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Biomorphs, Richard Dawkins’ iconic model of morphological evolution, are traditionally used to
demonstrate the power of natural selection to generate biological order from random mutations.
Here we show that biomorphs can also be used to illustrate how developmental bias shapes adaptive
evolutionary outcomes. In particular, we find that biomorphs exhibit phenotype bias, a type of
developmental bias where certain phenotypes can be many orders of magnitude more likely than
others to appear through random mutations. Moreover, this bias exhibits a strong Occam’s-razor-like
preference for simpler phenotypes with low descriptional complexity. Such bias towards simplicity is
formalised by an information-theoretic principle that can be intuitively understood from a picture of
evolution randomly searching in the space of algorithms. By using population genetics simulations,
we demonstrate how moderately adaptive phenotypic variation that appears more frequently upon
random mutations will fix at the expense of more highly adaptive biomorph phenotypes that are
less frequent. This result, as well as many other patterns found in the structure of variation for
the biomorphs, such as high mutational robustness and a positive correlation between phenotype
evolvability and robustness, closely resemble findings in molecular genotype-phenotype maps. Many
of these patterns can be explained with an analytic model based on constrained and unconstrained
sections of the genome. We postulate that the phenotype bias towards simplicity and other patterns
biomorphs share with molecular genotype-phenotype maps may hold more widely for developmental
systems, which would have implications for longstanding debates about internal versus external
causes in evolution.

INTRODUCTION

Three versions of the infinite monkey theorem

In his influential book, The Blind Watchmaker [1],
Richard Dawkins illustrates how natural selection can
efficiently find fitness maxima in ‘hyper-astronomically
large’ [2] search spaces by introducing an intriguing twist
on the famous infinite monkey theorem. He frames his
argument by first introducing the classic case (See Fig 1)
with a question: How likely is it that a monkey randomly
typing on a typewriter produces Hamlet’s 28-character
phrase “METHINKS IT IS LIKE A WEASEL”? For a
monkey typing on an M -key typewriter, the probability
to produce a specific string of n characters will scale as
1/Mn, which rapidly becomes unimaginably small with
increasing n. By analogy, random mutations on their
own are unlikely to produce meaningful biological nov-
elty. Dawkins contrasts this picture with his second ver-
sion of the infinite monkey theorem, where the novel twist
is to include a fitness function that acts on each letter
independently. The output stops changing once the cor-
rect letter is found, so that on average only M random
keystrokes are needed for each letter. Thus, any n let-
ter phrase can be produced in a number of keystrokes
that scales as n×M , which is exponentially smaller than
in the classical case. This simple but evocative example
illustrates an important property of biological sequence
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spaces. For a given alphabet size K, their size grows ex-
ponentially with sequence length L as KL, but genomic
distances remain linear in L because on the order of L
mutations can be used to link any two sequences. By us-
ing fitness functions of the kind that Dawkins introduced,
an evolutionary search algorithm can exploit this linear-
ity and locate a fitness maximum in an exponentially
large high-dimensional search space within a relatively
small number of randomly generated steps.

In this paper, we explore the evolutionary conse-
quences of a third (algorithmic) version of this famous
trope of monkeys on keyboards (see Fig 1). In Dawkins’
version, the monkeys directly type out components of the
outputs, i.e. the phenotypes. In evolution, however, novel
phenotypic variation is generated indirectly by random
mutations which are then “decoded” through the process
of development. To capture this mapping from genotypes
(the inputs) to phenotypes (the outputs), consider in-
stead monkeys generating outputs by typing at random
into a computer programming language [3]. In contrast
to the classical version of the infinite monkey theorem,
where all output strings of length n are equally likely
(with probability p = 1/Mn), in the algorithmic picture,
certain outputs are exponentially more likely to appear
than others. For example, a string of length n = 1000 of
the form “010101...” would appear when typing the
21-character program “print ‘‘01" 500 times;” [3].
Therefore, its probability p = 1/M21 is many orders of
magnitude larger than the probability p = 1/M1000 for
the classical version. Thus, within this algorithmic pic-
ture, there are certain kinds of outputs, namely those
that can be described by short programs, which have
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Figure 1. Three versions of the “infinite monkey theorem” compared. In the 1st version, or the classic case, all outputs
of length n are equally likely, and thus the probability of obtaining a specific output scales as 1/Mn, where M is the number
of keys, and n is the length of the desired output. In the 2nd version, introduced by Dawkins [1], a fitness function fixes each
correct partial output, so that a desired n-length string is likely to be found in a timescale that scales as n×M , which is linear
instead of exponential in n. In the 3rd algorithmic version, the probability of obtaining an output scales as 1/MK , where K is
the length of a program that generates it [3]. Outputs that can be generated by short programs are therefore exponentially more
likely to obtain. The length of the shortest program that generates an output is related to the famous Kolmogorov complexity
measure [4] so that the algorithmic monkey theorem also implies a bias towards simplicity.

an exponentially higher probability than outputs with-
out such short algorithmic descriptions. Interestingly,
an algorithmic picture of evolution is also introduced in
a famous passage from chapter 5 of the Blind Watch-
maker [1], where Dawkins describes seeds falling from
a tree: “It is raining instructions out there; it’s raining
programs; it’s raining tree-growing, fluff-spreading, algo-
rithms. That is not a metaphor, it is the plain truth. It
couldn’t be any plainer if it were raining floppy discs.”.

Can the intuitive link between our simple algorithmic
picture and the mapping from genotypes to phenotypes
be made more rigorous? To this end, we turn to the
field of algorithmic information theory (AIT) [4] where
the central concept is the Kolmogorov complexity K(x)
of a string x. K(x) is the length of the shortest pro-
gram that generates x on a universal Turing machine, a
computing device that can perform any possible compu-
tation. There are profound mathematical relationships
in AIT that link probability and Kolmogorov complex-
ity [4]. Here we apply a recently-derived AIT theorem [5]
which predicts an upper bound for the probability P (x)
that an output x is obtained upon random sampling of
inputs of a computable input-output map:

P (x) ≤ 2−aK̃(x)+b, (1)

where the descriptional complexity K̃(x) is a suitable
approximation to the (uncomputable) Kolmogorov com-
plexity, and two constants a and b are independent of the
outputs x. Interpreting K̃(x) as a measure of the length
of the shortest program that generates output x connects
directly to the algorithmic picture of monkeys typing into
a computer programming language. Probabilities scale
exponentially with program length so that the shortest
program has the highest probability. This kind of bias
towards short descriptions is called “simplicity bias” in

the context of computable input-output maps [5]: Out-

puts with high P (x) will have small K̃(x), and outputs

with large K̃(x) will have low P (x) (but not necessarily
vice-versa because Eq (1) is an upper bound). In [3, 5, 6]
it was shown that the bound (1) works remarkably well
for a wide range of input-output maps, suggesting that
this information-theoretic link between probability and
complexity holds widely.

Simplicity bias in genotype-phenotype maps

It has recently been argued [3] that many genotype-
to-phenotype (GP) maps obey the mathematical condi-
tions needed for Eq (1) to be satisfied, formalizing the
intuitive connection between GP maps and the 3rd al-
gorithmic monkey theorem. GP maps typically exhibit
redundancy due to neutral mutations [7], where ’neutral’
simply means that the mutation does not change the phe-
notype, which is a simpler definition than the classical
notion introduced by Kimura [8]. This redundancy nat-
urally leads to the concept of a neutral set made up of all
the genotypes that map to a given phenotype p. We can
define the associated probability P (p) that a randomly
selected genotype belongs to the neutral set of p, which
is also referred to as the phenotype frequency fp of p.
It is directly proportional to the size of the neutral set.
Phenotype bias occurs when there are large differences in
the neutral set sizes (or equivalently in the fp) associ-
ated with different phenotypes p [9]. The AIT simplicity
bias bound (1) above predicts that GP maps will exhibit
an Occam’s razor-like phenotype bias where the largest
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frequencies correspond to low-complexity phenotypes1.
These simple phenotypes are therefore more likely to ap-
pear upon random mutations than individual complex
phenotypes are.

Strong evidence for this hypothesis of a “biological Oc-
cam’s razor” was found at the molecular scale for the GP
maps of RNA secondary structure, the polyomino model
for protein quaternary structure, and a popular model
of the yeast cell-cycle gene regulatory network [3]. For
example, phenotype bias towards simplicity can explain
key patterns in nature such as an observed strong pref-
erence for symmetry in protein complexes, and the fact
that the most frequent RNA secondary structures found
in nature have structures that are highly compressible,
and therefore are simple with low descriptional complex-
ity K̃(p) [3].

To illustrate in more detail how phenotype bias can
affect patterns observed in nature, we discuss the best-
understood molecular GP map, namely that of the sec-
ondary structures of RNA. The advantage of RNA sec-
ondary structure is that an abundance of data is avail-
able in standardized databases of functional RNA, which
include catalysts and structural elements in the cell.
The total number of possible sequences grows extremely
rapidly with length. For example, the set of all 4126 pos-
sible RNA sequences of length L = 126, which is not that
long for functional RNA, would have more mass than the
observable universe [2]! Given the size of these possibil-
ity spaces, one would not expect to observe the same
structure twice when randomly searching such a hyper-
astronomically large genetic search space. But this ex-
pectation is mistaken: strong phenotype bias means that
some structures are found with high frequency even in a
relatively small random sequence sample [9, 11–14]. For
example, if the secondary structures are coarse-grained
using level-5 of the RNAshapes method [15], then the 68
evolved secondary structures of length L = 126 found
in the RNAcentral database [16] of functional RNA are
among the 96 structures with highest phenotypic fre-
quencies out of a much larger set of 1012 topologically
possible level 5 structures [9]. Interestingly these 68 ob-
served secondary structures are typically found by sam-
pling less than 106 random sequences, an unimaginably
small 10−70th fraction of the total number of distinct
possible sequences of that length2. The mechanisms by

1 We note that the metaphor of Occam’s razor in a GP map was
used, to our knowledge, for the first time for the particular ex-
ample of L-systems by Lehre and Haddow [10]

2 To avoid misunderstandings, this relatively small number of se-
quences is what is needed to find all the level-5 coarse-grained
structural classes found in the databases. And while the struc-
ture is important for facilitating function, it is only part of what
needs to be specified. For example, at the finer level of indi-
vidual secondary structures (inferred) frequencies of individual
secondary structure frequencies found in the database varied over
15 orders of magnitude for this length [14] (with a distribution
that closely follows that of sampled frequencies fp). At an even

which strong phenotype bias is predicted to influence
adaptive evolutionary outcomes includes the “arrival-of-
the-frequent” effect [17], which captures the simple fact
that natural selection can only act on the structures that
are introduced sufficiently frequently into the population
through random mutations, see also [18]. Depending on
the relevant time scales and mutation rates, concepts
such as “free-fitness” [19, 20], or the “survival of the flat-
test” [21] are similarly predicted to favor the evolution
of high-frequency structures. To sum up, for RNA, the
evolved structures dramatically reflect the strong phe-
notype bias in this system. This observation does not
negate the role of selection. Each functional RNA struc-
ture in the database will have fixed due to natural selec-
tion, and a randomly selected sequence would be unlikely
to perform a given biological function (see [22] for a re-
cent discussion). But it does mean that nature was able
to produce the “endless forms most beautiful” [23] that
grace the living world from only a minuscule fraction of
the set of all RNA structures, namely those that are most
likely to appear as variation.

While molecular GP maps such as the RNA model
above can be interpreted as a stripped-down version of
developmental bias [24, 25], historically much of the in-
terest in the effects of bias on the arrival of variation
has focused on morphological evolution. Could simplic-
ity bias also have a dramatic impact on this larger scale?
A recent study of an abstract morphological model of tis-
sues found that random developmental mechanisms are
more likely to be associated with simple morphologies
and moreover, that complex morphologies are less robust
to parameter changes [26]. Similarly, in a model of digi-
tal organisms [27], it was found that simple phenotypes
are generated by a higher number of genotypes and are
more likely to evolve from another phenotype. Higher
phenotypic frequencies for simpler phenotypes were also
found in a model of digital logic gates [28, 29], Boolean
threshold models for gene regulatory networks [30] and a
highly simplified model of neural development [31]. As a
further example, models based on Lindenmeyer systems,
a recursive model that can generate plant-like shapes [32]
or sequences of symbols, indicate that simple phenotypes
are more robust to mutations [10] and have higher neu-
tral set sizes [5].

In order to address the status of phenotype bias in sys-
tems beyond the molecular scale, we will focus on another
important innovation from The Blind Watchmaker [1], a
developmental model of two-dimensional shapes called
biomorphs. As illustrated in Fig 2, these are made up
of vectors, which are defined by the (numeric) genotypes

finer level, a catalytic ribozyme, for example, needs not only a
specific structure but also a particular sequence in its active site.
Thus, the probability of finding a ribozyme in random samples is
smaller than the number needed to just find its secondary struc-
ture. The main point from [9] is that this number is many orders
of magnitude smaller than one might naively expect based on the
full size of the sequence space
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and combined into a biomorph phenotype in a recursive
developmental process. This model produces a rich array
of forms. In his book [1], Dawkins was able to gradually
steer the evolution of biomorphs towards particular de-
sired shapes in a relatively small number of generations
by carefully choosing phenotypes that appear upon ran-
dom mutations. In this way, he used biomorphs to illus-
trate the power of natural selection in a more complicated
system than the simple “WEASEL” program. The main
aim of this paper will be to analyze the generation of phe-
notypic variation more systematically in this system and
test the hypothesis that this iconic model of morpholog-
ical development also exhibits simplicity bias and other
phenomena similar to those observed for molecular GP
maps, and furthermore, to analyze the effect that these
biases in the arrival of variation have on evolutionary
dynamics.

We analyze the biomorphs GP map as follows. Firstly,
to take into account the fact that many biomorph phe-
notypes are nearly indistinguishable to the eye, we de-
fine a coarse-graining that maps them onto a discrete
30 × 30 pixel grid, as shown in Fig 2 C. We then ex-
haustively analyse all genotypes within a fixed parameter
range, and use an approximate descriptional complexity
measure [34] to show that the frequency-complexity re-
lationship of biomorph phenotypes is indeed consistent
with the simplicity bias of Eq (1). We show that the
GP map of biomorphs exhibits many other properties
that resemble those commonly found in molecular GP
maps, as reviewed in [7, 35]. For example, the phenotype
robustness ρp, defined as the mean mutational robust-
ness of all genotypes g that map to a given phenotype
p, scales as the logarithm of the frequency fp of the phe-
notype. Evolvability, a measure that counts how many
novel phenotypes are accessible by point mutations, cor-
relates negatively with the mutational robustness ρg of
an individual genotype g, but positively with phenotype
robustness ρp of the whole neutral set [36]. We can ratio-
nalize these effects in both existing GP maps and in the
biomorphs system through a simple analytically tractable
model based on separating genotypes into constrained
and unconstrained portions [37–40].

Another big question is to what extent these structural
GP map characteristics, which determine the spectrum
of novel variation that appears upon random mutations,
affect evolutionary outcomes, especially when natural se-
lection is also at play. We first show that in the absence of
selection, biases in phenotypic frequencies (which are cal-
culated on a uniform random sampling of genotypes) are
reflected in the average rates with which each biomorph
phenotype appears in an evolving population. Next, we
turn to a scenario that is adapted from refs [17, 18] and
includes both variation and selection: Two adaptive phe-
notypic changes are possible and for a range of fitness
values, we find that the more frequent phenotype fixes
first even though it is not the fittest phenotype. We
also study a scenario from Dawkins’s book [1] where he
finds it hard to reconstruct an evolutionary pathway to

an ‘insect’-shaped phenotype. He argues that for such
rare phenotypes, while short paths exist, these are only
a tiny fraction of a much larger set of potential paths,
and so they are hard to reliably find. We illustrate these
shortest paths and note that if neutral mutations are in-
cluded, fewer phenotypic changes are needed, making it
easier to create fitness functions that lead to monotoni-
cally increasing fitness paths to the final desired pheno-
type.

Finally, we situate our specific findings for the
biomorph system within the longstanding debate about
the relative contributions of internal (or structuralist)
causes versus external (or adaptationist) causes in deter-
mining evolutionary outcomes. In particular, we explore
whether phenotype bias could join natural selection as
an ultimate, rather than a proximate evolutionary cause
in Mayr’s [41] influential classification. To clarify and
unravel some of the complex strands that have histor-
ically had an impact on his broader argument, we first
review in some detail how the better-understood example
of RNA secondary structure for functional RNA fits into
this dichotomy. Given that that biomorphs exhibit sim-
ilar phenotype bias, we then explore how the hypothesis
that such bias holds more widely for developmental sys-
tems would impact on the contentious question of where
developmental constraints and biases fit in within the
causal structure of evolutionary biology [42–56].

