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Abstract8

Long-timescale behavior of proteins is fundamental to many biological processes. Molecular Dynamics9

(MD) simulations and biophysical experiments are often used to study protein dynamics. However, high10

computational demands of MD limit what timescales are feasible to study, often missing rare events,11

which are critical to explain experiments. On the other hand, experiments are limited by low resolution.12

We present dynamic Augmented Markov models (dynAMMo) to bridge the gap between these data13

and overcome their respective limitations. For the first time, dynAMMo enables the construction of14

mechanistic models of slow exchange processes that have been not observed in MD data by integrating15

dynamic experimental observables. As a consequence, dynAMMo allows us to bypass costly and extensive16

simulations, yet providing mechanistic insights of the system. Validated with controlled model systems17

and a well-studied protein, dynAMMo offers a new approach to quantitatively model protein dynamics18

on long timescales in an unprecedented manner.19

Introduction20

Understanding the triad of protein structure–function–dynamics is of paramount importance in many fields,21

including biochemistry, biophysics, and medicine [1–7]. Thanks to extensive studies of the bovine pancreatic22

trypsin inhibitor (BPTI), for example, we now understand the atomic details of its essential role in inhibiting23

serine proteases [8]. This knowledge has been possible by combining findings from the fields of X-ray crystal-24

lography [9] and Nuclear Magnetic Resonance (NMR) [10–13] with Molecular Dynamics (MD) simulations25

[14–16]. However, reconciling experimental and simulation data in a systematic manner often poses problems26

due to technical and resource limitations. Enabling such a merger would yield a significant opportunity for27

quantitative structural biology and biophysics.28

Typically, we model dynamic experiments, [17] such as NMR relaxation dispersion, single molecular29

Förster Resonance Energy Transfer (FRET), dynamic neutron scattering, or X-ray Photon Correlation Spec-30

troscopy using simple n-site jump models [18–22]. This approach yields forward and reverse exchange rates31

for the different states as well as site populations. However, modeling dynamics this way beyond a two-state32

exchange is challenging, due to experimental limitations and poor timescale separation. In effect, we are33
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Figure 1: Schematic of dynamic Augmented Markov Models (dynAMMo). Simulations often fail to reproduce
experimentally observed dynamic observables, such as NMR relaxation dispersion data due to force field
inaccuracies and finite simulation length. Experiments, on the other hand, are often noisy and often don’t
reveal the mechanistic details of kinetic exchange. With dynamic Augmented Markov Models, we take into
account, both, simulation and experimental data to obtain a single mechanistic kinetic model.

limited to highly simplified models of the complex underlying dynamics of our data where the structure of34

states often remain elusive or ambiguous [23–28].35

Over the past few decades, molecular dynamics (MD) simulations have become increasingly popular in the36

field of biophysics, providing atomistic insights into the behavior of biological systems at high temporal and37

spatial resolutions [29–31]. Force field models are steadily improving in quality and their scope is boarding38

to include disordered proteins and nucleic acids [32–34]. Although not broadly available, the development39

of special-purpose computers, like Anton [35–37], makes it possible to study millisecond timescale molecular40

processes. GPU-accelerated simulations as well as distributed computing initiatives, such as Folding@home41

[38] or GPUGrid are more widely available allow us to access processes on the micro- to millisecond timescale,42

in particular when large ensembles of simulations are analyzed using Markov state models (MSM) [39–43].43

MSMs represent the molecular kinetics fully: the relevant structural states, their thermodynamic weights44

and their mutual exchange rates. MSMs have enabled studies of many biological processes, such as protein45

folding, enzymatic activity, or protein–protein interactions [42, 44–50].46

Despite these advances in force field accuracy and simulation technologies, we often observe a systematic47

discrepancy between the experimental values predicted from Molecular Dynamics (MD) trajectories and48

experimental data [51–54]. The origin of these discrepancies is two fold. First, imperfections in the force49

field models remain which lead to skewed populations and altered dynamics. Second, simulations still do50

not cover the range of biological timescales of interest. Together these limitations prevent us from directly51

comparing to many experiments and thus gaining a mechanistic interpretation of our data.52

