the performance of dynAMMo across two
a2 well-controlled benchmark systems and later deploy it to two realistic scenarios using data from molecular
23 simulations and NMR spectroscopy on the protein BPTI. As such, dynAMMo opens up the possibility of
aa salvaging sparsely sampled simulation data sampled using biased force fields and repurpose them to build

25 quantitatively predictive models for structural biology.
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Figure 5: Overview of simulating disconnected case using BPTI simulations and CPMG data. (A) Kinetic
network between the disconnected states. All transitions between the purple/light blue and orange/green
clusters were removed (indicated with dashed gray arrows) and two Markov state models were built using
only the within-states trajectory data. The colors of the states correspond to the clusters shown in . (B)
Implied timescale plot of the disconnected model (gray), the connected model (red), and the MSM (blue)
for comparison. The presumed timescale of exchange that was removed in this scenario is indicated as a
dashed cross. Lower panel: Four representative examples of CPMG relaxation dispersion predictions of
selected backbone nitrogens. The predictions of the disconnected case (dashed gray) are plotted together
with the predictions of the connected scenario (red) for comparison. x? values are shown with respect to the
predictions of the disconnected case and the experimental data (yellow).

10


https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541878; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

x MMaterials and Methods

27 The estimator is implemented in Python and uses PyTorch [88] and deeptime [89] as the main analysis
2#s  and modeling tools. The estimation procedure and theory details are provided in Supporting Information,
29 ‘Theory’. The code will be made available on https://github.com/olsson-group/dynAMMol All figures
20 showing molecular structures were made using PyMol [90]. All plots were generated using Matplotlib [91].
s Additional results, such as the slowest estimated eigenvectors, loss function, and stationary distribution
22 are reported in the Supporting Information for all model systems (Fig. S4 and S5) and BPTT (Fig. S6),

3 respectively.

= Benchmark model systems

s The deeptime implementation of the four-state Prinz potential and the three-well potential datasets was
6 used to simulate the two benchmark systems [89]. The parameters used to simulate the trajectories are
57 reported in the Supporting Information (table S1). The estimation of the dynamic Augmented Markov
s Models were carried out as outlined in Results and Discussion. Each scenario uses different parametrizations
20 of the potential and a table with an overview is listed in the Supporting Information (Table S2). Chapman-

20 Kolmogorov tests have been performed on all MSMs used in this study (Supporting Information Fig. S1-S2).

2 BPTI

s%2 The estimation and analysis of the BPTI dynAMMo were conducted as described in Results and Discussion.
%3 Chapman-Kolmogorov tests were conducted on the MSMs used here to ensure validity of the models Sup-
26 porting Information (Fig. S3). The estimation parameters of the two scenarios are listed in the Supporting

26s Information (Table S3). Further details are provided in Supporting Information, ‘Materials and Methods.’

« Acknowledgements

»7  The authors would like to thank D. E. Shaw Research for sharing the BPTI simulation and Arthur G. Palmer
s 111, for sharing the raw NMR relaxation dispersion data. CK thanks Shanawaz Ahmed for fruitful discussions
%0 and for sharing a preliminary implementation of the Cayley transform for the eigenvector estimation. This
20 work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
on funded by the Knut and Alice Wallenberg Foundation.

» Author Contributions

oz C.K. and S.0O. conceptualized, designed, and performed research as well as wrote the manuscript; C.K.
aa analyzed and visualized the data and performed statistical analysis; S.O. provided supervision, project ad-

s ministration and funding acquisition.

11


https://github.com/olsson-group/dynAMMo
https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541878; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

» References

oz 1. Arber W and Linn S. DNA modification and restriction. Annual review of biochemistry 1969;38:467—
278 500.

a9 2. Antonini E and Brunori M. Hemoglobin. Annual Review of Biochemistry 1970;39:977-1042.
20 3. Poretsky L and Kalin MF. The gonadotropic function of insulin. Endocrine reviews 1987;8:132—41.