MATERIALS AND METHODS

Dawkins’ biomorphs model

In Dawkins’ biomorphs model [1, 33], phenotypes
are two-dimensional figures, recursively constructed from
genotypes, which consist of nine genes g1-g9, represented
by integer values, (Fig 2A). This construction is per-
formed in two steps: first, a set of eight vectors is con-
structed from the genotypic information and then these
vectors are combined recursively to form the final figure,
as described in [33]:

1. Definition of eight two-dimensional vectors:
The x- and y-coordinates of eight two-dimensional
vectors are set by the values of the first eight genes,
g1-g8, as shown in Fig 2B: for example, the vector
number 3 has an x-component set by the integer
at the first gene (g1) and a y-component set by
the integer at the fifth gene (g5). The allocation
of specific genes to vector components is fixed by
Dawkins’ definition of the biomorphs system, as de-
scribed in [33].

2. Recursive construction of the final biomorph
from eight two-dimensional vectors: These
eight vectors, denoted vector 1 to vector 8, form the
basis of a recursive developmental process, where
vectors are added to the figures in several stages,
as sketched in Fig 2C. The ninth gene determines
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Figure 2. The biomorphs GP map: A) Following [1, 33] each genotype, a set of nine integers, is linked to the corresponding
biomorph phenotype, a 2D shape. B) To obtain the phenotype from a given genotype, the integers at the first eight positions of
the genotype (labeled g1 - g8) are used to define eight two-dimensional vectors, numbered from 0 to 7, as shown schematically
above. C) The 2D biomorph shape is created from these vectors by applying a set of simple rules for several developmental
stages, the number of which is set by the integer at the ninth position of the genotype (see Methods). In order to discretize the
phenotypes for our computational GP map analysis, we coarse-grain the final image on a 30 × 30 grid, as shown in the final
step.

after how many stages this process terminates. At
the first stage, a single vector is drawn (by conven-
tion, this is ‘vector 2’ with its length multiplied by
the value of g9). At the next stage, vector (2 + 1)
and vector (2−1) are multiplied by g9−1 and both
are attached to the endpoint of the existing vector.
At each further recursion, vectors n− 1 and n+ 1,
where n is the number of the preceding vector, have
their length multiplied by a successively smaller in-
teger and attached to the current endpoint of the
figure, as demonstrated in Fig 2C. The numbering
of the eight vectors is treated periodically, i.e. the
next-highest vector from vector 7, the final vector,
is vector 0 and conversely, the vector corresponding
to (0-1) is vector 7.

In this way, the biomorph system corresponds to a sce-
nario where the key developmental mechanisms are fixed:
two new lines grow out of each endpoint of the biomorph
shape at each developmental stage. However, the num-
ber of stages and the details of individual entities, i.e. the
lengths and angles of the vectors, vary from genotype to
genotype (a vector could even have zero length).
In order to exhaustively analyze the GP map compu-
tationally, we restrict the values in the genotypes to a
finite range. We take 7 values for each of the ‘vector
genes’ (−3 ≤ gi ≤ 3 for i ∈ [1, .., 8]) and 8 values for
the ninth gene (1 ≤ g9 ≤ 8). In this range, there are
78 ∗ 81 = 46, 118, 408 genotypes. This range is somewhat
smaller than the values in Dawkins’ examples [1], but
they are near the limit of what is feasible for exhaustive
enumerations. We chose a slightly higher range for the
ninth gene than for the first eight genes since changes

in the ninth gene affect the number of drawn lines and
therefore have the greatest qualitative effect. The effect
of extending these ranges further can be investigated with
the approximate analytic model introduced in this paper.
We find that the qualitative observations are unchanged
(section S3.3 in the Supplementary Information).
Following Dawkins’ program of artificial evolution [1], a
point mutation can increase or decrease a single gene by
one integer step. This is a key difference from models
like RNA, where each nucleotide can be exchanged for
any other nucleotide. We do not include mutations that
go beyond our fixed range of genotypes.

Quantifying the biomorphs GP map

We use two different approaches to study the relation-
ship between biomorph genotypes and phenotypes on a
large scale. The first approach is computational: we sim-
ply consider all genotypes within a fixed range and gen-
erate their phenotypes computationally. In order to be
able to manipulate, analyze and compare the phenotypes
computationally, we coarse-grain them on a 2D grid, as
explained below. The second approach is an analytic
model based on separating the genome into constrained
and unconstrained parts, a simplification which makes it
possible to (semi)analytically calculate some key proper-
ties of a GP map [37, 38, 40].

Throughout the paper, where we do not specify, the
results are based on the computational approach. For
example, our computational simulations of evolving pop-
ulations use only the computational GP map. However,
many steps of the GP map analysis are performed for
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both the computational and the analytic approaches.
Good agreement is found between the two approaches.

Computational model with discrete phenotypes

For our computational analysis, we need a clear defini-
tion of when two biomorphs share the same phenotype.
This definition should mimic the conditions in the orig-
inal evolution experiments by Dawkins [1], who applied
artificial selection based on the entire appearance of a
biomorph (rather than just a specific feature). More-
over, the biomorphs were drawn on a computer screen of
limited size, such that very small features may have ap-
peared indistinguishable. Thus, biomorphs should only
be treated as distinct phenotypes if they display clear
visual differences. To reproduce this delineation, we
project the 2D shape onto a limited-resolution 30 × 30
pixel grid as illustrated in the final step of Fig 2C. In
detail, this procedure works as follows:

• First, we go through the lines and merge any co-
inciding line segments (i.e. if the identical line seg-
ment is drawn as part of two longer lines, only one
instance is kept). We only work with one half of
the biomorph since the other half is given by axial
symmetry.

• Secondly, we place the lines on the grid - the lines
are scaled such that the total size of the grid is 5%
larger than the longer dimension of the biomorph
shape (either width or height) and the biomorph is
placed at the center of the grid.

• Next, we record, how many lines are contained
within each pixel on the grid as follows: we simply
compute the total length of all line elements within
the pixel (for computational reasons, we round to
the nearest 10−3 in our calculations). Lines coin-
ciding with the outer boundary of a pixel are as-
sumed to contribute half their length to the pixels
on either side of the boundary.

• Finally, we go through each pixel: if the total line
length contained within the pixel is ≥ 20% of the
side length of the pixel, the pixel value is set to one.
Otherwise, it is set to zero.

This coarse-graining method has two parameters: the
grid resolution (30 × 30) and the threshold for setting
a pixel to one (≥ 20% of the length of the side of the
pixel). In the Supplementary Information section S3, we
show that the qualitative characteristics of the GP map
are robust to changes in these two parameters.

Analytic model based on sequence constraints

By separating a genotype into constrained and un-
constrained positions, it has been possible to (semi-
)analytically calculate many properties of GP maps [37,

38, 40]. The simplest of these approximations rely on the
fact that mutations at certain positions of the genotype
have no effect on the phenotype [37]. These positions
are called ‘unconstrained’. Those parts of the genotypes
that do affect the phenotype when they are changed are
called ‘constrained’.

This technique of sequence constraints can be applied
to the biomorphs as follows: The first eight sites in the
biomorph genotype encode eight vectors, but not all of
these vectors are used in the final shape if the develop-
mental process terminates after a small number of stages,
as dictated by gene 9 (Fig 2). Therefore, there are unused
vectors and the positions of the genotype that encode
such vectors must be fully unconstrained since mutations
to these positions can have no effect on the phenotype at
all. In our analytic calculations, we assume that all other
positions, i.e. positions that affect one or more of the vec-
tors in the final shape in some way, are fully constrained,
i.e. that any change in these positions leads to a pheno-
typic change: this is a simplifying assumption since it is
possible that two lines in the biomorph shape are drawn
on top of one another, and in this case deleting a piece
from one of these lines has no visible phenotypic effect.
Thus, this analytic model is only perfectly accurate for
a very detailed phenotype description: in the analytic
model, any small change in any drawn line corresponds
to a phenotypic change. Even if a line that was pre-
viously drawn multiple times is now only drawn once,
this corresponds to a phenotypic change in the analytic
model, and if the shape is rescaled, this also corresponds
to a phenotypic change. Thus, the analytic description
would be 100% accurate if the biomorphs are drawn with
a fixed length scale on a very large screen, if lines that
are generated multiple times in the developmental pro-
cess are drawn as thicker lines, and if length-zero lines
are included, for example as a visible dot.

Having determined which sites are constrained and
which are unconstrained, we can make analytic predic-
tions for GP map characteristics, such as phenotype fre-
quencies, robustness, and evolvability values (see sec-
tion S1 in the Supplementary Information for detailed
derivations). The analytic model complements the com-
putational results since both rely on opposite assump-
tions: the computational model uses coarse-graining,
whereas the analytic model is (overly) fine-grained. In
order to compare the data from the two approaches, we
restrict the genotypes to the same range of integers in
both cases throughout the main text. However, since
calculations in the analytic approach are fast, we also
use this approach to investigate how the biomorphs GP
map would change if we allowed the integer values in the
genotype to vary over a wider range. This modification
produces qualitatively similar outcomes, as shown in sec-
tion S3.3 in the Supplementary Information.
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Models of evolving populations

To model populations of biomorphs evolving over time,
we use the Wright-Fisher model with selection [57] in
combination with a GP map, as done in refs. [12, 17]: the
fitness of a specific genotype is calculated by mapping it
to its phenotype and then using a phenotype-fitness rela-
tionship that is fixed for each simulation, as described in
the text. Mutations occur at a constant rate µ per site at
each generation [17]. As an initial condition, we choose a
random genotype out of all genotypes that meet the spec-
ifications (for example map to a given phenotype) and
initialize all individuals with this genotype. To ensure
that this choice of initial conditions doesn’t affect our
measurements, we follow Schaper & Louis [17] and, for a
population of size N , let the initial population evolve for
10N generations before starting any measurements.

RESULTS

Phenotype bias towards simple phenotypes

Quantifying the strength of the bias

Having introduced the relationship between biomorph
genotypes and phenotypes, the first question is how many
phenotypes exist and how many genotypes correspond
to each of these phenotypes. In the computational re-
sults, there are ≈ 9.8 × 106 different phenotypes for the
78×8 ≈ 5×107 genotypes that are within the parameter
range considered in our analysis (approximately 1.2×107

different phenotypes in the more fine-grained analytic
model). A few examples from the computational ap-
proach are shown in Fig 3A: among these are phenotypes
that are generated by approximately 105 genotypes, as
well as phenotypes that are only generated by two geno-
types. These examples illustrate that the biomorph sys-
tem exhibits strong phenotypic bias: neutral set sizes
differ by several orders of magnitude between different
phenotypes.

This phenotypic bias can be further observed in Fig 3B
where we plot the neutral set sizes for all phenotypes.
The sizes vary across more than six orders of magnitude
for both for the computational (blue) and the analytic
(red) data. Neutral set sizes approximately follow Zipf’s
law, where the relationship between neutral set size Np

and phenotype rank r (i.e. the number of phenotypes
with greater or equal neutral set size) is Np ∝ 1/r for a
wide range of Np. This fat-tailed distribution means that
most phenotypes have small neutral sets: in fact, only
approximately 4 × 105 out of approximately 107 pheno-
types have neutral set sizes greater than ten genotypes in
the computational results. Note that phenotypic bias is
found even without the coarse-graining introduced in the
computational analysis, since it is also present in the ana-
lytic model, which does not rely on coarse-graining. From

the analytic calculations (for details see section S1.1 in
the Supplementary Information) we find a range of neu-
tral set sizes that depend only on the final site of the
genotype g9:

Np(g9) ≈

{
2 k9−2×g9 if 1 ≤ g9 ≤ 4

2 otherwise
(2)

Here k = 7 is the number of distinct integers that are
in the allowed range for genotype positions g1 to g8. Es-
sentially the neutral set size differences in the analytic
model are due to the fact that phenotypes with many
unconstrained positions can be produced by a large num-
ber of genotypes [38]: each constrained site can only take
one value within the entire neutral set, but each uncon-
strained site can take k different values and thus each
unconstrained site leads to a larger number of distinct
neutral sequences, i.e. a higher neutral set size. Specif-
ically, each additional unconstrained site increases the
neutral set size by a factor of k. Due to this simple rela-
tionship between constrained sites and neutral set sizes,
there can only be a few phenotypes with large neutral
set sizes: it is the constrained positions that define the
phenotype, and since phenotypes with large neutral sets
only have a small number of constrained positions, only
a small number of distinct phenotypes with large neu-
tral sets can exist. This argument gives a relationship
between neutral set size Np and phenotype rank r that
closely resembles a Zipf’s law (derivation in section S1.2
in the Supplementary Information), as in some previous
constrained-unconstrained models [38], and is plotted in
Fig 3B:

r(g9) ≈

{
k8/Np if Np > 2

2× k8 if Np = 2
(3)

However, note that simplifications were made in the
derivation of this equation: the full analytic expression
involved a sum over g9 and we only kept the largest term
in each sum. This gives us a simple expression whose
Np-dependence is easy to analyze, but at the cost of un-
derestimating the true rank values.

Quantifying the bias towards low-complexity biomorphs

As can be seen visually from the examples in Fig 3A,
phenotypes with higher neutral set sizes appear to be less
complex. To quantify this trend, we use the block decom-
position method [34] to estimate the descriptional com-

plexity K̃(p) since this method is designed for 2D binary
arrays such as our coarse-grained description of the phe-
notype3. This procedure generates the data in Fig 3C.

3 We only consider one half of the phenotype since all biomorphs
are axially symmetric. We use default parameters in the block
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Figure 3. Phenotypic bias: A) Example biomorph phenotypes: the neutral set sizes (i.e. number of genotypes per phenotype)
are indicated above each image. The phenotypes shown in the first three rows are chosen to represent a range of neutral set
sizes, and the last row shows three phenotypes with a neutral set size of two since ≈ 9 × 106 out of ≈ 107 phenotypes have
this neutral set size. B) The neutral set sizes of all phenotypes are plotted against their neutral set size ranks (i.e. the number
of phenotypes with greater or equal neutral set size). The computational results are shown in blue and the analytic data of
Eq (3) in red. In both treatments, neutral set sizes vary over several orders of magnitude, i.e. there is strong phenotype bias.
C) The neutral set size of each phenotype is plotted against the estimated complexity of the corresponding coarse-grained
binary image (calculated using the block decomposition method [34]). The black solid line is an approximate, but not a perfect
upper bound, drawn to illustrate the simplicity-bias prediction from Eq (1). Large neutral set size phenotypes tend to be
low-complexity biomorphs and high-complexity biomorphs tend to have small neutral sets (deviations from the upper bound
can also be understood within AIT [6]). Inset: Neutral set size versus complexity for the analytic model, calculated with
the bound of Eq (4) which is based on an alternate complexity measure that measures the size of the constrained part of the
minimal genome that generates a given biomorph. The resulting relationship is consistent with the trend in the computational
results.
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Np

The neutral set size of a phenotype p is the number of
genotypes that generate p.

fp

The phenotype frequency fp of a phenotype p is the prob-
ability that a randomly selected genotype corresponds to
the selected phenotype p. It is thus a normalized mea-
sure of the neutral set size Np of p.

ρ̃g

The genotype robustness ρ̃g of a genotype g is the proba-
bility that a random mutation on g leaves the phenotype
unchanged.

ρp

The phenotype robustness ρp of a phenotype p is the
mean genotype robustness of all genotypes g that corre-
spond to phenotype p.

φpq

The phenotype mutation probability φpq from phenotype
q to phenotype p is the probability that a random muta-
tion on a random genotype in the neutral set of q leads
to a phenotypic change to phenotype p.

ε̃g

The genotype evolvability ε̃g of a genotype g is the total
number of distinct phenotypes that can be obtained from
genotype g through a single mutation.

εp

The phenotype evolvability εp of a phenotype p is the
total number of distinct phenotypes that can be obtained
from any genotype in the neutral set of p through a single
mutation.

Table I. Definitions of key quantities for GP maps:
Each line describes one quantity with a symbol and the def-
inition. These definitions are commonly used in the litera-
ture [7, 17, 35, 36, 58, 59]. For clarity, we use tildes to dis-
tinguish genotypic quantities from corresponding phenotypic
definitions.