The integration of simulation and experimental data is a big challenge with a long history [55]. Previous53

methods include post hoc reweighing or sub-selection of simulations data [56, 57], modeling kinetics with54
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generated ensembles [58], biasing simulations with stationary experimental data [59–68] and dynamic experi-55

mental data [69], and building Markov state models using experimental and simulation data [70], Augmented56

Markov models. Augmented Markov Models (AMMs) combine stationary experimental observables with sim-57

ulation data to correct for bias in MD data, which improved agreement with complementary stationary and58

dynamic data [70]. However, AMMs cannot take into account dynamic data, and consequently also cannot59

deal with situations where our simulations have not sampled processes which are important to explain the60

data.61

Here, we present dynamic Augmented Markov Models (dynAMMo), a new approach that accounts for62

stationary and dynamic experimental data, such as R1ρ or Carr-Purcell-Meiboom-Gill (CPMG) relaxation63

dispersion experiments [20, 71, 72], to estimate a Markov model. By combining constrained optimization64

with the principle of maximum entropy, we are able to correctly recover experimental timescales from biased65

simulations and are able to model exchange between states not seen in the simulation data as long as the states66

themselves are known. To our knowledge, this is the first method that enables the construction of mechanistic67

models of protein dynamics, even when rare events remain unobserved in the MD data. This achievement68

is made possible through the dynamic experimental data that complement the simulations by reporting on69

the exchange processes that have not been sampled by the simulations. Consequently, this circumvents the,70

often very costly, need for (reversibly) sampling rare events in order to establish a kinetic mechanistic model.71

The method therefore broadens the scope for future research in understanding the complex dynamics of72

biomolecular systems in general and brings the field closer to the development of data-driven models that73

accurately capture the underlying mechanisms-of-action.74

Theory75

Dynamic Augmented Markov Models76

Markov state models are based on the discretization of the state space Ω of a molecule into n states. By77

following the traversal of a MD trajectory through these states we can estimate the transition probabilities78

pij from states i to states j through the analysis of transition counts cij(τ) with a lag time τ [39, 40, 43].79

The resulting transition matrix T(τ) ∈ Rn×n encodes the molecular kinetics of the system, including the80

populations of the states and the rates of exchange between them. This information is accessible through the81

spectral components of T (τ), the eigenvectors R and eigenvalues λ, as well as the stationary distribution π82

(see Supporting Information, ‘Theory’) [43].83

Augmented Markov Models [70] aim to estimate a MSM which matches stationary experimental observ-84

ables, such as NMR 3J-coupling or Residual Dipolar Coupling (RDC) data that probe the “true” Boltzmann85

distribution, by reweighing the relative populations of the states through the maximum entropy principle.86

Even though this approach does not directly take into account information about the kinetic rates between87

the states, Olsson and Noé observe that the integration of stationary observables has an effect on the predic-88

tion of dynamic observables, such as Rex
1ρ relaxation dispersion. However, in general we cannot expect AMMs89

to match dynamic experimental data, nor can they consider cases in which not all states of the MSM are90

connected.91

Here, we address these limitations with dynamic Augmented Markov models that combine simulation92

data, in the form of one or more count matrices C (Supplementary Information, algorithm 1, line 1), and93

dynamic and stationary experimental observables oexp to a single kinetic model. By combining these sources94

of information, we aim to obtain a more accurate and comprehensive representation of biomolecular dynamics.95
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Using experimental data that report on the conformational exchange kinetics, we can directly estimate the96

forward and reverse rate constants of switching from one state to another. Unlike Brotzakis et al., no prior97

knowledge of the kinetic rates are required nor are we limited to a two-state exchange.98

Connection between experiments and simulations99

For each experimental observable oexp, we assume that there is a corresponding observable function f(·)100

(forward model) available that maps all configurations, x ∈ Ω, to a complex or real vector space, V, however,101

often just a scalar, e.g., a distance or a chemical shift. For MSMs, we can average these values over the102

n Markov states yielding a ∈ Vn [70]. Here, we focus on dynamic experiments, where we measure time103

correlations of these observables either directly or through a transformation. From an MSM, T(τ), we can104

compute the time correlation of f :105

⟨f(x(0))⊤f(x(kτ))⟩ ≈ odynamic(k) = a⊤ΠT(τ)ka, (1)

where Π is the diagonal matrix of the stationary distribution π, and ⊤ is the transpose or the complex106

conjugate. We can compare this quantity directly to experimentally measured counterparts and thereby use107

it to drive the estimation of MSMs. Many dynamic observables, however, are transformations of the time-108

correlation, rather than the time-correlation itself. This includes, among others, Carl-Purcell-Meiboom-Gill109