2 4. Waullschleger S, Loewith R, and Hall MN. TOR Signaling in Growth and Metabolism. Cell 2006;124:471—
282 84

23 5. Monod J, Wyman J, and Changeux JP. On the nature of allosteric transitions: A plausible model.
284 Journal of Molecular Biology 1965;12:88—-118.

s 6. Koshland DE, Némethy G, and Filmer D. Comparison of Experimental Binding Data. Theoretical

286 models in proteins containing subunits 1966;5:365-85.
27 7. Sanger F. Chemistry of insulin. 1958.

s 8. Ascenzi P, Bocedi A, Bolognesi M, et al. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor):

289 a milestone protein. Current protein & peptide science 2003;4:231-51.

20 9. Wlodawer A, Walter J, Huber R, and Sjolin L. Structure of bovine pancreatic trypsin inhibitor. Results
201 of joint neutron and X-ray refinement of crystal form II. Journal of Molecular Biology 1984;180:301-29.
22 10. Wagner G, DeMarco A, and Wiithrich K. Dynamics of the aromatic amino acid residues in the globular
203 conformation of the basic pancreatic trypsin inhibitor (BPTI). Biophysics of structure and mechanism
204 1976;25139*58.

2s 11. Berndt KD, Giintert P, Orbons LP, and Wiithrich K. Determination of a high-quality nuclear magnetic
206 resonance solution structure of the bovine pancreatic trypsin inhibitor and comparison with three crystal
207 structures. Journal of Molecular Biology 1992;227:757—75.

28 12. Peng JW and Wagner G. [20] Investigation of protein motions via relaxation measurements. In: Nuclear
209 Magnetic Resonance, Part C. Vol. 239. Methods in Enzymology. Academic Press, 1994:563—-96. DOTI:
300 https://doi.org/10.1016/50076-6879(94) 39022-3. URL: https://www.sciencedirect.com/
301 science/article/pii/S0076687994390223.

s 13.  Smith PE, Schaik RC van, Szyperski T, Wiithrich K, and Gunsteren WF van. Internal Mobility of the
303 Basic Pancreatic Trypsin Inhibitor in Solution: A Comparison of NMR, Spin Relaxation Measurements
304 and Molecular Dynamics Simulations. Journal of Molecular Biology 1995;246:356—65.

s 14. Spoel D van der, Buuren AR van, Tieleman DP, and Berendsen HJC. Molecular dynamics simulations
306 of peptides from BPTI: A closer look at amide—aromatic interactions. Journal of Biomolecular NMR,
307 1996,8229*38

w8 15. Daggett V and Levitt M. A model of the molten globule state from molecular dynamics simulations.
300 Proceedings of the National Academy of Sciences of the United States of America 1992;89:5142-6.

a0 16.  Shaw DE, Maragakis P, Lindorff-larsen K, Piana S, Shan Y, and Wriggers W. Atomic-Level Character-
31 ization of the Structural Dynamics of Proteins. Science 2010;330:341-7.

sz 17.  Grimaldo M, Roosen-Runge F, Zhang F, Schreiber F, and Seydel T. Dynamics of proteins in solution.
313 Quarterly Reviews of Biophysics 2019;52.

12


https://doi.org/https://doi.org/10.1016/S0076-6879(94)39022-3
https://www.sciencedirect.com/science/article/pii/S0076687994390223
https://www.sciencedirect.com/science/article/pii/S0076687994390223
https://www.sciencedirect.com/science/article/pii/S0076687994390223
https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541878; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

au 18, Trott O and Palmer AG. Theoretical study of R1p rotating-frame and R2 free-precession relaxation in
315 the presence of n-site chemical exchange. Journal of Magnetic Resonance 2004;170:104-12.

a6 19. Koss H, Rance M, and Palmer AG. General expressions for R1p relaxation for N-site chemical exchange

317 and the special case of linear chains. Journal of Magnetic Resonance 2017;274:36-45.

sis 20. Palmer AG and Massi F. Characterization of the dynamics of biomacromolecules using rotating-frame
319 spin relaxation NMR, spectroscopy. Chemical Reviews 2006;106:1700-19.

w20 21. Lindner B, Yi Z, Prinz JH, Smith JC, and Noé F. Dynamic neutron scattering from conformational

321 dynamics. I. Theory and Markov models. Journal of Chemical Physics 2013;139.