We find that large-neutral-set-size phenotypes have low
complexity, whereas high-complexity phenotypes have
small neutral sets. There are phenotypes, which are sim-
ple and rare, but we do not find phenotypes that are both
complex and frequent. Therefore, the GP map is biased
towards a subset of simple biomorph phenotypes. This
observation of an upper bound as in Eq (1), with many
phenotypes also found below the bound is what Dingle et
al. [5, 6] predicted based on their version of the AIT cod-
ing theorem. The biomorphs GP map, therefore, presents
very similar simplicity bias phenomenology to that found
for molecular GP maps in [3]. This conclusion remains
unchanged when applying a different Lempel-Ziv-based
complexity estimator from [5] to the coarse-grained phe-
notypes (section S4.2 of the Supplementary Information).

In the analytic model, we cannot quantify the visual
appearance of a phenotype. Instead, we approximate the
complexity of a phenotype by measuring the complex-
ity of a minimal genotype that generates the phenotype.
Since not all vectors are used in the final phenotype con-
struction, some are irrelevant and this (unconstrained)
part of the genotype has no direct effect on the pheno-
type. Thus, the full information on the phenotype is
contained within the constrained part of the genotype
(if the biomorphs construction process is known), and

the length of this part of the genotype K̃ can be used
to estimate an upper bound on the description length
and hence the complexity. As we have discussed, phe-

notypes with fewer constrained sites have exponentially
higher neutral set sizes. Therefore, the analytic calcu-
lations (section S1.3 of the Supplementary Information)
give a negative log-linear correlation between complexity
K̃ and neutral set size Np (again with k = 7 for the range
of values per site):

Np ≤ 2k × 29−K̃/3 (4)

Plotting the analytic neutral set sizes against this
estimate of an upper complexity bound leads to the
same qualitative conclusions as the computational
results (inset of Fig 3C): complex phenotypes have small
neutral set sizes, whereas simple phenotypes can have
large neutral set sizes. Qualitatively, the conclusions
also hold when we quantify the complexity by the
number of lines in the biomorph (section S4.3 of the
Supplementary Information), but the shape of the rela-
tionship differs from a simple log-linear curve in this case.

We note that most of the phenotypes Richard Dawkins
discusses in his book [1] (for example the ones shown as
illustrations) are complex phenotypes, which we estimate
to have low neutral set sizes. If all phenotypes of rele-
vance have the same neutral set sizes of (Np ≈ 2), then
there is no bias among these phenotypes. However, in
the more general case, where there are no restrictions on
which phenotypes evolve, the biases have to be taken into
account.

Further GP map structure that shapes phenotypic
variation

Fundamentally, the GP map determines how random
mutations produce novel variation. Many molecular GP
maps have been shown to share a series of structural
features beyond simplicity bias that also shape the spec-
trum of phenotypic variation [7, 35]. This finding begs
the question of whether the biomorph GP map also ex-
hibits these other features.

We will focus on three structural features of GP maps
that affect evolutionary dynamics. We first explore mu-
tational robustness which quantifies the likelihood of neu-
tral mutations that leave the phenotype unchanged. Sec-
ondly, we study how the mutational robustness of a phe-
notype correlates with a measure of evolvability that
counts how many different unique phenotypes are ac-
cessible by point mutations on genotypes within a given
neutral set. Thirdly, we analyze the phenotypic muta-
tion probabilities, which measure how likely a mutation
will be non-neutral and lead to a specific new phenotype.
The definitions of these quantities follow standard prac-
tice [17, 35, 36, 58], and are given in table I.

To help quantify these structural features, we use a
random null model from refs [17, 58] where the neutral
set sizes of each phenotype are kept fixed, but the in-
dividual assignments of the genotypes to phenotypes are
randomized. Comparing to this random null model helps
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clarify where properties arise from the non-trivial struc-
ture in the GP map.

Phenotype robustness is high due to genetic correlations

Mutational robustness can be quantified in several
ways. Firstly, genotype robustness ρ̃g describes what
fraction of mutations is neutral for a given genotype
g [36]. To characterize the robustness of a given pheno-
type p, the phenotype robustness ρp of phenotype p is
defined by averaging the genotype robustness over the
neutral set of all genotypes that map to phenotype p [36].

In the simple null model with a random assignment of
phenotypes to genotypes, one would expect that a mu-
tation on a genotype g with phenotype p would generate
the same phenotype with a probability proportional to
the phenotype frequency fp of p [58]. This null expecta-
tion is plotted by a solid black line in Fig 4B. However, as
can be seen in the same figure, on average we find a com-
pletely different scaling, namely that ρp ∝ log(fp)� fp.
This is seen both in the computational results (blue) and
in the analytic (red) calculations. In the analytic cal-
culations, we can rationalize this as follows: each uncon-
strained site contributes a constant amount of robustness
since it can vary freely without changing the phenotype.
However, it contributes multiplicatively to the neutral
set size since the values at unconstrained sites can be
combined in different ways to generate genotypes within
the neutral set. Taken together, this gives a log-linear
relationship, which is derived in section S1.4 of the SI:

ρp ≈ 1/9× logk(k8 × 8× fp/2) (5)

Note that robustness values in the analytic model are
discrete because neutral set sizes and hence phenotype
frequencies are discrete in Eq (2): the allowed values are
ρp = 0 and ρp = (1 + 2n)/9 with integer n in the range
0 ≤ n ≤ 3.

This log-linear scaling of the robustness and frequency
has been reported in many other GP maps [7], in-
cluding the RNA secondary structure GP map [13,
58, 60], Boolean threshold models for gene regula-
tory networks [30], a multi-level GP map model called
Toylife [61], the polyomino GP map for protein quater-
nary structure [58, 62], the HP model for protein tertiary
structure [58], empirical data on sequences binding tran-
scription factors and RNA binding proteins [63] and the
Fibonacci or stop-codon GP map [37] on which the con-
strained/unconstrained approach is founded. It may hold
for a wider set of input-output maps as well [64], and is
close to the maximum possible robustness for this class
of systems [65]. Because robustness is higher than in the
null model in all of these cases, two genotypes that differ
only by a single mutation are typically orders of magni-
tude more likely to correspond to the same phenotype
than two randomly chosen genotypes. Such deviations

from the (correlation-free) null model have been referred
to as genetic correlations [58]. The high robustness pro-
vided by genetic correlations means that evolving popu-
lations can much more easily explore a neutral network
than in an uncorrelated model [58], implying enhanced
evolvability and navigability of fitness landscapes [66].

Phenotype robustness and evolvability are positively
correlated

We next analyze the link between mutational robust-
ness and non-neutral mutations. It is clear that there
must be a trade-off on the genotypic level [36]. There
are only a fixed number of possible mutations per geno-
type and the more that are neutral, the fewer non-neutral
mutations are possible. This trade-off can be quanti-
fied by defining the genotype evolvability ε̃g as the total
number of distinct phenotypic changes that are possible
through random mutations starting from a given geno-
type [36]. In Fig 4C) we illustrate this predicted trade-
off between genotype robustness ρg and evolvability ε̃g
in the biomorphs system. This pattern is seen both in
the computational results (blue) and in the analytic pre-
dictions (red) where every non-neutral mutation from a
given genotype gives a distinct phenotype, leading to a
simple trade-off derived in section S1.5 of the SI:

ε̃g = 18× (1− ρg) (6)

In his “Robustness and evolvability: a paradox re-
solved” paper, Wagner [36] argued that this picture looks
markedly different if we consider the neutral set mapping
to a phenotype instead of individual genotypes. A phe-
notype with high robustness ρp is likely to have a large
neutral set size. Even if, due to the high robustness,
only a relatively small number of non-neutral mutations
is possible from each of the genotypes in this neutral set,
the higher the number of genotypes, the higher the num-
ber of novel phenotypic changes accessible through mu-
tations [36]. This concept is quantified by the phenotype
evolvability ep of phenotype p (Table I), which counts the
total number of alternative phenotypes accessible from
the entire neutral set. We find that, just as for other GP
maps [36, 62], this argument holds for the biomorphs GP
map: phenotypes with higher phenotype robustness tend
to have higher phenotype evolvability. Again, this is seen
both in the computational results (blue) and the analytic
calculations (red) in Fig 4D.

In the analytic calculation, the positive relationship
between evolvability and robustness on the phenotypic
level has the following origin: genotypic changes at the
unconstrained positions of p are neutral and thus occur
within the neutral set of p. These changes can accumu-
late and contribute to evolvability because they might
become important if a mutation raises the value of g9
and a new phenotype with a higher number of develop-
mental stages emerges, for which these positions might be
important. Thus, different genotypes within the neutral
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Figure 4. Structure in the GP map - the phenotypic effect of mutations: In every panel, the computational results are
shown in blue and the analytic relationships from the constrained-unconstrained model are shown as red lines, with markers
indicating the discrete allowed values. (A) Point mutations of a genotype with initial phenotype q can either leave q intact or
lead to a phenotypic change to a new phenotype p. The likelihood of the first outcome is given (on average) by the phenotype
robustness of q, ρq. The likelihood of the former outcome is given (on average) by the phenotype robustness ρq; the likelihood of
the latter outcome is given by the mutation probability from q to p, denoted as φpq. See Table I for definitions. (B) Phenotype
robustness ρp vs. phenotype frequency fp: the computational results are compared to the prediction of Eq (5). The black
line (ρp = fp) shows the prediction from the uncorrelated null model from refs [17, 58]. The robustness is much higher than
this random null model, i.e. there are genetic correlations. (C) Genotype evolvability ε̃g vs genotype robustness ρ̃g: shows
the expected trade-off between robustness and evolvability at the genotype level. The analytic relationship (in red) is from
Eq (6). (D) Phenotype evolvability εp vs phenotype robustness ρp. The red line is from the prediction of Eq (7). As observed
more widely [36], robust phenotypes have large neutral sets and are connected with many other neutral networks, so there is
a positive correlation. (E) Mutation probability φpq vs. phenotype frequency fp for a fixed initial phenotype q (shown in the
corner). Again, the black line shows the null model from refs [17, 58], which gives φpq = fp, The red line denotes a parametric
equation from the SI. Data points with φpq = 0 are excluded due to the logarithmic scale, even though 99.997% of all biomorph
phenotypes have φpq = 0 for this particular initial phenotype q.

set of p can give rise to different phenotypic changes and
the evolvability of the neutral set can be higher than the
evolvability of an individual genotype in the neutral set.
Thus, the phenotype evolvability in the biomorphs sys-
tem can be higher than the genotype evolvability because
unconstrained sites can become constrained (and thus
phenotypically relevant) after mutations, as has been
shown [40] for other abstract GP map models, includ-
ing an RNA-inspired model. The full calculation in sec-
tion S1.6 of the Supplementary Information gives the fol-
lowing relationship:

εp =


18 if ρp = 0

15 + k if ρp = 1/9

18× (1− ρp)− 1 + k2 if 2/9 ≤ ρp
(7)

While the trend is the same in the computational
results (blue) and the analytic predictions (red), clear
deviations between the two approaches exist in the
phenotype evolvability calculation. This deviation
may be partly due to the nature of the definition of
evolvability: all possible phenotypic transitions p to q
contribute equally to εp, even if they are only possible
from a single genotype in the neutral set of p. Thus,
phenotype evolvability is much more sensitive to small
changes in the GP map than quantities like phenotype
robustness, which are given by the average over a neutral
set.

Note that in both the analytic calculations and the
computational results, the phenotype evolvability is typ-
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ically several orders of magnitude lower than the number
of phenotypes (≈ 107). Thus, while the number of possi-
ble phenotypic changes from the neutral set of an initial
phenotype can be much larger than the number of pos-
sible phenotypic changes from a single genotype, not all
phenotypic changes can be achieved in a single muta-
tion even if we include the entire neutral set of an initial
phenotype. The reasons for this behavior can easily be
understood: for example, if the initial biomorph q con-
tains a line pointing in the positive y-direction, at least
two point mutations are needed to change this to a vec-
tor pointing in the negative y-direction (1 → 0 → −1
in the relevant gene).

We hasten to point out that the word evolvability en-
compasses a much broader set of concepts than the par-
ticular measure we discuss above. Evolvability [67–69] is
often defined as the potential for “viable and heritable
phenotypic variation” [68]. Because many different as-
pects of biology touch on this capacity, evolvability can
be measured in many different ways [70] and thus the
genotype and phenotype evolvability measures used here
are just one of the ways this concept can be unpacked for
biomorphs. Interestingly, although the word appears in
the literature at least as far back as 1931 [71], Richard
Dawkins’ famous paper on the evolution of evolvabil-
ity [33], which builds on the biomorphs model, kicked
off the modern use of the word [72]. In Dawkins’ paper,
he notes that evolvability depends on the developmen-
tal process. He contrasts the classic biomorphs studied
here with variations to the model that have additional
developmental steps, such as segmentation. This per-
spective on evolvability differs from the one we have an-
alyzed here, where we compare the phenotype evolvabil-
ity of biomorph phenotypes that all originated from the
same fixed developmental system. The rich concept of
evolvability has many facets [70].

The mean probability φpq of a non-neutral mutation from
phenotype q to phenotype p is higher for

target phenotypes of high fp

Our phenotype evolvability calculations only tell us
how many different phenotypic changes are possible, but
not how likely they are. This latter concept is quantified
by the phenotypic mutation probability φpq, which mea-
sures how likely a mutation is to produce phenotype p,
given that the phenotype before the mutation is q [17].
It is an average quantity computed over the neutral set
of all genotypes mapping to q. The random null model
predicts that φpq = fp, indicating that the probability
of phenotype q mutating to phenotype p is largely inde-
pendent of the source phenotype q [17, 58]. This simple
prediction has been shown to work reasonably well for
several molecular GP maps if the initial phenotype q has
a large neutral set [58].

Fig 4E plots the mutation probabilities φpq for

an initial phenotype q of intermediate neutral set
size (Np = 3.5 × 103 in the computational results,
Np = 6.9 × 102 in the analytic model). While it is clear
that for accessible phenotypes, φpq indeed increases
with the frequency of the target phenotype p, the
data deviates from the simple relationship φpq = fp.
One deviation is that most phenotypic transitions are
impossible (i.e. φpq = 0 and thus these φpq values are
not shown on this log-log plot): for the initial phenotype
q shown in Fig 4E, we have φpq = 0 for ≈ 99.997% of
all possible biomorph phenotypes p, and this figure is
even higher for other less evolvable choices of q – the
phenotype q in Fig 4E, which is based on a genotype
drawn at random from all genotypes with g9 = 3, has a
comparatively high evolvability of 261 phenotypes in the
computational results (60 in the analytic model) and
thus a higher number of possible phenotypic changes
than most other phenotypes. As noted in our discussion
of phenotype evolvability, the fact that many phenotypic
changes are impossible through single mutations is
a feature of the biomorphs system that may not be
shared across all GP maps. Interestingly, the allowed
phenotypic transitions, i.e. those with non-zero φpq,
are mostly transitions to phenotypes whose phenotypic
frequency is within two orders of magnitude of the
phenotypic frequency of q. In the analytic model, this is
easy to explain: each gene, including g9 can only vary
by ±1 in a single mutation and thus the neutral set
size, which depends on g9 (Eq (2)), can only vary by a
limited amount.
If we consider the possible phenotypic transitions shown
in Fig 4E, we find that transitions to target phenotypes
with high phenotypic frequency tend to be more likely,
i.e. a higher fp tends to be associated with a higher φpq.
There is a linear regime (φpq ∝ fp), but also a regime
at a higher frequency where the relationship plateaus.
This pattern is observed both in the computational
results (blue scatter points in Fig 4E) and the analytic
calculation (red line - this is given by a parametric
equation derived in section S1.7 in the Supplementary
Information). This parametric equation summarizes the
following relationships: high φpq values are predicted
for phenotypic changes to phenotypes with the same
or fewer constrained values, which are known to have
equal or larger phenotypic frequencies than the initial
phenotype q. Low φpq values are predicted for pheno-
typic changes to phenotypes with a higher number of
constrained values. These transitions are rare because
they can only happen on a specific genetic background
because of the additional constrained values. Since
these phenotypic transitions correspond to a higher
number of constrained sites, they have lower phenotypic
frequencies than the initial phenotype q. While the
computational and analytic data show good agreement,
the computational data includes additional transitions
at very high and very low values of fq: the transition
with fq > 10−2 corresponds to the simple ‘line’-shaped
phenotype. This phenotype’s neutral set is highly
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Figure 5. Evolution in a flat fitness landscape. We simulate a scenario where all biomorph phenotypes are equally fit so
that there is no selection, just neutral drift. (A) This plot of phenotypic frequency versus rank highlights three phenotypes
that are chosen for more detailed analysis: one with high frequency in genotype space (yellow), one with medium frequency
(teal), and one with low frequency (purple). (B) The normalized number of times each phenotype occurs in the population
is plotted against its phenotypic frequency (for all phenotypes; the chosen phenotypes are highlighted in color). As might be
expected in the absence of selection, we see an approximate one-to-one correspondence (as indicated by the black line), with
some fluctuations at low values of fp. Zero values are not shown due to the logarithmic scale. (C) We plot the occurrence in
the population of each of the three phenotypes highlighted in (A) once every 100 generations. This representation highlights
the relative frequencies with which the different phenotypes appear in an evolving population of 2000 individuals. The most
frequent phenotype (yellow) appears in the population with an average of about 7 individuals per generation. The intermediate
frequency phenotype (green) appears in the population on average only once every 28 generations, so about 200 times less
frequently than the yellow phenotype. The rarest phenotype (purple) only appears twice in all 105 generations. To take
this into account, we plot the two times they appear separately. Parameters: Population size N = 2000 individuals, with
a mutation rate of µ = 0.1 per genome, evolving for 105 generations, initialized on a random initial genotype - we run the
simulation for 10N = 20000 generations before starting the analysis to minimize artifacts of the initial conditions.

affected by the treatment of overlapping vertical lines
along the y-axis and by rescaling, and therefore shows
large deviations between the two models. Similarly, the
computational data contains additional transitions with
low values of φpq and fq. As we argued when comparing
evolvability predictions, this is because phenotypic
transitions that are only possible from one or a small
number of specific genotypes in the initial neutral set
are particularly sensitive to a change in GP map def-

inition4. These differences between the computational
and the analytic data mean that the bias in the muta-
tion probabilities φpq is higher in the computational data.