(CPMG) and Rex
1ρ relaxation dispersion, which measure the convolution of the time-correlation function with110

a spin-lock field. Here we assume fast chemical exchange, and use previously described closed-form expression111

for Markov models [73, 74] to predict data and drive MSM estimation (see Supporting Information, ‘Theory’112

for a more detailed explanation).113

Estimation of dynamic Augmented Markov Models114

We estimate dynAMMo models by optimizing a loss function which includes the transition counts from the

between states i and j and the sum of the mean-square difference between the predictions and experimental

data, D, of the lth observable at the kth lag-time,

arg min
λ̂,R̂,π̂

L(T̂(τ) | D,C(τ)) = −
∑
ij

cij log pij

+
∑
l,k

(opred, dynl,k − oexp, dynl,k )2. (2)

The loss is computed with respect to the spectrum of T̂(τ), i.e., the eigenvalues λ̂, eigenvectors R̂, and115

the stationary distribution π̂ and is subject to several constraints. To estimate λ̂ and R̂, we use gradient116

descent with additional orthogonality constraints for optimization of the eigenvectors. Rather than enforcing117

orthogonality directly with a penalty term in the loss function, dynAMMo optimizes the eigenvectors on118

the Stiefel manifold through Riemannian optimization [75]. Following AMMs, we further have the option to119

include stationary experimental observables as described previously [70]. The estimation procedure as well120

as the theoretical details are explained in more detail in Supporting Information, ‘Theory.’121
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Figure 2: Overview of model system benchmark results. Three different scenarios using two model systems,
the Prinz potential (brown background) and the three-well potential (teal background) are shown. The
three different scenarios include biased simulations (A–C, J–L), disconnected trajectories (D–F, M–O), and
unobserved or missing states (G–I, P–R). Each of the scenarios show the free energy potential, timescales
of exchange, and observable plots. χ2 values and residuals between the model predictions and the ground
truth data are also shown for the observable plots. The model results are shown in red, the ‘ground truth’
experimental data in yellow, and the naive MSM predictions in blue. ∆G values of the slowest transition for
the different systems are given in the Supporting Information (Table S4).

Results and Discussion122

Enforcing dynamic experimental constraints on a kinetic model rescues biased123

simulation data124

To demonstrate the power of dynamic Augmented Markov Models, we will first examine our model by125

applying it to two one-dimensional energy potentials: the Prinz potential [43] (Fig. 2, brown background)126

and the three-well potential (Fig. 2, teal background). In both model systems, there is one slow transition127

as well as one or more faster transition(s) that we aim to model. The Prinz potential has four states with128

comparable populations with one slow transition between the first and last two states, whereas the three-well129

potential has two fast-interchanging low-energy states and one state with a high energy barrier. In both model130

systems, we used the slowest eigenvectors as an observable function as they encode near perfect information131

about the slowest process.132

We will first examine the scenario where we have biased simulations, which we compare with the ex-133

perimental data derived from a “ground truth” model. In this case, all states were reversibly sampled in134

the simulations. However, due to, for example, force field inaccuracies and finite sampling, the timescales135
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of exchange between the processes and the thermodynamics of the system do not correspond to the “true”136

ensemble. By investigating the free energy profiles of the two systems (Fig. 2A/J), we see that the pop-137

ulations of the MSM (blue) match the ground truth well (yellow). Consequently, we would not expect138

reweighing considering only the stationary observables, as is done in AMMs, will not have a big effect on139

the prediction of the dynamic observables since the timescales show significant discrepancies (Fig. 2B/K)140

between the MSM and the ground truth. Using dynAMMo, we can perfectly match the slowest timescales141