2 22. Moller J, Sprung M, Madsen A, and Gutt C. X-ray photon correlation spectroscopy of protein dynamics
323 at nearly diffraction-limited storage rings. IUCrJ 2019;6:794-803.

s 23. Hiller S. Chaperone-Bound Clients: The Importance of Being Dynamic. Trends in Biochemical Sciences
325 2019;44:517-27.

»s  24. Schiffrin B, Calabrese AN, Devine PW, et al. Skp is a multivalent chaperone of outer-membrane proteins.

327 Nature Structural and Molecular Biology 2016;23:786-93.

s 25. Burmann BM, Wang C, and Hiller S. Conformation and dynamics of the periplasmic membrane-
329 protein-chaperone complexes OmpX-Skp and tOmpA-Skp. Nature Structural and Molecular Biology
330 2013;20:1265-72.

s 26. Thoma J, Burmann BM, Hiller S, and Miiller DJ. Impact of holdase chaperones Skp and SurA on the
3% folding of B-barrel outer-membrane proteins. Nature Structural and Molecular Biology 2015;22:795-802.

s 27.  Gauto DF, Macek P, Malinverni D, et al. Functional control of a 0.5 MDa TET aminopeptidase by a
334 flexible loop revealed by MAS NMR. Nature Communications 2022;13.

i35 28.  Neudecker P, Robustelli P, Cavalli A, et al. Structure of an Intermediate State. Science 2012;336:362.

13 29. Kruse AC, Hu J, Pan AC, et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor.
337 Nature 2012;482:552—6.

18 30. Rosenbaum DM, Zhang C, Lyons JA, et al. Structure and function of an irreversible agonist-32 adreno-
330 ceptor complex. Nature 2011;469:236-42.

s 31.  Lindorff-Larsen K, Piana S, Dror RO, and Shaw DE. How fast-folding proteins fold. Science 2011;334:517—
341 20

s 32. Huang J, Rauscher S, Nawrocki G, et al. CHARMM36m: An improved force field for folded and intrin-

33 sically disordered proteins. Nature Methods 2016;14:71-3.

s 33.  Lindorfl-Larsen K, Piana S, Palmo K, et al. Improved side-chain torsion potentials for the Amber ff99SB
35 protein force field. Proteins: Structure, Function and Bioinformatics 2010;78:1950-8.

us  34. Smith JS, Isayev O, and Roitberg AE. {ANTI}-1: an extensible neural network potential with {DFT}
347 accuracy at force field computational cost. Chemical Science 2017;8:3192—203.

us  35. Shaw DE, Dror RO, Salmon JK, et al. Millisecond-scale molecular dynamics simulations on Anton.
349 In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
350 2009:1-11. DOI: |10.1145/1654059.1654126.

1 36. Shaw DE, Grossman JP, Bank JA, et al. Anton 2: Raising the Bar for Performance and Programma-
352 bility in a Special-Purpose Molecular Dynamics Supercomputer. International Conference for High Per-
353 formance Computing, Networking, Storage and Analysis, SC 2014;2015-Janua:41-53.

13


https://doi.org/10.1145/1654059.1654126
https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541878; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

¢ 37. Shaw DE, Adams PJ, Azaria A, et al. Anton 3: Twenty Microseconds of Molecular Dynamics Simulation
355 before Lunch. International Conference for High Performance Computing, Networking, Storage and
356 Analysis, SC 2021;1.

w7 38. Voelz VA, Pande VS, and Bowman GR. Folding@home: Achievements from over 20 years of citizen
358 science herald the exascale era. Biophysical Journal 2023;122:1-12.

s 39. Bowman GR, Beauchamp KA, Boxer G, and Pande VS. Progress and challenges in the automated

360 construction of Markov state models for full protein systems. Journal of Chemical Physics 2009;131.