4 For example, the simplifying assumptions in the analytic model
mean that each genotype in a given phenotype’s neutral set has
the same value of g9. In the computational data, this is not
fully true: any genotype with a zero for all positions that affect
x-components is a vertical line, regardless of the value of g9 and
this genotypic diversity in the neutral set of the ‘line’ phenotype
may facilitate additional phenotypic changes.
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Overall, our main takeaway is that most phenotypic
transitions are not possible through single mutations, but
out of the possible phenotypic transitions, those to phe-
notypes with high neutral set sizes tend to be more likely.
The second aspect is in agreement with results from a se-
ries of other GP maps [58], even though the exact shape
of the relationship with its two distinct regimes is differ-
ent. Because complex phenotypes have low phenotypic
frequencies, this implies that the most likely phenotypic
changes tend to be towards low-complexity phenotypes
(as confirmed in Fig S12 in the Supplementary Informa-
tion). This agrees with previous research that has argued
that transitions from high-complexity phenotypes to low-
complexity phenotypes are more likely than the reverse,
both for an L-system-based GP map [73] and a GP map
for digital organisms [27]. However, it is important to
note that these arguments only hold for initial pheno-
types with a relatively high neutral set size: if the initial
phenotype is one of the ≈ 9×106 phenotypes with a neu-
tral set size of Np = 2, then there are only 36 possible
distinct mutations (18 per genotype for Np = 2 geno-
types), and since typically at least ten phenotypic tran-
sitions are found5 among these 36 distinct mutations, all
non-zero φpq values are of a similar order of magnitude
and no strong bias among possible phenotypic transitions
is expected.

Phenotype bias and adaptive evolution

Having analyzed what the GP map can tell us about
the phenotypic effect of mutations in general, we next
investigate how this structure in the arrival of variation
affects an evolving population. Modeling evolving popu-
lations requires us to make assumptions about the way
in which fitness depends on the biomorph phenotype and
so we study several scenarios. All data in the following
sections rely on computer simulations that use the com-
putational treatment of the biomorphs GP map.

Scenario 1: Neutral evolution on a flat fitness landscape

We start with the simplest scenario: a population of
size N = 2000 evolves under Wright-Fisher dynamics
without the effect of selection, i.e. all phenotypes are
equally fit and there is only genetic drift. Each individual
genotype in each generation could carry any of the ap-
proximately 107 different phenotypes, so we simplify our
analysis by focusing on three phenotypes with different
neutral set sizes, as highlighted in Fig 5A. We recorded
each time that one of these phenotypes was found in the

5 The median number of transitions is 16 in the computational re-
sults, which coincides with the analytic value for the phenotypes
with Np = 2, which dominate the data due to their high number.

population (Fig 5C). Out of these three phenotypes, the
one with the highest neutral set size appears most fre-
quently in the population, followed by the phenotype
with an intermediate neutral set size. The phenotype
with the lowest neutral set size only appears twice. The
takeaway from this scenario is the intuitive result that, on
average, the rate at which individual phenotypes appear
in a neutrally evolving population is well predicted by
their global phenotypic frequencies fp (Fig 5B), as previ-
ously seen for molecular GP maps [3, 74]. It is not hard
to imagine that these large differences in the rates can
also affect adaptive evolutionary scenarios where fitness
plays a role, as we will see later in this paper.

A slightly more complex version of this scenario is in-
cluded in the Supplementary Information(Fig S15): here
all tree-like biomorph phenotypes are equally fit, but all
biomorphs that are not tree-like are unviable. This sce-
nario approximates a situation, where some phenotypic
features are under extremely strong selection, whereas
others are irrelevant for survival and therefore neutral.
Qualitatively, we observe the same trends: there is phe-
notypic bias over several orders of magnitude among the
viable phenotypes and this bias is reflected in the evolv-
ing population.

Scenario 2: Two peak fitness landscape

Next, following [17, 18], we investigate a more complex
adaptive scenario, a two-peak fitness landscape, where
two phenotypes have different selective advantages over
an initial source phenotype. As illustrated in Fig 6, the
population starts at an initial phenotype p0 and most al-
ternative phenotypes are unviable, with two exceptions,
phenotypes p1 and p2. For simplicity, the population
is chosen such that we are approximately in the strong-
selection weak-mutation regime6, where adaptive muta-
tions are a limiting factor.

In this particular example, phenotype p1 has a fre-
quency f1 = 1.5×10−5, and phenotype p2 has a frequency
f2 = 9.1 × 10−7 ≈ 0.06 f1. However, since the initial
condition is known, the relevant quantities are the prob-
abilities of obtaining p1 and p2 through mutations from
our initial conditions: the whole population is initially
undergoing neutral exploration starting on one particular
genotype g0 in the neutral set of p0 and can therefore drift
through the entire part of the neutral set of p0 that is ac-
cessible from g0 through neutral mutations. This part is
known as a neutral component (NC) of p0 [76]. The phe-
notype mutation probabilities for that NC determine the

6 The criterion for the strong-selection weak-mutation regime is
that the product of mutation rate and population size is small
and the product of the population size and selective advantages
large [75]: here these quantities are 9 × µN = 0.45 (where the
factor of nine accounts for the fact that the mutation rate is
per-site) and N × s ≥ 10.
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Figure 6. Schematic of the two-peaked fitness land-
scape (following a similar example for RNA [17]): (A)
Only three phenotypes have nonzero fitness - the initial phe-
notype p0 (grey) and the two adaptive phenotypes, p1 (blue)
and p2 (red). Phenotype p1 is more frequent and has a higher
mutation probability φp1p0 from p0 than p2 does, but p2 has
higher fitness. A single point mutation can convert p0 into p1
or p2, but not p1 into p2. (B) The same scenario is sketched
as a schematic ‘fitness landscape’ - the population starts with
the p0 phenotype (grey area) and there are two fitness peaks,
corresponding to p1 (blue) and p2 (red). While p1 forms a
broader fitness peak and thus a larger mutational target, p2
forms a higher fitness peak. (C) A schematic representation
of the relevant part of the GP map: each genotype is drawn
as a node in the color of the corresponding phenotype and two
genotypes are connected by an edge if one can be reached from
the other through a single point mutation. This representa-
tion illustrates that there are many different genotypes for
each phenotype and that the population will therefore evolve
neutrally on the neutral component of p0, until moving to ei-
ther p1 or p2. Genotypes are only included in this network if
they belong to the initial neutral component of p0, or if they
are direct mutational neighbors of that neutral component
and map to p1 or p2. The initial neutral component can be
found by starting from the genotype (-2, 0, 2, -2, 0, 0, -2, -2,
3).

rates at which the two adaptive phenotypes are expected
to appear [17]: these are also biased towards p1, with
φp1p0

≈ 9.7 × 10−3 and φp2p0
= 1.9 × 10−4 ≈ 0.02φp1p0

.
The fitness is traditionally expressed as Fp = 1 + sp in
terms of the selection coefficient sp. For the neutral phe-
notype, s0 = 0, and we vary the two other fitnesses,
but we are only interested in the non-trivial case, where
the rarer phenotype has larger fitness, in other words,
s2 > s1 > 0.

In our simulations of the fixation dynamics, both p1
and p2 can evolve from the initial phenotype p0 and both
are fitter than p0.If selection alone was the deciding fac-
tor, we would expect p2 to evolve in every simulation
since it has the highest selective advantage. However,
the more frequent phenotype p1 also has a selective ad-
vantage over the initial phenotype p0, albeit a smaller
one, and so p1 can reach fixation before p2 appears in
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Figure 7. Probability of discovery and fixation of the
fitter and less frequent phenotype p2: (A) Probability
that the rarer phenotype p2 appears in the population before
the first fixation event. As long as the more frequent pheno-
type p1 has a sufficiently high selective advantage s1 over the
initial phenotype, it is likely to appear and fix quickly so that
it becomes unlikely that the rarer phenotype p2 appears even
once before p1 fixes. (B) The probability that the rarer pheno-
type p2 is the first to fix. p2 can only fix once it appears and so
its fixation probability is even lower than the probabilities in
(A). These results for the phenotypic bias are consistent with
the trends expected from mutational bias [18]. Parameters:
population size N = 500, mutation rate µ = 0.0001, 103 rep-
etitions per parameter set; we consider a phenotype to have
fixed if > 70% of the individuals carry that phenotype. The
populations start from randomly chosen initial genotypes g0
that all belong to the NC shown in Fig 6 and then evolve neu-
trally for 10N generations before the three-peak simulations
begin.

the population as potential variation. Since it is not pos-
sible to go from p1 to p2 through a single point mutation,
but only via a two-step process from p1 back to p0 and
then to p2, we focus only on the first fixation event. This
is a good approximation since the population is unlikely
to go back to p0 via drift due to the strong selection,
as shown in the Supplementary Information. In Fig 7
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we analyze how likely it is that (A) the fitter and rarer
phenotype p2 has appeared at least once before the first
fixation event and (B) the first fixation event is a fixation
of p2.

Fig 7A shows a heatmap of the probability that the
rarer phenotype p2 appears at all in the population before
the first fixation event of p1. This probability is low in the
entire range of selective advantages we consider, but it
increases slightly if the high-frequency, lower fitness phe-
notype, p1 has a low selective advantage (i.e. s1 = 0.02).
This effect occurs because if the high-frequency pheno-
type p1 takes longer to go to fixation, this leaves more
time for p2 to appear. Note that the selective advantage
of the low-frequency phenotype p2 does not play a role
here: p2 could be infinitely fit, but when it appears in the
population for the first time is unaffected by its fitness.

It is clear that p2 can only achieve fixation if it appears
in the simulation at some point, but even if it appears,
it could still be lost due to stochasticity. Thus, we now
turn to the probability that p2 reaches fixation (Fig 7B).
This probability is of a similar order of magnitude to
the probability that p2 appears, indicating that p2 is
likely to fix once it appears. However, since the fixation
probability cannot exceed the probability of discovery, it
remains low for the entire range of selective advantages
we consider. Interestingly, the impact of varying s1
and s2 is not as strong here as in the original paper
by Yampolsky and Stoltzfus [18] that first studied such
effects, because their calculations focus on a simpler
case with only three genotypes. For evolution on GP
maps, where there are many genotypes mapping to p0,
the constant-rate assumptions underlying existing work
are merely an approximation to the true dynamics [17].

To sum up, in this particular example, the higher rate
with which p1 is introduced into the population due to
random mutations dominates over the difference in se-
lective advantage, which would favor p2. This does not
mean that selection does not play a role: selection is the
reason why each simulation leads to one adaptive fixa-
tion (p1 or p2) and due to selection the probability of a
p2 fixation is highest if the selective advantage of p2 is
much higher than that of p1.

Scenario 3: Finding Dawkins’ beetle

The previous subsection analyzed how the balance be-
tween selection and phenotype bias affects a single fixa-
tion step. In general, however, phenotypic adaptation is
a multi-step process, and this is one of the key themes of
The Blind Watchmaker [1]. Here we re-visit one exam-
ple which helps highlight the connection between multi-
step paths in genotype space and fitness landscapes. In
the book, Dawkins recounts how he had not recorded
the genotype of an insect-shaped phenotype he had ob-
served [1]. When he tried to find the insect-shaped phe-
notype again by artificial selection, this took a long time,

even though he remembered what phenotypes were vis-
ited on the original evolutionary trajectory to the insect-
shaped phenotype [1]. He explains the difficulty of find-
ing the exact correct phenotype in terms of the short-
est evolutionary paths between two phenotypes. Here
we revisit this discussion. Since Dawkins doesn’t write
down the exact phenotype, we choose to pick one insect
shape, a “beetle”7, and illustrate one of the paths with
the smallest number of mutations in Fig 8A. To stay on
this path, the ‘correct’ one out of 18 possible mutations
(two possible changes for each of the nine genotype posi-
tions if we ignore boundary effects) has to be chosen at
each step, so that the probability of obtaining this partic-
ular 13 step path is 1/1813 ≈ 5× 10−17. Of course, there
are many other paths that lead from the initial to the
final genotype with the mutations arranged in a different
order, so that the real probability of obtaining this phe-
notype by a random walk is closer to its phenotype fre-
quency of 4/(78× 8) ≈ 9× 10−8. Clearly, the probability
of obtaining the final beetle phenotype by random mu-
tations is extremely small [1]. By contrast, as illustrated
by Dawkins’ second infinite monkey example [1], if there
is a fitness function that allows each correct intermediate
step to increase fitness, then the probability of success
can become exponentially larger. Dawkins uses this ex-
ample to argue that selection by many small steps is much
more efficient at finding a fitness maximum than a naive
mutationist picture where the final biomorph shape ap-
pears directly in a population [1]. One weakness of this
example, and one shared schematically by his WEASEL
program, is that it relies on a fitness function that is
uphill for a large number of intermediate phenotypes.

The GP map perspective allows us to study a dif-
ferent kind of minimal path that explicitly includes
neutral mutations, and which may facilitate stepwise
evolutionary adaptation. Neutral mutations enable
genetic drift and cryptic variation [78, 79]. These can
facilitate adaptation because, although each genotype
in a neutral set maps to the same phenotype, different
genotypes will have different sets of accessible alternate
phenotypes in their one-mutation neighborhoods [36].
With enough time, a population can in principle explore
the entire neutral space, and so find all accessible
phenotypes, the number of which is captured by ep,
Wagner’s [36] measure of phenotype evolvability (See
Fig 4 (D))8. In this context then, rather than ask what
the absolute minimal number of mutations is, the more
relevant question may be what minimum number of
phenotypic changes a population has to pass through
in order to evolve from a dot to a beetle. We illustrate
an example of such a path in Fig 8B9. Allowing the

7 Inspired by a biomorph shape in ref [77].
8 Strictly speaking, not all genotypes in a neutral set are connected

by neutral mutations and Wagner’s [36] phenotype evolvability
needs to be computed for each mutationally connected subset,
i.e. each neutral component [76].