(Fig. 2B/K). We find a similar mismatch between the MSMs estimated on the biased data and the “ground142

truth data” (Fig. 2C/L). Since our observable function inherently informs about the slowest process we find143

that, dynAMMo does not substantially modify the timescale of the faster processes (Fig. 2B). This implies144

that the model does not introduce unnecessary bias into the estimation if it is not reflected in the observable.145

As opposed to the Prinz potential, we find that the predicted kinetics in the model trained on biased data146

from the three-well potential (Fig. 2, panels J–L) are accelerated compared to the ground truth (Fig. 2K).147

This mismatch in timescales manifests itself as poor agreement with the observable time correlation functions148

(Fig. 2L) between the ground truth (yellow) and the naive MSM (blue). Integrating the correlation function149

data and the biased simulation data with dynAMMo, we are in agreement with the ground-truth data and150

match the underlying rates.151

Disconnected simulations can be combined to a single Markov model using dy-152

namic constraints153

Many systems are characterized by timescales which are impractical to sample with statistical confidence.154

However, we may have access to multiple experimental structures of each of the states in isolation, some of155

which we can sample transitions between, others which are infeasible to sample. An example is the bovine156

pancreatic trypsin inihibitor (BPTI), for which numerous studies have reported slow millisecond timescale157

dynamics [76–79], and a millisecond long MD simulation only sampled the suspected slow transition once158

[16]. In many other cases, sampling such a transition in an unbiased fashion remains impractical.159

To test such a scenario, we designed two experiments where we discard the transition counts of the160

slowest transition (Fig. 2D–E/M–N, gray dotted line) and split the trajectory in two. We build two Markov161

state models corresponding to the, now, disconnected subregions of the state space (Supporting Information,162

‘Materials and Methods’). After reweighing the populations using the stationary AMM procedure [70], we163

perfectly match the model (red) and the ground truth (yellow) populations (Fig. 2D/M). Despite not having164

prior information on the slowest process, we can correctly identify the missing timescale using dynamic165

experimental observables (Fig. 2E/N). This discovery is guided by the correlation function (Fig. 2F/O).166

Since we can match, both, the kinetics and the thermodynamics of the systems, we can also fit the observable167

prediction (Fig. 2F/O red, solid) to the ground truth (Fig. 2F/O yellow, dashed). Using experimental168

dynamic observables, we can thereby merge disconnected simulation statistics and estimate a single model169

which faithfully reproduces all the available data.170

dynAMMo does not overfit when relevant states are missing171

Next, we consider the case where one or more states that contribute to a measurable experimental signal is172

missing from the MD simulation data. This situation is common in MD simulation studies as the simulation173

time is often insufficient to sample all the relevant states, and is an edge case related to the ‘disconnected’174

situation discussed above. However, contrary to the previous case, we do not have all structural information175
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to support a reliable prediction of the observable here. We therefore anticipate that dynAMMo is unable to176

yield a model perfectly fitting these data. To simulate this scenario, we discard transition counts from one177

state completely. Concretely, this procedure discards simulation data about states above 0 (Fig. 2G–I) in178

the Prinz potential and states below 2.5 in the asymmetric triple well potential (Fig. 2P–R). In this case,179

models built with dynAMMo cannot match (Fig. 2I/R) the data, which translates into missing timescales180

(Fig. 2H/Q). Mismatching predictions indicate that the model is failing, which suggests that one or more181

states that give rise to a measurable signal are missing.182

A mechanistic model of BPTI disulfide isomerization dynamics with dynAMMo183

Cys14–Cys38

Tyr10

Cys14–Cys38

Tyr10

Cys14–Cys38

Tyr10
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Figure 3: Integrating BPTI simulations and CPMG NMR data to build a quantitative kinetic model with
dynAMMo. (A) Representative structures of the major BPTI states with the structural characteristics
highlighted. Aromatics are shown for orientation. (B) Kinetic network between macrostates. The colors of
the nodes correspond to the structural representatives shown above. The size of the nodes and the arrow
widths are proportional to the size of the populations as well as the reaction rate, respectively. Rates are
shown above / below the arrows in ms−1. (C) Timescales of exchange as a function of the slowest processes.
dynAMMo is shown in red and the MSM from the simulation data is colored blue. The time constant of the
experimentally determined exchange is shown in yellow with the standard deviation shown as shaded area.