1 40. Bowman GR, Voelz VA, and Pande VS. Atomistic folding simulations of the five-helix bundle protein

362 A6-85. Journal of the American Chemical Society 2011;133:664—7.

3 41. Lane TJ, Bowman GR, Beauchamp K, Voelz VA, and Pande VS. Markov State model reveals folding
364 and functional dynamics in ultra-long MD trajectories. Journal of the American Chemical Society
365 2011;133:18413-9.

s 42. Voelz VA, Jéger M, Yao S, et al. Slow unfolded-state structuring in acyl-CoA binding protein folding
367 revealed by simulation and experiment. Journal of the American Chemical Society 2012;134:12565-77.

s 43. Prinz JH, Wu H, Sarich M, et al. Markov models of molecular kinetics: Generation and validation. The
360 Journal of Chemical Physics 2011;134:174105.

s 44. Wassman CD, Baronio R, Demir O, et al. Computational identification of a transiently open L1/S3

an pocket for reactivation of mutant p53. Nature Communications 2013;4:1-9.

s 45. Noé F, Schiitte C, Vanden-Eijnden E, Reich L, and Weikl TR. Constructing the equilibrium ensemble

373 of folding pathways from short off-equilibrium simulations. Proceedings of the National Academy of
374 Sciences of the United States of America 2009;106:19011-6.

s 46.  Qiao Q, Bowman GR, and Huang X. Dynamics of an intrinsically disordered protein reveal metastable

376 conformations that potentially seed aggregation. Journal of the American Chemical Society 2013;135:16092—
377 101.

s 47. Raich L, Meier K, Giinther J, Christ CD, Noé F, and Olsson S. Discovery of a hidden transient state in
379 all bromodomain families. Proceedings of the National Academy of Sciences 2021;118:62017427118.

0 48. Chakrabarti KS, Olsson S, Pratihar S, et al. A litmus test for classifying recognition mechanisms of

381 transiently binding proteins. Nature Communications 2022;13.

2 49. Liebl K and Zacharias M. The development of nucleic acids force fields: From an unchallenged past to

383 a competitive future. Biophysical Journal 2023;122:1-11.

s« 50. Tan D, Piana S, Dirks RM, and Shaw DE. RNA force field with accuracy comparable to state-of-the-art
385 protein force fields. Proceedings of the National Academy of Sciences of the United States of America
386 2018;115:E1346-E1355.

ser bl. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, and Shaw DE. Systematic validation
388 of protein force fields against experimental data. PLoS ONE 2012;7:1-6.

s 52. Piana S, Klepeis JL, and Shaw DE. Assessing the accuracy of physical models used in protein-folding
390 simulations: Quantitative evidence from long molecular dynamics simulations. Current Opinion in Struc-
301 tural Biology 2014;24:98-105.

14


https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541878; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

2 53. Henriques J, Cragnell C, and Skepd M. Molecular Dynamics Simulations of Intrinsically Disordered

303 Proteins: Force Field Evaluation and Comparison with Experiment. Journal of Chemical Theory and
304 Computation 2015;11:3420-31.

s b4. Robustelli P, Piana S, and Shaw DE. Developing a molecular dynamics force field for both folded and
396 disordered protein states. Proceedings of the National Academy of Sciences of the United States of
307 America 2018;115:E4758-E4766.

s HH. Bottaro S and Lindorff-Larsen K. Biophysical experiments and biomolecular simulations: A perfect
399 match? Science 2018;361:355-60.