9 Note that since phenotype evolvability values depend sensitively
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Figure 8. Reconstructing Dawkins’ search for a rare beetle-shaped phenotype: A) An evolutionary path from a dot
to the final beetle-shaped biomorph that uses the smallest number of mutations from a given initial genotype that maps to a
dot’ phenotype to the final beetle-shape phenotype. B) An evolutionary path from a dot to the final beetle shape with the
smallest number of phenotypic changes (but several neutral mutations may be required between each of the phenotypic changes
sketched in the figure). The neutral set sizes of the phenotypes along this path are shown on the right. A key advantage of this
second scenario is that it increases the probability of a path without any fitness valleys for all intermediate steps (as recently
demonstrated for molecular GP maps in Greenbury et al. [66]).

exploration of neutral networks significantly reduces the
number of phenotypic transitions from a dot to a beetle
when compared to the absolute shortest path shown
in Fig 8A. Importantly, such pathways make it much
easier to imagine how fitness could increase for all steps
since the number of intermediate phenotypes is smaller.
This scenario illustrates how neutral correlations in
the GP map permit neutral exploration, which may
facilitate the emergence of advantageous phenotypic
transitions [36, 66]. In this example, concepts related
to both the second and the third versions of the infinite
monkey theorem defined above interact synergistically.

DISCUSSION

The biomorphs GP map shows many similarities to
molecular GP maps

GP maps quantify exactly how mutations get trans-
lated into a highly anisotropic exploration of the mor-
phospace of phenotypes [3, 9, 80]. A key message of

on the coarse-graining, the exact nature of possible single-step
phenotypic transitions and thus the shortest phenotypic paths
also depend on the coarse-graining. However, our argument holds
as long as phenotypic evolvabilities are higher than genotypic
evolvabilities, since this ensures that exploring neutral spaces
enables a higher number of transitions than are possible from a
single genotype. This condition is met even in the fine-grained
analytic model (see Fig 4).

this paper is that the manner in which the biomorphs
GP map structures the arrival of variation upon random
mutations exhibits many qualitative similarities to what
molecular GP maps do [7, 35]. The main similarities ob-
served are listed below:

1. Biomorphs exhibit a strong phenotype bias: upon
random sampling of genotypes, certain phenotypes
are orders of magnitude more likely to appear than
others. However, for biomorphs, a larger fraction of
the morphospace of all structures have small neu-
tral sets than is typically seen for molecular GP
maps.

2. The particular form of the phenotype bias in
biomorphs is typically towards phenotypes with
short descriptions. Such simplicity bias [3, 5] means
that high-frequency phenotypes have low descrip-
tional complexity, and only low-frequency pheno-
types can have high descriptional complexity.

3. The mutational phenotype robustness ρp scales as
the log of the frequency fp that a phenotype is ob-
tained upon random sampling of genotypes, and so
is much higher than in a random null model with-
out correlations between genotypes.

4. The probability of non-neutral mutations φpq tends
to increase with increasing frequency fp of the tar-
get phenotype p, (if the initial phenotype q has a
large enough neutral set). However, compared to
molecular GP maps [58], biomorphs have an unusu-
ally high number of disallowed mutational links be-
tween phenotypes, so the positive correlation only
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holds for the small fraction of phenotypes that are
linked by point mutations.

5. The mutational robustness ρ̃g of an individual
genotype g is negatively correlated with a measure
of its evolvability ε̃g that counts the number of al-
ternate phenotypes within a one-mutation neigh-
borhood.

6. By contrast, the mutational phenotype robustness
ρp, calculated by averaging ρ̃g over the neutral set
of p, is positively correlated with the phenotype
evolvability εp, which counts the number of differ-
ent phenotypes accessible from the neutral set of
all genotypes mapping to phenotype p.

7. Many of the relationships above can be analyti-
cally derived from a simple model that partitions
the genomes into constrained regions that affect the
phenotype and unconstrained regions that do not.

8. The many orders of magnitude difference in the rate
at which variation arrives in a population can lead
to ‘arrival-of-the-frequent’ scenarios [17, 18] where
a more frequent, but only moderately fit phenotype
will fix in a population because the fitter phenotype
either does not appear at all within the relevant
time scales, or appears with too low a rate to have
a significant probability of sweeping to fixation.

9. Neutral exploration can reduce the number of inter-
mediate phenotypes needed to reach a fitness peak,
increasing the likelihood that there are pathways
that monotonically increase fitness.

The large number of similarities between biomorphs
and molecular GP maps is at first sight surprising since
the models have important qualitative differences. The
molecular models most studied in the literature are typi-
cally based on minimum-free-energy folding (for example
protein lattice models [81] and RNA folding models [82]),
molecular self-assembly (for example models of protein
quaternary structure [62, 83, 84]) or network topologies
of gene regulatory networks (for example [30]). By con-
trast, the biomorphs model’s organization is quite differ-
ent. It imitates biological development through recur-
sive local branching patterns [1]. The many observed
similarities between the manner in which these differ-
ent GP maps structure the arrival of variation suggest
that there may be deeper mathematical principles that
are much more widely shared across GP maps. Indeed,
the simplicity bias in the GP map follows from very
general arguments from AIT, which should hold for a
much wider class of input-output maps, of which GP
maps are a subset [3, 5]. Similarly, analytic models
based on a dual constrained/unconstrained structure of
genotypes, while certainly oversimplified, have been used
to explain universal behavior observed in molecular GP
maps [37, 38, 40]. The fact that this same approach also
captures key properties of the biomorphs may help ex-
plain why these “universal” GP map characteristics are

found for the biomorphs model of biological development
as well.

Can simplicity bias in development be considered as
an ultimate evolutionary cause?

If, as we hypothesize above, the phenotype bias to-
wards simplicity observed in molecular GP maps and
in the biomorphs model holds for more realistic devel-
opmental systems, then this should have implications
for the long-standing debate about the relative explana-
tory power of developmental processes and natural se-
lection [42–46, 48–56]. This debate continues into the
present. For example, in a heavily cited recent paper, two
teams of scientists argued different sides of the question
“Does Evolutionary Theory Need a Rethink?” [45]. The
side in favor of the thesis called for developmental bias
to be given more weight in evolutionary theory (among
other aspects). The other side responded by saying “Lack
of evidence also makes it difficult to evaluate the role that
developmental bias may have in the evolution (or lack of
evolution) of adaptive traits.” [45]. While the paper was
too short to allow extensive deliberation on this point, it
is likely that much of the disagreement is not just about
evidence or the lack of it, but rather about (sometimes
unacknowledged) differences in their approaches to the
interpretation of evidence, influenced by the tangled in-
tellectual history of this debate between internalism and
externalism.

Before moving further, we briefly sketch out some of
the broader philosophical and historical backdrop to this
debate, pointing the reader to Supplementary Text sec-
tion S9 for a longer (albeit still highly compressed) dis-
cussion. The first theme concerns the language of con-
straints (see also Section S.9.1) which has been heavily in-
fluenced by a famous review paper by Maynard-Smith et
al. [42] which distinguished between universal constraints
(such as physical constraints) which act everywhere, and
local constraints which are limited to certain taxa. De-
velopmental constraints were considered to be local, on
the grounds that they don’t hold across taxa. The rise
of evo-devo [54, 55, 85–87] means that the term develop-
mental bias is now typically favored over developmental
constraints, in part to capture how development can both
limit and facilitate certain types of variation [88].

Another longstanding source of confusion in this de-
bate arises from the emphasis by the founders of the mod-
ern synthesis of evolutionary biology on the existence of
a gene pool of standing variation [89]. In such scenarios,
mutations do not supply directionality but only act as
fuel [53]. By contrast, in a regime where both the in-
troduction of a new allele by mutation and its fixation
or loss are explicitly modelled, biases in the introduc-
tion of mutation can substantially affect adaptive out-
comes [17, 18, 75, 90, 91]. Detailed evidence for the effect
of mutational biases – where certain mutations can be as
much as two orders of magnitude more likely than others
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– on adaptive outcomes has recently been quite firmly es-
tablished in the field of molecular evolution [92–98]. See
Section S.9.2. for further background.

In Section S.9.3. we describe Ernst Mayr’s famous dis-
tinction between ultimate “why is it like this” causes
of evolutionary biology and proximate “how something
works” causes of functional biology [41]. Developmen-
tal biases have traditionally been labeled as proximate
causes, in part they are thought to ultimately be sculpted
by natural selection [99, 100]. How one judges this con-
tentious debate depends in part upon one’s views on
contingency [2] (see Section S.9.4.) and on subtle dif-
ferences between philosophical stances on adaptation-
ism [56, 101, 102] (see Section S.9.3.). Here we build on
an approach by Ariew [103] who defines ultimate causes
as statistical population-level phenomena that “answer
questions about the prevalence and maintenance of traits
in a population”. These include natural selection, but
also other evolutionary causes such as genetic drift. We
will add to these evolutionary causes the stipulation that
they are universal so that they are not limited to certain
taxa. If a developmental bias can be shown to be a uni-
versal population-level phenomenon, then it is hard to
see why it should not be classed as an ultimate cause.

Interestingly, in the Blind Watchmaker [1], Dawkins
is happy to concede significant roles to processes such
as neutral mutations or developmental bias. Neverthe-
less, in chapter 11 he writes “Of course, large quantities
of evolutionary change may be non-adaptive, in which
case these alternative theories [neutralism, mutationism]
may well be important in parts of evolution, but only in
the boring parts of evolution . . . ”. In Godfrey-Smith’s
influential three-fold typology of adaptationism [101],
Dawkins is an explanatory adaptationist for whom the
origins of adaptations are the most important questions
in evolutionary biology. On this philosophical stance,
even if anisotropies in the introduction of variation signif-
icantly affect evolutionary outcomes, they remain “bor-
ing” because they are random w.r.t. improvement of the
organism and so don’t explain the adaptations Dawkins
is primarily interested in.

To prefigure what an argument for simplicity bias in
development as an ultimate cause would look like, we will
first explore in some detail how this all plays out for the
RNA secondary structure GP map where the analysis is
simpler and clearer than for larger-scale developmental
systems. We then apply the lessons learned to the more
ambitious question of what it would take for developmen-
tal bias to be classed as an ultimate cause.

Phenotype bias as an ultimate evolutionary cause: the
example of RNA secondary structures

In addition to the difficulties listed above, the debate
on whether developmental bias could be an ultimate
cause is hard to resolve because counterfactuals play a
key role in the structure of this debate [2], and explor-

ing these reliably is hard. The RNA secondary structure
GP map [3, 9, 14], which can be viewed as a stripped-
down developmental model [24, 25], has the advantages
of being tractable enough to allow counterfactuals to be
reliably calculated, and of having abundant and easily
accessible data.

Constraints and RNA secondary structures As dis-
cussed in the Introduction, strong phenotype bias over
many orders of magnitude in the RNA map severely lim-
its the phenotypic secondary structure variation that is
accessible to natural selection, the consequences of which
can be observed in nature [9, 11–14]. On the one hand,
such a strong restriction on the spectrum of potential
variation is not that different in principle from the ef-
fect of morphological constraints. For example, in the
addendum on evolvability in The Blind Watchmaker [1],
Dawkins argues that: “You can’t make an elephant by
mutation if the existing embryology is octopus embryol-
ogy”. However, these types of constraints are local and
may be subject to adaptive change, as Dawkins empha-
sizes in his writings on the evolution of evolvability [1, 33].
By contrast, we classify simplicity bias in RNA as a uni-
versal constraint since it does not depend on the organ-
ism, nor does it depend that much on evolutionary his-
tory. Moreover, to first order, the bias does not hinge
on the detailed chemistry of RNA, but rather arises from
deeper information-theoretic principles that hold more
widely [5].

The effects of phenotype bias in RNA can then be situ-
ated within discussions about the language of constraints
and biases [9]: On the one hand, the phenotype bias
in RNA ranges over many orders of magnitude, which
means that in practice most low-frequency phenotypes
are extremely unlikely to ever appear as potential varia-
tion on reasonable time scales. In Schaper & Louis [17],
this effect was called the “arrival of the frequent”. At
this level of analysis, phenotype bias can be viewed as
a fairly hard constraint, since it produces a “limitation
on phenotypic variability” [42] to an exponentially small
fraction of the full morphospace of all biophysically pos-
sible structures. On the other hand, within the subset of
structures that are frequent enough to appear on evolu-
tionary time scales of interest, there remain differences of
several orders of magnitude in the frequencies. These can
be said to both enhance or suppress (w.r.t. the mean) the
relative rates at which structures that do appear fix in
a population [3, 9, 14, 17]. At this second, finer-grained
level of analysis, the language of bias seems more appro-
priate than the language of constraint. The literature on
mutation bias [18, 90, 91, 97, 98, 104, 105] is much more
similar to this second regime.

a. Contingency, convergence and RNA secondary
structure possibility spaces. The hyper-astronomically
large size RNA sequence space does not necessarily imply
contingency for RNA secondary structures, as one might
naively think [2]. The RNA GP map exhibits “shape
space covering”[82], which means that given a sequence
of length L mapping to a given structure, the vast major-
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ity of common structures are accessible within a relatively
small number (� L) of mutations. (See Sec. S2 for an
analysis of shape-space covering for biomorphs.). More-
over, neutral sets for RNA can have maximal sequence
dissimilarity, meaning that completely different RNA se-
quences might produce the same secondary structure [82].
These properties imply that potentially fruitful RNA sec-
ondary structures could appear from almost any genetic
starting point.

Similarly, the vast size of the possibility space of all
RNA secondary structures does not prevent us from pre-
dicting that if one were to replay the tape of life again
from the time that RNA appeared, only a minuscule frac-
tion of the set of these possibilities would be utilized, and
this convergence would be toward high-frequency struc-
tures [9] with low descriptional complexity. At the same
time, this picture also implies that as more functional
RNA secondary structures are discovered and deposited
in databases, we should expect further rare structures to
be found.

Phenotype bias and selection in RNA secondary struc-
ture evolution. Phenotype bias differs from the muta-
tional biases discussed above and in Section S.9 because
it can vary over many more orders of magnitude [9].
The fact that much smaller mutational biases can be
used to predict adaptive evolutionary outcomes [98] sug-
gests that the much larger phenotype biases will also be
predictive in such evolutionary regimes. Indeed, it was
shown in [14] that the distributions of inferred neutral set
sizes (or equivalently frequencies fp) of secondary struc-
ture databases of functional RNA can be accurately pre-
dicted over more than 15 orders of magnitude by ran-
dom sampling over sequences. Similarly, the inferred
distribution of mutational robustnesses closely followed
predictions based on the same kind of sampling [14].
In [9], the frequencies of coarse-grained secondary struc-
tures of functional RNA sequences from the RNACentral
database [16] were directly compared to the fp’s calcu-
lated by random sampling, again finding close agreement
over five orders of magnitude for the subset of structures
that occur in the database. This close agreement is quite
similar in spirit to the correlations found for mutational
biases [97], although the range of frequencies is higher,
and the agreement is tighter for RNA.

Structures are deposited in a database such as RNA-
Central [16] when they are typically thought to have (pu-
tative) functions. Obtaining desired RNA function from
a randomly picked sequence is highly unlikely (see [22]
for a recent discussion). Instead, complex adaptive his-
tories mark each structure deposited in a database of
functional RNA. The nature of this selection will have
differed from structure to structure. The signatures of
such adaptations are likely to average out in database
analyses which include many different types of RNA from
a variety of organisms. The point is that once these adap-
tations average out, we are not left with an isotropic pool
of structures, as we might expect for evolution without a
causal role of bias, but with a sample that closely follows

the phenotypic bias. Thus, evolutionary outcomes are
shaped both by selection and phenotypic biases10.

Phenotype bias as an ultimate cause for RNA sec-
ondary structures: A good way to tease out the big
question of whether or not phenotype bias in RNA should
be classified as an ultimate or a proximate cause is to
consider the evolution of the hammerhead ribozyme [14],
versions of which have been found across the tree of
life [108] suggesting convergent evolution. In an impor-
tant set of in-vitro SELEX experiments, Salehi-Ashtiani
and Szostak [109] selected on self-cleaving enzymatic ac-
tivity, and repeatedly found the hammerhead ribozyme
structure, finding convergent evolution in the laboratory.
Interestingly, this convergent structure has high pheno-
typic frequency [14] (and low descriptional complexity)
suggesting that it is favored by RNA phenotype bias.
Since nature and the SELEX experiments will only have
explored a tiny fraction of the morphospace of all pos-
sible structures, it is reasonable to expect that, within
the vast unexplored space of counterfactuals, there are
many alternate structures that could also support self-
cleaving function [109], possibly even some with higher
self-cleaving catalytic activities than the hammerhead ri-
bozyme.

We can identify two contrasting examples of ulti-
mate causation in this example [2, 14]. Firstly, the
ultimate reason why a self-cleaving ribozyme repeat-
edly appears is of course natural selection for this func-
tion. Secondly, and more controversially, the ultimate
(population-level [103]) cause for the convergent evolu-
tion of the hammerhead ribozyme structure is the highly
anisotropic manner in which phenotype bias sculpts the
variation upon which natural selection can act. Given
its profound impact on determining which structures we
can observe in nature [9], we would argue that phenotype
bias is acting here as an ultimate cause of the emergence
of the hammerhead ribozyme structure.