To test how our model performs in a realistic scenario, we turned to BPTI as a protein system. BPTI184

is a 58-residue protein whose dynamics has been extensively studied, both experimentally [77, 78, 80, 81]185

and computationally [16, 82]. BPTI is known to have micro- to millisecond conformational exchange [77, 78,186

83], centered mainly on different isomerizations of the disulfide bond between Cys14 and Cys38. In addition,187

there is a 1-ms long MD trajectory available at a temperature of 300 K [16]. In this simulation, all known188

major conformations of BPTI are sampled, and the transitions between them show a distinct separation of189

timescales. Analysis of the trajectory shows conformational exchange in the fast microsecond regime [16,190

70, 84], which is much faster than what the experimentally determined rates are suspected to reflect these191
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Figure 4: CPMG relaxation dispersion data of BPTI 15NH spins. Nine representative examples of CPMG
plots are shown. The fitted model (red, solid) is in high agreement with the experimental data (yellow circles).
χ2 values between the prediction and the experiments are shown for each subplot. The dagger † refers to the
dataset that has been recorded at a Larmor frequency of 600 MHz. Conversely, the double dagger ‡ refers
to the dataset recorded at 500 MHz [76]. Residuals between the experiments and predictions are shown in
pink.

processes. The discrepancy between the experiments and the simulation data makes BPTI an ideal test case192

for demonstrating dynAMMo as an avenue to reconcile the data.193

By integrating simulation [16] and experimental CPMG data [76] from NMR spectroscopy with dynAMMo,194

we build a kinetic model of BPTI (Fig. 3). In line with previous analyses,[70, 85], we used time-lagged In-195

dependent Component Analysis (tICA) [86] to define a low dimensional space which we discretized into 384196

states and aggregated into 4 metastable structural states. Consistent with previous analyses, the major197

structural substates display isomerization of the disulfide bridges between residues 14 and 38 (Fig. 3A). We198

show the most populated states colored purple and light blue (a total population of approximately 90 %),199

while the remaining population is shared by the green and orange states (Fig. 3A). The state connectivity is200

dense and rates vary across an order of magnitude (Fig. 3B), which we show with arrows of varying thickness201

between the states colored by identity and scaled by their relative populations. The slowest rates correspond202

to the transitions to the two minor states (Supporting Information, Fig. S6a) and we expect to occur in203

the low millisecond regime. The implied timescales computed from our dynAMMo model are systematically204

shifted compared to those of the naive Markov state model that only takes simulation statistics into account205

(Fig. 3C). For the MSM, the slowest processes are barely on the order of hundreds of microseconds (dark206

blue crosses) [73]. On the other hand, the slowest implied timescale estimated by dynAMMo is on the order207
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of magnitude of approximately 3.2ms. This timescale matches well with those estimated from experimental208

data at the same temperature using a two-state fit, where Millet et al. determined a chemical exchange of209

the order of 2− 3ms [76].210

In Fig. 4 we show representative examples of some key observables. The plots show CPMG relaxation211

dispersion curves, which measure the effect of chemical exchange on 15NH spins. The chemical shift predictions212

that were used as observables for the backbone amides were obtained by the PPM algorithm [87]. The213

experimental CPMG data are shown in yellow, whereas the predictions of the model are shown in red and214

the predictions were scaled according to the values reported in the Supporting Information (Fig. S7). All215

observables show an excellent overall agreement with the data, suggesting that the underlying model is capable216

of explaining the data in a meaningful way (see Supporting Information, Fig. S8 and S9). We note that all217

relevant residues involved in the exchange display a relatively strong dispersion, which we are able to perfectly218

match using dynAMMo. This observation strengthens the argument that the conformations sampled in the219