w  56. Leung HTA, Bignucolo O, Aregger R, et al. A Rigorous and Efficient Method to Reweight Very Large
401 Conformational Ensembles Using Average Experimental Data and to Determine Their Relative Infor-
a02 mation Content. Journal of Chemical Theory and Computation 2016;12:383-94.

w3 H7. Capelli R, Tiana G, and Camilloni C. An implementation of the maximum-caliber principle by replica-

404 averaged time-resolved restrained simulations. Journal of Chemical Physics 2018;148.

ws 58, Smith CA, Mazur A, Rout AK, et al. Enhancing NMR derived ensembles with kinetics on multiple

406 timescales. Journal of Biomolecular NMR 2020;74:27—43.

w7 59. Cavalli A, Camilloni C, and Vendruscolo M. Molecular dynamics simulations with replica-averaged
408 structural restraints generate structural ensembles according to the maximum entropy principle. Journal
400 of Chemical Physics 2013;138.

a0 60. White AD and Voth GA. Efficient and minimal method to bias molecular simulations with experimental
a data. Journal of Chemical Theory and Computation 2014;10:3023-30.

a2 61. Boomsma W, Ferkinghoff-Borg J, and Lindorff-Larsen K. Combining Experiments and Simulations
a13 Using the Maximum Entropy Principle. PLoS Computational Biology 2014;10:1-9.

as 62, Olsson S, Strotz D, Vogeli B, Riek R, and Cavalli A. The Dynamic Basis for Signal Propagation in
a1 Human Pinl-WW. Structure 2016;24:1464-75.

as 63. Beauchamp KA, Pande VS, and Das R. Bayesian energy landscape tilting: Towards concordant models
a7 of molecular ensembles. Biophysical Journal 2014;106:1381-90.

as  64. Pitera JW and Chodera JD. On the use of experimental observations to bias simulated ensembles.
410 Journal of Chemical Theory and Computation 2012;8:3445-51.

20 65. Bonomi M, Camilloni C, Cavalli A, and Vendruscolo M. Metainference: A Bayesian inference method

o for heterogeneous systems. Science Advances 2016;2:1-9.

w22 66. Hummer G and Kdéfinger J. Bayesian ensemble refinement by replica simulations and reweighting. Jour-
a3 nal of Chemical Physics 2015;143.

w2 67. Olsson S, Frellsen J, Boomsma W, Mardia KV, and Hamelryck T. Inference of Structure Ensembles of

s Flexible Biomolecules from Sparse , Averaged Data. PLoS ONE 2013;8:1-7.

w2 68. Lindorff-Larsen K, Best RB, DePristo MA, Dobson CM, and Vendruscolo M. Simultaneous Determina-
a7 tion of Protein Structure and Dynamics Using Cryo-Electron Microscopy. Nature 2005;433:128-32.

w28 69. Faidon Brotzakis Z, Vendruscolo M, and Bolhuis PG. A method of incorporating rate constants as
29 kinetic constraints in molecular dynamics simulations. Proceedings of the National Academy of Sciences
430 of the United States of America 2021;118.

15


https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541878; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

s 70. Olsson S, Wu H, Paul F, Clementi C, and Noé F. Combining experimental and simulation data of

a2 molecular processes via augmented Markov models. Proceedings of the National Academy of Sciences
33 of the United States of America 2017;114:8265-70.

s 71, Meiboom S and Gill D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. THE
435 REVIEW OF SCIENTIFIC INSTRUMENTS 1958;28:688-90.

s 72. Luz Z and Meiboom S. Nuclear magnetic resonance study of the protolysis of trimethylammonium ion
437 in aqueous solution-order of the reaction with respect to solvent. The Journal of Chemical Physics
238 1963;39:366-70.

a0 73. Olsson S and Noé F. Mechanistic models of chemical exchange induced relaxation in protein NMR.
a0 Journal of the American Chemical Society 2017;139:200-10.