As mentioned above, the phenotype bias in RNA acts
both as a constraint, limiting what can realistically ap-
pear, and as a bias, influencing the rates at which pos-
sible structures fix. Both categories of cause would be
ultimate in this case, as they are both universal. By con-
trast, the situation is more subtle with mutational biases,
because detailed mutational biases can vary from organ-
ism to organism, and so are less clearly universal (Some
mutational biases may be universal, but that is a more
subtle question we won’t address here.). If these mu-

10 One might worry that the correlation with phenotypic frequen-
cies is a spandrel, a byproduct of some other adaptive process.
For example, higher phenotypic frequency correlates with in-
creased stability [106] and phenotype robustness. However, the
effect of stability is unlikely to explain the orders of magnitude
range of observed frequencies, see e.g. [12] for a discussion, let
alone the tight correlations observed in [9, 14, 107]. Adaptive
evolution for mutational robustness may also occur, but its ef-
fect is likely much smaller than the effect that phenotype bias
has on mutational robustness [3, 14].
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tational biases can change under selection, which seems
likely, then they may provide an interesting example akin
to Dawkins’ principle of the evolution of evolvability.
They would then not be classified as ultimate causes by
thinkers such as Mayr [99]). By contrast, to first order,
simplicity bias is not based on mechanistic detail that
may more easily be modified. Instead, it is based on
an information-theoretic principle that is much harder
to overcome.

Phenotype bias in development as
an ultimate cause?

Finding clear evidence for phenotype bias more generally,
or simplicity bias more specifically, in developmental sys-
tems will be harder than for molecular systems. Prob-
lems typically studied in evo-devo are far from being as
tractable or having the abundant data that the GP maps
for RNA secondary structures or protein complexes have.
Nevertheless, the many orders of magnitude difference in
the frequencies found for the biomorph system, which
is consistent with what was found for other GP maps
and for input-output maps more generally [5], suggests
the hypothesis that similar strong bias in the genera-
tion of variation may be present for other developmental
systems. Moreover, the fact that this bias plays out so
clearly in adaptive outcomes for functional RNA, and the
fact that mutational biases can also significantly affect
adaptive outcomes for a wide range of organisms, sug-
gests that there may be many evolutionary regimes where
even rather modest biases for developmental systems will
similarly affect adaptive outcomes. If this is true, it has
many interesting evolutionary implications. For exam-
ple, strong developmental bias could be an important ex-
planatory factor for certain kinds of parallelisms and/or
convergences, which are commonly found [110] in the his-
tory of life, just as was argued above for the structure of
the hammerhead ribozyme, and has been found for mu-
tational biases on the sequence level [93]. In summary,
phenotype bias in a developmental system may then as
we argued for RNA, function in some cases more like
a constraint, limiting the arrival of variation to a small
fraction of the space of all theoretically possible pheno-
types the system can produce. And, on the other hand, it
may act more subtly as a bias, both enhancing and sup-
pressing the relative frequencies with which phenotypes
that do appear are fixed.

But even if the hypotheses above about strong develop-
mental bias affecting evolutionary outcomes turn out to
be correct, the question of whether or not developmental
bias is an ultimate cause remains more ambiguous than
it is for RNA. One key conceptual difference is that the
RNA GP map describes a system that appeared so early
in evolution that it is hard to imagine life without it.
By contrast, morphological developmental systems such
as those underlying body plans are relatively much more
recent. One can more easily imagine an evolutionary his-

tory where a particular developmental system does not
occur, or one where it can change over time due to natural
selection, just as may be the case for some mutational bi-
ases. Whether one considers such specific developmental
biases to be candidates for ultimate causes will also de-
pend on one’s stance on adaptationism and contingency,
further complicating this question.

Nevertheless, if our general hypothesis holds, then even
though the details of the bias in each developmental sys-
tem would differ in ways that may be shaped by natural
selection, they would each still exhibit an overall uni-
versal phenotype bias towards simplicity in the variation
they produce. This would make simplicity bias a uni-
versal constraint in the language of Maynard-Smith et
al. [42]. It would exist across taxa and not be a product
of selective pressures. Depending on the exact population
genetic regime, developmental biases may strongly affect
what fixes in a population, in which case a general de-
velopmental bias towards simplicity fulfills our stringent
criteria for being an ultimate cause.

What kind of evidence would one expect to find if sim-
plicity bias is at play? One example where it has been
invoked as a non-adaptive explanation is for the preva-
lence of high symmetry protein complexes [3]. The ba-
sic idea is easy to understand from the algorithmic pic-
ture of evolution. Since less information is needed to
describe bonding patterns that lead to higher symmetry,
such phenotypes are much more likely to appear upon
random mutations [3]. One could easily imagine extend-
ing this preference for symmetry to larger-scale develop-
mental processes (see [111, 112] for a discussion).

More generally, we hypothesize that any biological pro-
cess that can be understood from an algorithmic per-
spective – consider for example branching morphogene-
sis [113] – should exhibit a bias towards simplicity, e.g.
towards processes that can be described by shorter algo-
rithms which are easier to find by random mutations. In
some cases, this bias would be evidenced by the preva-
lence of symmetries, modulated by processes such as sym-
metry breaking [114]. In other cases, including the RNA
secondary structures and branching morphologies, differ-
ent signatures of simplicity need to be employed as evi-
dence for this bias. An interesting line of research that
needs further development is exactly how to characterize
and analyze such derivative signals. For example, sim-
plicity bias also predicts that random mutations should
lead to simpler structures. Indeed, experiments on devel-
opmental pathways for mouse teeth suggest that muta-
tions leading to simpler tooth shapes are more common
than those that lead to increased tooth complexity be-
cause the latter scenario requires a coordinated change
in several pathways [115]. The consequences of such sim-
plicity bias for morphological changes are also discussed
in an exciting recent study on shark teeth [116]. And
finally, phenotypic changes observed in phylogenies of
angiosperm leaf shapes [117] tend to be strongly biased
towards simpler phenotypes.
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Future work for the biomorphs model

In his work on evolvability, Dawkins used the
biomorphs “as a generator of insight in our understand-
ing of real life” [33]. We believe that this tractable toy
model of development has been understudied in the lit-
erature, and show that the biomorphs GP map displays
a remarkably rich structure in the mapping from geno-
types to phenotypes. These discoveries suggest a number
of new directions in which our work on biomorphs could
be extended. First of all, for computational efficiency, we
only used a specific version of the model with nine genes,
the same number that Dawkins used in The Blind Watch-
maker. But the number of genes can easily be expanded,
and several of the rules can be adapted [33]. Such changes
to the genotype structure and the phenotype construc-
tion can allow the model itself to evolve, in other words,
future simulations should not just model evolution on
the GP map, but also evolution of the GP map, as ad-
vocated in ref [35]. With such an approach, one could
study Dawkins’ formulation of the evolution of evolvabil-
ity [33] and link it to some of the other ways that the con-
cept evolvability is used [69]. For example, certain types
of structure in the arrival of variation may facilitate the
evolution of phenotypic novelty [118, 119]. Such changes
to GP maps are likely candidates for being under positive
selection, and biomorphs may form a good model system
to investigate some of these proposals. These investiga-
tions could be supplemented with a second toy model
introduced by Dawkins, the arthromorphs from his book
“Climbing Mount Improbable” [120]. The arthromorphs
produce a range of segmented 2D body plans inspired
by arthropods such as Derocheilocaris [120]. Since the
arthromorphs model produces its shapes from numeric
genotypes much like the biomorphs system does, it may
be that the same tools we develop here could be used to
analyze not just development within one bodyplan, as for
the biomorphs, but also the evolution of bodyplans.

Much of the astounding progress in the field of evo-
devo revolves around understanding key genes and ge-
netic pathways that affect development. These are highly
conserved and are often given evocative names [54, 55,
85, 87]. By contrast to the RNA model, where the ex-
act identity of the mutations is clear, in the biomorphs
model, the mutations act on parameters and do not have
as clear a biological identification. This more coarse-
grained approach presents a challenge for modeling de-
velopmental systems [78]. Nevertheless, schematic mod-
els such as the biomorphs model have a long track record
of success in evo-devo. Perhaps the most famous are re-
cursive growth models that have successfully been used
to study developmental bias in plants [121]. Interest-
ingly, gene-regulatory networks may also generically ex-
hibit simplicity bias [30] and can display arrival-of-the-
frequent like phenomena [122, 123]. Nevertheless, further
work is needed to connect the results of schematic models
to the underlying gene-regulatory networks.

Another direction for future research would be to look

at the likelihood of phenotypic transitions (φpq) in more
detail. We found that transitions to high-neutral set size
phenotypes tend to be among the most likely transitions,
but also that many transitions are not possible in a sin-
gle mutation so that φpq = 0. Future work could investi-
gate whether these impossible phenotypic changes corre-
late with larger visual changes than possible phenotypic
changes do. Recent arguments from algorithmic informa-
tion theory [124] predict that phenotypes with smaller

conditional complexity K̃(p|q) (so phenotypes that are
more similar to one another) are more likely to be con-
nected by mutations. It is reasonable to expect that a
mutation-induced change between more similar pheno-
types will result in smaller fitness differences, lowering
the probability of deleterious mutations, and increasing
the likelihood of finding pathways with small incremen-
tal changes. Such correlations between the likelihood of
phenotypic changes and their fitness are essentially what
Dawkins exploited in the artificial selection experiments
in The Blind Watchmaker [1]. By making incremental
changes, he was able to evolve rare high-complexity struc-
tures such as his insect-shaped phenotypes. It would be
interesting to study in more quantitative detail the inter-
play of random mutations and these phenotypic correla-
tions on incremental adaptive evolution for biomorphs.
This research program would entail combining the power
of natural selection, demonstrated by Dawkins’ 2nd infi-
nite monkey theorem, with an algorithmic account of how
structured variation arises, illustrated by the 3rd mon-
key theorem. Such an interplay can help illustrate that
phenomena such as developmental bias and natural se-
lection are not in opposition, but should rather be seen
as dual causes in a richer explanatory landscape. We be-
lieve that taking both creative forces into account should
be far from “boring”. Instead, their interaction opens up
exciting new avenues for understanding how the remark-
able power of evolution generates “endless forms most
beautiful” [23].
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S1 Analytic constrained-unconstrained model

In the biomorphs model [1, 2], each integer in the genotype either affects the vectors from which the figure is
built or the number of developmental stages after which the developmental process terminates, as illustrated
in Fig 2 in the main text. The assumption we make when modelling the GP map analytically is that a
mutation changes the phenotype if and only if it either affects a vector that is used in the final figure or if it
changes the number of developmental stages. As discussed in the main text, this is accurate in an extremely
detailed representation of the biomorphs, where the biomorphs are drawn with a fixed length scale on a very
large high-resolution screen, lines that are generated multiple times in the developmental process are drawn
as thicker lines and length-zero lines are somehow represented in the figure, for example as a dot. Otherwise,
our assumption is simply a well-motivated approximation that we will use in the following to determine
analytically whether two arbitrary genotypes share the same phenotype.

With this ansatz, we can build an analytic model similar to previous analytic GP map models, which
rely on a division of sequences into constrained and unconstrained parts (for example in [3–5]): for a given
phenotype, there are some positions in the genotype, where any mutation leads to a phenotypic change
(constrained positions). Other positions can mutate without changing the phenotype (fully unconstrained
positions). These definitions allow us to investigate the GP map analytically.

In our analytic treatment of the biomorphs GP map, we have the following division into constrained
and unconstrained parts: g9 is always constrained since mutations in the value of g9 change the number of
developmental stages and thus always lead to a phenotypic change. Since g9 is constrained for all phenotypes,
all genotypes in a given neutral set have the same value of g9. The remaining eight genes, g1 - g8, which
define the vectors in the biomorphs construction process, are constrained only for some phenotypes: whether
the vector(s) encoded by a certain genotype position gi appear in the final figure, depends on the value of g9.
If the vector(s) appear in the figure, any mutation to gi changes the phenotype, and gi is fully constrained.
If the vector(s) do not appear in the figure, mutations to gi have no effect on the phenotype in the analytic
model and gi is fully unconstrained. Thus, we can deduce the number of constrained positions nu by studying
Fig 2 in the main text and counting, how many genotype positions only appear in vectors that are not used
in the final figure. This only depends on the number of developmental stages and thus on the value of g9 in
the neutral set of the given phenotype:

nu(g9) =

{
9− 2× g9 if 1 ≤ g9 ≤ 4

0 if 5 ≤ g9
(1)

Thus, g9 sets the number of unconstrained positions in a genotype and plays a similar role to the stop codon
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in existing analytic constrained-unconstrained models (for example refs [3, 5]).

S1.1 Neutral set sizes

The neutral set size can be computed following ref [4] if we know the number of unconstrained positions: in
the neutral set of a given phenotype, each constrained genotype position is the same for all genotypes and
each unconstrained position can take on any value. In our case, the values in the ‘vector’ part of the genotype
are restricted to integers between −3 and 3, so unconstrained positions can take one of k = 7 values. Thus,
there are knu(g9) possible sequences for the unconstrained part of the genotype.
Hence, there are knu(g9) different genotypes that give the same phenotype, based on the constrained-
unconstrained calculations. In addition, the biomorphs system has an axial symmetry that applies even
to the constrained parts of the genotype1: flipping all x-coordinates in the figure does not change the phe-
notype. We approximate this by including a factor of two in our neutral set size estimates. This is only an
approximation since the factor of two should not be applied if a genotype had zeros at all x-coordinates, but
it gives the following simple expression for the neutral set size Np(g9):

Np(g9) ≈ 2knu(g9) ≈

{
2k9−2×g9 if 1 ≤ g9 ≤ 4

2 if 5 ≤ g9
(2)

S1.2 Neutral set sizes and rank

For our plot in the main text, we also need to compute the rank, i.e. the number of phenotypes with greater
or equal neutral set size. We can deduce the rank as follows: since neutral set size decreases monotonically
with g9 (eq 2), we can express the rank as a sum over g9. Since there are k8 different genotypes for each
fixed value of g9 and Np(g9) genotypes per phenotype, there should be k8/Np(g9) different phenotypes for a
fixed value of g9. With this, we can simply sum over all values of g9 with greater or equal neutral set size
to compute the rank. Because the neutral set size is the same for all 5 ≤ g9, we need to handle this case
separately:

r(g9) =

{∑g9
h=1 k

8/Np(h) if 1 ≤ g9 ≤ 4∑4
h=1 k

8/Np(h) + (b− 4)× k8/Np(5) if 5 ≤ g9
(3)

Here, b is the number of different values g9 can take (we assume that one is the lowest allowed value for g9):
in our case, g9 can take any value from 1 to 8, so we have b = 8 and b− 4 = 4.
We can simplify the rank calculation in eq 3 by noting that the terms with the smallest neutral set sizes
dominate the sums and putting in the expressions for Np from eq 2. This means that we can approximate
the full expression as:

r(Np) ≈

{
k8/Np if Np > 2
(b−4)

2 × k8 if Np = 2
(4)

1In the context of previous models based on constrained/unconstrained approaches, this is equivalent to having multiple
neutral components (NCs) per neutral set, for example in ref [6]: in that case, the constrained-unconstrained calculations give
the size of a single connected NC, but the final result has to be multiplied by the total number of NCs to obtain the neutral set
size.
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Thus, for a range of neutral set sizes, the rank is proportional to N−1
p , and conversely, the frequencies

are proportional to 1/r(Np) and so the distribution follows Zipf’s law. This relationship is reminiscent of the
power laws found in other GP maps, such as the Fibonacci model [3], for which the constrained/unconstrained
approach was first developed. However, note that while eq 3 is exact for the analytic model, the reductions of
the sums to their largest terms, which gave eq 4, are only an approximation that will lead to underestimates
of the true sums, and thus the true ranks.