MD simulation constitute the relevant configurations needed to explain the experimental data. We stress that220

dynAMMo uses all observables to fit one global kinetic model. Therefore, the predictions of the relaxation221

dispersion curves for the backbone nitrogens differ only by the observable used for each residue. Here, we222

demonstrate how dynAMMo can be used to combine experimental NMR relaxation data with simulation data223

from molecular dynamics simulations. Therefore, we obtain a detailed mechanistic explanation of how the224

different metastable states observed in the MD trajectory contribute to the experimentally probed chemical225

exchange.226

Quantitative molecular kinetics from disconnected simulation statistics with227

dynAMMo228

Above we saw how dynAMMo could recover the correct kinetics on a controlled test system. To evaluate229

whether dynAMMo generalizes to more complex protein systems, we establish a similar benchmark, system-230

atically removing simulation statistics that connect the major and minor populated states of BPTI. For this231

case, we similarly find that dynAMMo can quantitatively recover the exchange rates between the disconnected232

states (Fig. 5A), and recover the implied timescales accurately (Fig. 5B). The MSM in this case is missing233

the slowest process (Fig. 5A, dashed cross), however, dynAMMo can recover this process and quantitatively234

predict the timescale. We show a detailed analysis of this scenario in the Supporting Information (Fig. S6b).235

Conclusion236

Here we have introduced dynamic Augmented Markov Models (dynAMMo), a new method to improve the ac-237

curacy of mechanistic biomolecular models by incorporating dynamic experimental measurements to correct238

for biases in the kinetics and thermodynamics of MD simulations. However, most intriguingly, dynAMMo239

also allows us to build quantitatively predicted model of molecular kinetics even in the absence of simu-240

lation statistics on (slow) conformational transitions. We show the performance of dynAMMo across two241

well-controlled benchmark systems and later deploy it to two realistic scenarios using data from molecular242

simulations and NMR spectroscopy on the protein BPTI. As such, dynAMMo opens up the possibility of243

salvaging sparsely sampled simulation data sampled using biased force fields and repurpose them to build244

quantitatively predictive models for structural biology.245
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Figure 5: Overview of simulating disconnected case using BPTI simulations and CPMG data. (A) Kinetic
network between the disconnected states. All transitions between the purple/light blue and orange/green
clusters were removed (indicated with dashed gray arrows) and two Markov state models were built using
only the within-states trajectory data. The colors of the states correspond to the clusters shown in 3A. (B)
Implied timescale plot of the disconnected model (gray), the connected model (red), and the MSM (blue)
for comparison. The presumed timescale of exchange that was removed in this scenario is indicated as a
dashed cross. Lower panel: Four representative examples of CPMG relaxation dispersion predictions of
selected backbone nitrogens. The predictions of the disconnected case (dashed gray) are plotted together
with the predictions of the connected scenario (red) for comparison. χ2 values are shown with respect to the
predictions of the disconnected case and the experimental data (yellow).
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Materials and Methods246

The estimator is implemented in Python and uses PyTorch [88] and deeptime [89] as the main analysis247

and modeling tools. The estimation procedure and theory details are provided in Supporting Information,248

‘Theory’. The code will be made available on https://github.com/olsson-group/dynAMMo. All figures249

showing molecular structures were made using PyMol [90]. All plots were generated using Matplotlib [91].250

Additional results, such as the slowest estimated eigenvectors, loss function, and stationary distribution251

are reported in the Supporting Information for all model systems (Fig. S4 and S5) and BPTI (Fig. S6),252

respectively.253

Benchmark model systems254

The deeptime implementation of the four-state Prinz potential and the three-well potential datasets was255

used to simulate the two benchmark systems [89]. The parameters used to simulate the trajectories are256

reported in the Supporting Information (table S1). The estimation of the dynamic Augmented Markov257

Models were carried out as outlined in Results and Discussion. Each scenario uses different parametrizations258

of the potential and a table with an overview is listed in the Supporting Information (Table S2). Chapman-259

Kolmogorov tests have been performed on all MSMs used in this study (Supporting Information Fig. S1–S2).260

BPTI261

The estimation and analysis of the BPTI dynAMMo were conducted as described in Results and Discussion.262

Chapman-Kolmogorov tests were conducted on the MSMs used here to ensure validity of the models Sup-263

porting Information (Fig. S3). The estimation parameters of the two scenarios are listed in the Supporting264

Information (Table S3). Further details are provided in Supporting Information, ‘Materials and Methods.’265
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13. Smith PE, Schaik RC van, Szyperski T, Wüthrich K, and Gunsteren WF van. Internal Mobility of the302