w74, XueY, Ward JM, Yuwen T, Podkorytov IS, and Skrynnikov NR. Microsecond time-scale conformational
a2 exchange in proteins: Using long molecular dynamics trajectory to simulate NMR relaxation dispersion
a3 data. Journal of the American Chemical Society 2012;134:2555-62.

as 75, Wen Z and Yin W. A feasible method for optimization with orthogonality constraints. Mathematical
a5 Programming 2013;142:397—434.

ws  76. Millet O, Loria JP, Kroenke CD, Pons M, and Palmer AG. The static magnetic field dependence of

a7 chemical exchange linebroadening defines the NMR chemical shift time scale. Journal of the American
a8 Chemical Society 2000;122:2867-77.

w 77. Grey MJ, Wang C, and Palmer AG. Disulfide Bond Isomerization in Basic Pancreatic Trypsin Inhibitor:
450 Multisite Chemical Exchange Quantified by CPMG Relaxation Dispersion and Chemical Shift Modeling.
151 Journal of the American Chemical Society 2003;125:14324-35.

52 78. Massi F, Johnson E, Wang C, Rance M, and Palmer AG. NMR R1p Rotating-Frame Relaxation with
453 Weak Radio Frequency Fields. Journal of the American Chemical Society 2004;126:2247—56.

sa 79, Weininger U, Brath U, Modig K, Teilum K, and Akke M. Off-resonance rotating-frame relaxation
455 dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection. Journal of
456 Biomolecular NMR 2014;59:23-9.

7 80. Denisov VP and Halle B. Protein hydration dynamics in aqueous solution: A comparison of bovine
458 pancreatic trypsin inhibitor and ubiquitin by oxygen-17 spin relaxation dispersion. Journal of Molecular
459 Biology 1995;245:682-97.

wo 81. Brooks B and Karplus M. Harmonic dynamics of proteins: Normal modes and fluctuations in bovine
a61 pancreatic trypsin inhibitor. Proceedings of the National Academy of Sciences of the United States of
a62 America 1983;80:6571-5.

w3 82. Wagner G. Characterization of the distribution of internal motions in the basic pancreatic trypsin

464 inhibitor using a large number of internal nmr probes. Quarterly Reviews of Biophysics 1983;16:1-57.

w5 83. Wagner G, Miiller N, Wiithrich K, et al. Exchange of Two-Spin Order in Nuclear Magnetic Resonance:
466 Separation of Exchange and Cross-Relaxation Processes. Journal of the American Chemical Society
267 1985;107:6440-6.

ws 84. Noé F and Clementi C. Kinetic Distance and Kinetic Maps from Molecular Dynamics Simulation.
469 Journal of Chemical Theory and Computation 2015;11:5002—11.

16


https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.23.541878; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

a0 85. Scherer MK, Trendelkamp-Schroer B, Paul F, et al. PyYEMMA 2: A Software Package for Estimation, Val-
an idation, and Analysis of Markov Models. Journal of Chemical Theory and Computation 2015;11:5525—
472 42

az 86. Pérez-Hernandez G, Paul F, Giorgino T, De Fabritiis G, and Noé F. Identification of slow molecular

a7 order parameters for Markov model construction. Journal of Chemical Physics 2013;139.

a5 87. Li DW and Briischweiler R. PPM: A side-chain and backbone chemical shift predictor for the assessment

ats of protein conformational ensembles. Journal of Biomolecular NMR, 2012;54:257—65.

ar 88. Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-performance deep learning library.

ats Advances in Neural Information Processing Systems 2019;32.

awo 89. Hoffmann M, Scherer M, Hempel T, et al. Deeptime: a Python library for machine learning dynamical

480 models from time series data. Machine Learning: Science and Technology 2022;3.
s 90.  Schrodinger L. The PyMOL Molecular Graphics System, Version 2.0. 2015.

2 91, Hunter JD. MATPLOTLIB: A 2D GRAPHICS ENVIRONMENT. Computing in Science and Engineer-
483 ing 2007;9:90-5.

17


https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/