S1.3 Complexity estimates

In our analytic calculations, we do not draw the biomorphs figures in 2D and so it is not possible to
estimate their complexities from the drawn images. However, it is possible to derive an upper bound on
the complexity of a biomorph phenotype without drawing the corresponding figure as follows: one way of
describing a biomorph phenotype is by recording one corresponding genotype as well as the instructions on
how to generate the figure from the genotype. As in previous applications of AIT arguments to GP maps [7],
we will ignore the second part because this is a constant term that is the same for all phenotypes. The
genotypes, however, are different for different phenotypes: since only the constrained genotype positions are
required to fully define the phenotype, the length of the essential part of the genotype varies from phenotype
to phenotype. The length of this essential part is proportional to the number of constrained positions per
genotype. This is one upper bound on the complexity since the complexity is defined as the shortest possible
description length and the genotype is one way of describing the phenotype. Thus, we have an upper bound
on complexity K̃ as:

K̃ ≤ a× (9− nu(g9)) (5)

where a is the constant of proportionality that is set by the description length per encoded phenotype
position. In our analysis, sites g1 to g8 can take one of seven discrete values and g9 can take one of eight
discrete values - thus any genotype position can be encoded in a = log2 8 = 3 bits. Using eq 2 to express nu
in terms of neutral set sizes then gives a log-linear upper bound:

K̃ ≤ 3× (9− log2(Np/2)/ log2(k)) (6)

Rearranging for Np gives:
Np ≤ 2k × 29−K̃/3 (7)

S1.4 Genotype and phenotype robustness

In order to find the robustness of a genotype ρg, we need to compute the fraction of mutations that leave
its phenotype unchanged. By definition, all mutations at unconstrained sites leave the phenotype intact,
whereas all mutations at constrained sites change the phenotype. Thus, we only need to know the number
of constrained sites and the number of possible mutations at each site. The number of possible mutations
at each site is two (changing the value at the site by +1 or -1) if we neglect the fact that in our model, the
values are confined to fixed ranges (for example −3 is the lowest value g1 can take and cannot be decreased
further). With this assumption, we have:

ρg ≈ 2/18× nu(g9) (8)
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This only depends on g9 and all genotypes in the neutral set of a phenotype share a single value of g9, all
genotypes in a neutral set have the same robustness. Thus, the average robustness of a phenotype is simply:

ρp ≈ 1/9× nu(g9) (9)

So far, we have written phenotypic robustness ρp as a function of g9. We can rewrite this as a function of
phenotypic frequency using eq 2 and relying on the fact that the phenotypic frequency is simply the neutral
set size normalized by the total number of genotypes, which is bk8:

ρp ≈ 1/9× logk(Np/2) = 1/9× logk(k
8 × b× fp/2) (10)

S1.5 Genotype evolvability

If we start with a given initial genotype, each distinct mutation in a constrained site changes the phenotype
in a distinct way and so there are ε̃g ≈ 2×(9−nu(g9)) distinct phenotypic changes (again assuming there are
always exactly two mutations at each site). Using Eq 9, we have the following relationship between genotype
robustness and evolvability:

ε̃g ≈ 18× (1− ρg) (11)

S1.6 Phenotype evolvability

Calculating the phenotype evolvability is a little more complex: for this, we need to compute how many
distinct phenotypic changes are possible from the entire neutral set of the initial phenotype p, a task similar
to calculations in ref [5]. This can be higher than the evolvability of an individual genotype if different
phenotypic changes are possible for different genotypes in the neutral set of p. In our biomorphs model, this
is the case for mutations that raise g9 by +1: since such a mutation adds one recursion in the construction
process, the mutation can cause additional vectors to appear in the figure. This means that there can be
sites, which were unconstrained before the mutation, but play a determining role for the phenotype after
the mutation. Thus, a single mutation - raising g9 by +1 - can generate several distinct phenotypic changes
when applied to different genotypes in the neutral set of p.

The number of distinct phenotypic changes that can be achieved from a given initial phenotype by raising
g9 by +1 can thus be computed by identifying the number of sites that switch from being unconstrained
to constrained, (9 − nu(g9 + 1)) − (9 − nu(g9)), and the number of values each of these sites could take,
k = 7. Thus, we have knu(g9)−nu(g9+1) distinct phenotypic changes that can be achieved from a given initial
phenotype by raising g9 by +1.

All other non-neutral mutations - lowering g9 or changing a constrained ‘vector component’ site - have
the same phenotypic effect regardless of which genotype in the neutral set of p they are applied to. The
number of such non-neutral mutations is 2× (9−nu(g9))−1. Thus, we can add both contributions to obtain
an expression for the phenotypic evolvability of p:

εp ≈ 2× (9− nu(g9))− 1 + knu(g9)−nu(g9+1) (12)

The first term of this expression scales like the genotype evolvability and is anti-correlated with robustness.
It is therefore the last term that gives us a positive correlation between robustness and evolvability on the
phenotypic level. As postulated in previous theoretical work [5], this term is due to mutations that change
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the sequence constraints. This role corresponds to mutations in the ‘stop codon’ [5], and thus to mutations
in g9 in the biomorphs model.

So far, eq 12 is only a parametric equation. However, we can put in values of 1 ≤ g9 ≤ 8 and use
equations 1 & 9 to get the following cases, depending on the value that nu(g9)− nu(g9 + 1) can take:

εp ≈


18 if ρp = 0

15 + k if ρp = 1/9

18× (1− ρp)− 1 + k2 if 2/9 ≤ ρp
(13)

S1.7 Mutation probabilities

Mutation probabilities φpq quantify the likelihood that a new phenotype p is generated by a random mutation
applied to a random genotype in the neutral set of an initial phenotype q [8]. Both mutation probabilities
and evolvability values capture phenotypic changes and thus our calculations of mutation probabilities φpq
will use the same arguments as in the previous paragraphs: Most mutations bring about the same phenotypic
change for all genotypes in the neutral set. Phenotypic changes produced by such mutations are generated by
one in every eighteen mutations since there are eighteen mutations for each genotype and only one mutation
gives the specific phenotypic change. The one exception is again a mutation that raises the value of g9: since
there are knu(g9)−nu(g9+1) different phenotypic changes produced by this type of mutation in a given initial
neutral set, each of these occurs with φpq ≈ 1/(18 × knu(g9)−nu(g9+1)). To sum up, the possible phenotypic
changes have the following likelihood:

• Decreasing g9 by one: this gives a new phenotype p with φpq ≈ 1/18. The neutral set size of p is given
by Np(g9 − 1).

• Increasing g9 by one: this gives a new phenotype p with φpq ≈ 1/(18× knu(g9)−nu(g9+1)). The neutral
set size of p is given by Np(g9 + 1).

• Mutating any other non-neutral site: this gives a new phenotype p with φpq ≈ 1/18. The neutral set
size of p is given by Np(g9).

These three combinations of φpq and neutral set size give the analytic prediction plotted in the main
text (where the initial phenotype has g9 = 3). It is important to note that not all phenotypic changes are
possible: even if q and p share the same value of g9, there is no way of mutating from q to p if one of the
constrained sites differs by ≥ 2 since constrained sites are constant in an entire neutral set by definition
and can only change by ±1 in a single non-neutral mutation. Thus, the analytic model predicts that most
phenotypic changes cannot be achieved in a single mutation (i.e. φpq = 0).

Thus, frequent phenotypic changes occur with φpq ≈ 1/18 and correspond to changes in the vector part
of the genotype or to changes in g9 that lower the number of developmental stages, i.e. broadly examples
of heterometry or a specific type of heterochrony if we follow the classification of developmental changes in
ref [9] (depending on how we assume that the developmental stages in the biomorphs system are controlled
by gene-regulatory events). Rarer phenotypic changes occur with φpq ≈ 1/(18× knu(g9)−nu(g9+1)) and corre-
spond to changes in g9 that increase the number of developmental stages, i.e. to a specific type of heterochrony.
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S2 Shape space covering property

Figure S1: Test of the shape space covering concept: For ten randomly selected initial genotypes, all
genotypes within a mutational distance of d are enumerated and their phenotypes recorded. We evaluate, what
fraction of high-frequency phenotypes are found within this set for a given value of d (blue). For reference, we
also show, what fraction of all genotypes are contained within this set (orange). The plot shows the mean and
standard deviation of the values for the ten different initial genotypes. Note that the fraction of all genotypes
that are contained within a distance d depends on the initial genotype due to our definition of the biomorphs’
genotype space: if the initial value at a given site is −3, then it can take up to six mutations to reach every
value in the valid range [−3, 3], whereas this would only take up to three mutations if the initial value was 0.

In the main text, we performed many analyses that have been applied to a range of molecular GP maps.
For completeness, we include one further aspect here, the concept of ‘shape space covering’: this concept
postulates that when we start with a given initial genotype and consider all genotypes within a mutational
distance of at most d from that genotype, then most high-frequency phenotypes exist among this set of
genotypes, even when the value of d is small [10]. Other authors use a slightly different definition of ‘shape
space covering’ that is not limited to high-frequency phenotypes, but includes all phenotypes [11]. However,
here we work with the original definition.

Here, we test the hypothesis of ‘shape space covering’ by following the methods in ref [10]: we start with
a randomly selected genotype and evaluate the fraction of phenotypes found within at most d mutations from
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that genotype. This analysis is repeated for several initial genotypes and the results are shown in Fig S1:
we find that the number of high-frequency phenotypes covered within d mutational steps increases rapidly
with d and that about 50% of these frequent phenotypes are found after around d ≈ 15 mutations, even
though the maximum distance between two genotypes is 55 if each integer value had to change from the
lowest permitted value (−3 for [g1, ..., g8] and 1 for g9) to the highest permitted value (3 for [g1, ..., g8] and
8 for g9). In this analysis, we have followed the definition by Grüner et al. [10] and considered a phenotype
to be among the high-frequency phenotypes if its phenotype frequency is higher than the average phenotype
frequency of all phenotypes.

Two reasons are given in the literature for why the ‘shape space covering’ property is found in many GP
maps: first, the set of genotypes within a mutational distance of at most d grows rapidly with mutational
distance d due to the many ways in which d mutations can be combined along the genotype (i.e. because the
mutational space is high-dimensional) [12]. Secondly, high-frequency phenotypes are often so frequent that
they are likely to be found among even a small set of random genotypes [13]. We can investigate the first
aspect by recording the fraction of all valid biomorph genotypes that are found within d mutations of an
initial genotype (orange line in Fig S1). We find that this fraction increases quickly in only a few mutational
steps, as expected. However, we also find that for a given d, the fraction of high-frequency phenotypes
within d is even higher than the fraction of all genotypes. Therefore, the second argument also applies:
high-frequency phenotypes are likely to be found in a relatively small set of genotypes, simply because there
are many genotypes mapping to each of these phenotypes.

S3 Robustness of GP map properties to changes in the phenotype defi-
nition

In the methods section of the main text, we describe, how we convert each 2D biomorphs figure into a
discrete phenotype for our computational analysis. This process relies on two parameters: the grid size and
the threshold above which a pixel is set to one. In our analysis, we used a 30× 30 grid and set a pixel to one
if the total length of all unique line segments within that pixel equaled at least ≥ 20% of the width/length
of the pixel. In this section, we vary these two parameters and repeat key aspects of the GP map analysis,
in order to test how robust our results are to the details of the phenotype definition.

S3.1 Grid size

GP map data for different values of the grid size are shown in Figs S2-S3: a lower resolution of 20 × 20 is
used in Fig S2 and a higher resolution of 40 × 40 is used in Fig S3. We find that the qualitative results
of the analysis are unchanged: we still find phenotypic bias over several orders of magnitude, this bias is
towards a subset of the simple phenotypes, phenotype robustness is correlated with the logarithm of the
neutral set size, mutation probabilities (if non-zero) tend to be higher for higher-frequency phenotypes and
the relationship between robustness and evolvability is negative on a genotypic level, but (weakly) positive on
a phenotypic level. All these results continue to be in agreement with the simple analytic model, except the
observed simplicity bias, which cannot be directly compared to the analytic model, but is instead consistent
with the log-linear upper bound predicted by Dingle et al. [7].
While the qualitative trends and results are all robust to different parameter choices, the quantitative data
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does show differences: for example phenotypic evolvability values tend to be higher when using a more
coarse-grained treatment on a 20x20 grid than when choosing a more fine-grained treatment on a 40x40 grid
(Fig S2F compared to Fig S3F). This observation can be explained as follows: in a more coarse-grained
treatment, more sequences belong to a given neutral set and thus neutral set sizes are higher. Such changes
can have a big effect on evolvability since a single transition from p to a new phenotype q from a single
phenotype in the neutral set of p is sufficient to raise the evolvability by one for the entire neutral set.

S3.2 Discretization

Similarly, the analysis was repeated for different values of the discretization threshold: this threshold t
determines whether a pixel, which contains a number of line segments with a total length of l, is set to zero
or one: it is set to one if l ≥ t and zero otherwise. Here, we repeat the GP map analysis with values of 10%
of the pixel size (Fig S4) and 50% of the pixel size (Fig S5). Again, we find that the qualitative GP map
characteristics, as well as the agreement with the analytic model and the predictions from [7], are unaffected.

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542053


Figure S2: GP map analysis with a different parameter choice in the coarse-grained phenotype
definition: Here, a 20 × 20 grid is used (instead of 30 × 30). The analysis shows the GP map data (blue)
as well as the predictions from the analytic model (red) for the following quantities: (A) Neutral set
size vs frequency rank. (B) Neutral set size vs estimated complexity. The black line indicates
an approximate log-lin upper bound to guide the eye, as predicted in [7]. (C) Phenotype robustness vs
phenotype frequency fq. The black line (ρq = fq) shows what we would expect in the null model from refs [8,
14]. (D) Phenotype mutation probability φpq vs. phenotype frequency fp for one specific initial
phenotype q. The black line (φpq = fp) shows what we would expect in the null model from refs [8, 14]. Data
points with φpq = 0 are excluded on this log-scale. (E) Genotype evolvability vs genotype robustness.
(F) Phenotype evolvability vs phenotype robustness. Only the computational data depends on the grid
size; the analytic data is included just for reference.
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Figure S3: GP map analysis with a different parameter choice in the coarse-grained phenotype
definition: same as Fig S2, but here a 40× 40 grid is used.
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Figure S4: GP map analysis with a different parameter choice in the coarse-grained phenotype
definition: same as Fig S2, but here the threshold is different from the one in the main text: 10% instead
of 20%. The grid size, 30× 30, is the same as in the main text.

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542053doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542053


Figure S5: GP map analysis with a different parameter choice in the coarse-grained phenotype
definition: same as Fig S2, but here the threshold is different from the one in the main text: 50% instead
of 20%. The grid size, 30× 30, is the same as in the main text.
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S3.3 Analytic model results for different range of allowed genotypes

Figure S6: Predictions from the simplified analytic model for a larger range of permitted values
at each genotype position: here, a larger range of values is permitted at each position of the genotypes
than in the main text: nine values for each of the ‘vector genes’ (−4 ≤ gi ≤ 4 for i ∈ [1, .., 8]) and nine
values for the ninth gene (1 ≤ g9 ≤ 9). With these parameters, there are 99 ≈ 4×108 genotypes and so a full
computational analysis is no longer feasible. However, approximate predictions from the analytic model can
be made and these are shown in this figure. The plots show: A) Neutral set size vs. frequency rank (Eq 4).
B) Phenotype robustness vs. phenotype frequency (Eq 10). C) Genotype evolvability vs. genotype robustness
(Eq 11). D) Phenotype evolvability vs. phenotype robustness (Eq 13).

With our analytic model, we can allow an arbitrary range of values in the genotypes, without computational
difficulties. Here we consider a GP map, where the genotypes can take on a wider range of values: nine values
for each of the ‘vector genes’ (−4 ≤ gi ≤ 4 for i ∈ [1, .., 8]) and nine values for the ninth gene (1 ≤ g9 ≤ 9).
The data in Fig S6 indicate that permitting a wider range of integers in the genotype would not affect our
qualitative results.
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S4 Additional data on phenotype complexities

S4.1 Examples of phenotypes and their estimated complexities

In order to visualize the data in Fig 3C of the main text, we focus on phenotypes with different combinations
of complexity values and neutral set sizes: Fig S7 shows examples of simple phenotypes with low neutral
set sizes, simple phenotypes with high neutral set sizes and complex phenotypes with low neutral set sizes
(complex phenotypes with high neutral set sizes do not exist since we have observed simplicity bias in
this GP map). While the analytic model cannot be compared directly to this data, which is based on
the computational phenotype treatment, we can still use insights from the analytic model to guide our
interpretation: we find that, as we might expect from the analytic model, phenotypes with few lines (and
hence low g9 and high neutral set sizes) are simple. Phenotypes with many lines (and hence high g9 and
low neutral set sizes) can have high complexity, but they can also have low complexity in the coarse-grained
computational model, for example, if each vector is used exactly once or if some vectors overlap.