Basic Pancreatic Trypsin Inhibitor in Solution: A Comparison of NMR Spin Relaxation Measurements303

and Molecular Dynamics Simulations. Journal of Molecular Biology 1995;246:356–65.304

14. Spoel D van der, Buuren AR van, Tieleman DP, and Berendsen HJC. Molecular dynamics simulations305

of peptides from BPTI: A closer look at amide—aromatic interactions. Journal of Biomolecular NMR306

1996;8:229–38.307

15. Daggett V and Levitt M. A model of the molten globule state from molecular dynamics simulations.308

Proceedings of the National Academy of Sciences of the United States of America 1992;89:5142–6.309

16. Shaw DE, Maragakis P, Lindorff-larsen K, Piana S, Shan Y, and Wriggers W. Atomic-Level Character-310

ization of the Structural Dynamics of Proteins. Science 2010;330:341–7.311

17. Grimaldo M, Roosen-Runge F, Zhang F, Schreiber F, and Seydel T. Dynamics of proteins in solution.312

Quarterly Reviews of Biophysics 2019;52.313

12

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2023. ; https://doi.org/10.1101/2023.05.23.541878doi: bioRxiv preprint 

https://doi.org/https://doi.org/10.1016/S0076-6879(94)39022-3
https://www.sciencedirect.com/science/article/pii/S0076687994390223
https://www.sciencedirect.com/science/article/pii/S0076687994390223
https://www.sciencedirect.com/science/article/pii/S0076687994390223
https://doi.org/10.1101/2023.05.23.541878
http://creativecommons.org/licenses/by-nd/4.0/


18. Trott O and Palmer AG. Theoretical study of R1ρ rotating-frame and R2 free-precession relaxation in314

the presence of n-site chemical exchange. Journal of Magnetic Resonance 2004;170:104–12.315

19. Koss H, Rance M, and Palmer AG. General expressions for R1ρ relaxation for N-site chemical exchange316

and the special case of linear chains. Journal of Magnetic Resonance 2017;274:36–45.317

20. Palmer AG and Massi F. Characterization of the dynamics of biomacromolecules using rotating-frame318

spin relaxation NMR spectroscopy. Chemical Reviews 2006;106:1700–19.319
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53. Henriques J, Cragnell C, and Skepö M. Molecular Dynamics Simulations of Intrinsically Disordered392

Proteins: Force Field Evaluation and Comparison with Experiment. Journal of Chemical Theory and393

Computation 2015;11:3420–31.394

54. Robustelli P, Piana S, and Shaw DE. Developing a molecular dynamics force field for both folded and395

disordered protein states. Proceedings of the National Academy of Sciences of the United States of396

America 2018;115:E4758–E4766.397

55. Bottaro S and Lindorff-Larsen K. Biophysical experiments and biomolecular simulations: A perfect398

match? Science 2018;361:355–60.399

56. Leung HTA, Bignucolo O, Aregger R, et al. A Rigorous and Efficient Method to Reweight Very Large400

Conformational Ensembles Using Average Experimental Data and to Determine Their Relative Infor-401

mation Content. Journal of Chemical Theory and Computation 2016;12:383–94.402

57. Capelli R, Tiana G, and Camilloni C. An implementation of the maximum-caliber principle by replica-403

averaged time-resolved restrained simulations. Journal of Chemical Physics 2018;148.404

58. Smith CA, Mazur A, Rout AK, et al. Enhancing NMR derived ensembles with kinetics on multiple405

timescales. Journal of Biomolecular NMR 2020;74:27–43.406

59. Cavalli A, Camilloni C, and Vendruscolo M. Molecular dynamics simulations with replica-averaged407

structural restraints generate structural ensembles according to the maximum entropy principle. Journal408

of Chemical Physics 2013;138.409

60. White AD and Voth GA. Efficient and minimal method to bias molecular simulations with experimental410

data. Journal of Chemical Theory and Computation 2014;10:3023–30.411

61. Boomsma W, Ferkinghoff-Borg J, and Lindorff-Larsen K. Combining Experiments and Simulations412

Using the Maximum Entropy Principle. PLoS Computational Biology 2014;10:1–9.413
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