S4.2 Alternative method of estimating phenotypic complexity

Since Kolmogorov complexity cannot be measured exactly, just estimated, we repeated the analysis in the
main text for a different method of estimating complexity: we use a compression-based method, the Lempel-
Ziv approach [15], relying on the implementation from ref [7]. This implementation takes a binary string
as an input, but our phenotypes are 2D binary grids. Therefore, we concatenated the rows of our grid
before passing it to the complexity estimator. Since Dingle et al. [7] argue that the complexity of a string
is best estimated as the mean of the estimated complexity of the string and the estimated complexity of its
reverse, we performed an analogous calculation on our 2D array: we took the transpose of the binary grid
and included it in the estimate. This means that we did not only take a mean of the estimated complexity
of the string and its reverse, but also the corresponding concatenated string of the transposed array and its
reverse.
The results from this compression-based complexity estimator are shown in Fig S8: we still find that there
are no complex phenotypes with high neutral set sizes. As before, the data approximately falls below a
log-linear line, derived theoretically in ref [7].

S4.3 Alternative method of estimating phenotypic complexity in the analytic model

In the analytic model, we have a clear criterion for when two genotypes fall into the same neutral sets,
formulated in terms of constrained and unconstrained sites, but we do not have a visual description of each
corresponding phenotype. Thus, we estimated phenotype complexities using the information that needs to be
encoded in the genotype (section S1.3). However, there is one way of approximating the visual complexity
of each phenotype: if we simply assume that each line in a phenotype drawing takes the same amount
of information to encode, then the number of lines in the biomorphs figure is a good proxy for the total
description length, i.e. the complexity. This is only an approximation since a set of parallel lines can
be encoded more efficiently than a set of arbitrary lines (in the same way that repeating strings can be
compressed, but arbitrary strings cannot). However, if we use the number of lines nl that are drawn in the
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biomorphs image, whether they are overlapping or not, as a first approximation, we get:

nl = 2g9 − 1 (14)

Since we also have an expression for the neutral set size as a function of g9 (eq 2), we can use this parametric
relationship to obtain the data in Fig S9. We find that the qualitative trend is the same: more complex
phenotypes with a higher number of lines tend to have lower neutral set sizes. However, this relationship
no longer follows the log-linear relationship predicted in ref [7]. This is because the number of lines in the
biomorphs figure can exceed the number of distinct vectors (which is eight). Then the same vectors appear
with different scaling factors multiple times in the figure and so the number of lines increases more rapidly
than the amount of genotypic information needed to encode them.

S4.4 Distribution of phenotypic complexities for arbitrary genotypes

In the main text, we found that a phenotype with a large neutral set is likely to be simple. Thus, a given
simple phenotype is more likely to have a high phenotype frequency and appear in a small random sample of
genotypes than a given complex phenotype. However, there may be many different simple phenotypes and
many different complex phenotypes, so it is not clear, how many simple phenotypes we expect to find overall
in a random sample of genotypes. Arguments in the SI of ref [17] imply that while the neutral set size of
an individual complex phenotype is small, the number of distinct complex phenotypes is much larger than
the number of distinct simple phenotypes, and so overall, the likelihood of drawing any complex phenotype
from a random sample of genotypes is approximately equal to the likelihood of drawing any simple phenotype.

Here we test both parts of this argument for the biomorphs GP map, using our computational results.
First, we consider the number of simple and complex phenotypes (Fig S10): we find that there is only a small
number of simple phenotypes, as expected from the information-theoretic arguments in ref [17] . However, the
number of very complex phenotypes is also limited. This deviation from the information-theoretic arguments
in ref [17] is likely due to the constraints of the biomorphs system, which only permits certain geometric
forms (for example no phenotype can have two disconnected parts and this fact alone severely restricts the
number of possible 2D drawings). Secondly, we calculate the fraction of genotypes with simple or complex
phenotypes (Fig S11). We find that there is a range of complexity values, for which the probability of finding
a phenotype with that complexity is approximately constant, in agreement with the information-theoretic
arguments in ref [17]. However, at high complexities, we see a deviation from the information-theoretic
expectation, which is consistent with our results from Fig S10.

So far, complexity distributions like this have not been discussed in much detail (exceptions are in the
SI of ref [17], and for one matrix-rewriting grammar GP map in ref [18] and digital logic gates in ref [19])
and so future work should investigate these distributions and their implications more thoroughly, both for
the biomorphs and for other GP maps.
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2 genotypes
complexity = 2×103

2 genotypes
complexity = 2×103

4 genotypes
complexity = 2×103

2 genotypes
complexity = 2×103

8×105 genotypes
complexity = 3×101

6×106 genotypes
complexity = 1×102

2 genotypes
complexity = 7×103

2 genotypes
complexity = 7×103

2 genotypes
complexity = 8×103

2 genotypes
complexity = 7×103

Figure S7: Neutral set sizes and complexity estimates for a few example phenotypes: the figures
show examples of rare and simple phenotypes (top row), of frequent and simple phenotypes (middle row),
and of rare and complex phenotypes (third row). Note that the labels ‘rare’/‘frequent’ and ‘complex’/‘simple’
are discrete categories that represent a range of values - not all of the ‘simple’ phenotypes have the same
complexity in this figure.
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Figure S8: Neutral set size vs complexity estimate with a compression-based complexity estima-
tor: as in Fig 3C in the main text, we plot the neutral set size of each phenotype (on a log scale) against
an estimate of its complexity. Here, this complexity is computed by feeding a concatenated version of each
phenotype’s binary pixel array into the Lempel-Ziv implementation from ref [7]. A log-linear line, as predicted
as an upper bound [7], is drawn to guide the eye.

Figure S9: Neutral set size vs number of lines in the figure: both quantities are estimated with the
analytic model, using eq 2 and eq 14.
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Figure S10: Probability Pp(K) of obtaining a phenotype of complexity K upon random sampling
of phenotypes. Most of the ≈ 107 phenotypes have intermediate complexity values - phenotypes with very low
or very high complexities are rare. A) Phenotypic complexities based on the Block Decomposition Method [16]
(as in the main text). B) Phenotypic complexities based on Lempel-Ziv compression (as in section S4.2 above).

Figure S11: Probability Pg(K) of obtaining a phenotype of complexity K upon random sampling
of genotypes. A) Phenotypic complexities based on the Block Decomposition Method [16] (as in the main
text). B) Phenotypic complexities based on Lempel-Ziv compression (as in section S4.2 above).
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S4.5 Simplicity bias in mutation probabilities

Figure S12: Mutational bias towards simple phenotypes: we consider all phenotypes q, from which at
least 100 different phenotypes p can be reached through mutations (i.e. εq ≥ 100). For each initial phenotype
q, we plot the mean complexity of the 10 phenotypes p with the highest φpq values against the mean complexity
of all phenotypes with non-zero φpq values, in order to compare likely phenotypic transitions to the full set
of possible phenotypic transitions. The black line indicates equality (x = y). We find that for all initial
phenotypes q, the complexity of the high-φpq phenotypes is lower, indicating that mutation probabilities to
simple phenotypes q tend to be higher. The data in this plot is for our computational approach based on the
coarse-grained images.

In the main text, we argued that the strong simplicity bias found in the biomorphs GP map means that a
random mutation on a random genotype is more likely to give a simple phenotype than a complex one. Here,
we test whether this continues to hold when we consider mutations for a fixed initial phenotype (i.e. whether
there is simplicity bias in the φpq values). The data is shown in Fig S12: for a fixed initial phenotype q,
we compare the complexity of the ten phenotypes which are most likely to appear after mutations (i.e. with
the highest φpq values), to the complexity of all phenotypes which can appear after mutations. This data
indicates that, regardless of the initial phenotype q, phenotypic changes that happen with a high probability
through mutations tend to be towards simpler phenotypes than phenotypic changes that occur with a lower
probability. A caveat of this analysis is that we limit the set of initial phenotypes q to phenotypes, from
which at least 100 different phenotypic changes are possible through mutations since the top-ten values are
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only relevant if there are � 10 non-zero φpq values.

S5 Phenotypic Bias when the number of developmental stages is kept
constant

Figure S13: Neutral set size vs rank for fixed values of g9: each plot analyses the slice of the GP map
that is defined by a fixed value of g9 between g9 = 2 and g9 = 8 (indicated in the plot titles). In each case, the
number of genotypes per phenotype (i.e. the neutral set size at fixed g9) is computed for all phenotypes present
in the given slice and plotted as a rank plot using our computational approach with the same parameters as
in the main text. To illustrate, what kind of phenotypes are frequent/rare in each case, a few phenotypes are
highlighted in each plot and drawn in corresponding colors underneath the plot.

In the analytic model, all genotypes that map to a given phenotype have the same value of g9, the final site of
the genotype. This value then determines the neutral set size of the given phenotype. If the analytic model
was perfect, this would mean that there would be no phenotypic bias at all if g9 was kept fixed. Fig S13 shows
that this is not the case and that there is bias even at constant g9, albeit over fewer orders of magnitude.
The reason for this is the following: the analytic model assumes that changing any vector component of any
vector in the figure will change the phenotype. However, if all x-components of all vectors are set to zero,
then the choice of y-components does not matter since the phenotype will be a single vertical line along the
y-direction for any choice of y-components. Thus, this is a simple example, where the analytic model would
underestimate the neutral set size by a large factor. We can therefore conclude that the analytic model is
only an approximation and that neutral set size differences in the biomorph model are more subtle than
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predicted by the analytic model.

S6 Identifying an evolutionary path with the smallest number of pheno-
typic changes

In the main text, we illustrated how a line-shaped initial phenotype can be transformed into a specific insect-
shaped phenotype in single point mutations, such that the number of phenotypic changes during the process
is as small as possible. Here, we describe the computational approach we used to obtain this shortest series
of phenotypic changes.

It is useful to reframe this optimization problem in terms of neutral components (NCs): a NC is a subset
of the neutral set of p, which is defined [20] such that two genotypes are in the same NC if they can be
connected by a series of neutral mutations. Therefore, it is possible to get from any genotype in a NC to
any other genotype in the same NC during a period of neutral evolution, but any transition to another NC
through mutations has to include phenotypic changes. NCs for a given GP map can be identified efficiently,
for example by building on methods from ref [10].

Once we have enumerated all NCs, identifying the path with the smallest number of phenotypic changes
is equivalent to finding the sequence of mutations with the smallest number of mutations that change the
neutral component (NC) since two NCs that are connected by point mutations always correspond to different
phenotypes, by definition. This allows us to solve our optimization problem by focusing on NCs and not
individual genotypes. Thus, we created a unique ID for each NC in the GP map and evaluated, which NCs
can be reached from a given NC through single point mutations. This defines a network, where each NC
is a node and each edge indicates that there are point mutations connecting two NCs. Then we found the
shortest path in this network using Dijkstra [21]’s algorithm. The resulting list of NCs gives the shortest list
of NC transitions that have to be made in order to convert the initial phenotype into the target phenotype
through point mutations. Then we simply mapped the NCs to the corresponding phenotypes to obtain the
final figure.

S7 Two-peaked landscapes - beyond the first fixation

In the main text, we studied a scenario based on refs [8, 22], where a population with an initial phenotype
p0 evolved adaptively to one of two fitness peaks, p1 or p2. We reported which of these two phenotypes was
the first to go into fixation, the mutationally more accessible phenotype p1 or the phenotype with higher
selective advantage p2. Here, we investigate what happens after the first fixation event. Since there are no
point mutations that can convert p1 into p2 directly (or vice versa), the only possible phenotypic changes
are either back to the initial phenotype p0, which is less fit, or directly to the other phenotype through a
rare event involving multiple mutations at once. To investigate, if one of these phenotypic changes is likely
to happen, we ran additional simulations that spanned 106 generations each and were not terminated with
the first fixation event. This is about ten times longer than the typical number of generations until the first
fixation event, which is between ≈ 105 and ≈ 105 (depending on the parameters s1 and s2). We ran 100 such
simulations for each combination of parameters s1 and s2. We found no instances of direct fixations from
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Figure S14: Likelihood of reversion to fitness valley in the two-peaked landscape: We simulate
evolving populations in the two-peaked landscape described in the main text for 106 generations. The first
fixation of one of the local maxima (p1 or p2) typically occurs after / 105 generations. Here we investigate
how likely the population is to experience a renewed fixation to the initial phenotype p0 (the fitness valley).
We plot this likelihood against the selective advantage si of the phenotype that was the first to fix. As might
be expected, reversions to the fitness valley via drift are rare since we have strong selection with Nsi ≥ 10.
The same parameters are used as in the main text, but the data is only based on 100 repetitions for each
combination of the parameters s1 and s2 because of the higher computational cost of this analysis.

p1 to p2, implying that the requirement for multiple specific mutations to coincide makes such transitions
extremely unlikely. Thus, the only new fixations that we observe after the first fixation event is a reversion
to p0, the phenotype with the lowest fitness. This only happens in rare cases (< 0.5% of cases) and only if
the phenotype that fixes first only has a low selective advantage over p0 (Fig. S14).

S8 Selection for tree-like shapes

Here, we repeat the evolutionary simulation from Fig 5 in the main text, but with a slightly more complex
fitness landscape inspired by one of the scenarios in Johnston et al. [17]: we assume that all tree-like pheno-
types are equally fit (fitness F = 1) and all other phenotypes are completely unviable (F = 0). To obtain a
reproducible and simple definition of what a tree-like shape is, we proceed as follows: we crop empty margins
from the biomorph’s grid representation and then consider the resulting cropped grid to be tree-like if there
is a ‘stem’ in the lower part of the figure (i.e. the pixels on the lower fifth of the y-axis are filled in) and this
stem is surrounded by some space (i.e. the pixels immediately to the right and left of the stem are not filled
in). We also consider a single vertical line to be a tree-like phenotype.
The data is shown in Fig S15: we find phenotypic bias over several orders of magnitude even among the
more restricted set of tree-like phenotypes. This phenotypic bias is reflected in the evolutionary simulation:
while selection confines the population to tree-like shapes, the phenotypic bias still plays an important role
in determining which of the tree-like shapes appear more often in the evolving population. Here, some of
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Figure S15: Phenotypic bias towards simple shapes if the analysis is restricted to tree-like biomorphs:
The concepts of this plot are the same as in Fig 5 in the main text, but here only tree-like phenotypes have non-zero
fitness in the evolutionary simulation: (A) Phenotype frequency vs rank for all tree-like phenotypes. Three phenotypes
are selected from this plot: one with high frequency (yellow), one with medium frequency (teal), and one with low
frequency (purple). We find bias even among tree-like phenotypes. (B) Phenotype frequency vs estimated complexity
for all tree-like phenotypes, with the three selected phenotypes from (A) highlighted in color. We observe simplicity
bias among the tree-like shapes. (C) As a simplified model of an evolutionary process, we assume that all tree-like
phenotypes are equally fit (fitness F = 1) and all other phenotypes are completely unviable (F = 0). We model a
population of 2000 individuals with a mutation rate of µ = 0.1 for 105 generations. In this process, we record, how
frequently we each of the selected shapes from (A) occurs. In (C), the normalized number of times each phenotype
occurs in the population is plotted against a renormalized version of its phenotypic frequency (such that the frequencies
of all tree-like shapes sum to one). We find that the phenotypic bias among the tree-like shape is reflected in their
frequency in the evolving population.

the frequent shapes are actually observed more often than expected based on their phenotypic frequencies,
which is likely due to selection for high robustness at this high mutation rate of µ = 0.1 (the ‘survival of the
flattest’ [23] effect).
The strong bias in the frequency of different tree-like shapes in the simulation is not surprising since tran-
sitions between different tree-like biomorphs are neutral in this scenario. However, it constitutes a simple
example, where there is selection on some features of the phenotype only, which may be a realistic approxi-
mation under some conditions.

S9 Historical background to the discussion on ultimate and proximate
causation in development

S9.1 Historical theme 1: Developmental constraints or biases

We begin by exploring the language of constraints. In a highly influential 1985 paper, John Maynard-
Smith et al. [24] opened with the definition: “A developmental constraint is a bias on the production of
variant phenotypes or a limitation on phenotypic variability caused by the structure, character, composition,
or dynamics of the developmental system.”. They distinguished between “universal” constraints which hold
for all organisms, and “local constraints” which hold for a limited range of species or taxa, but were careful
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to emphasize that this is not a sharp dichotomy.
Universal physical constraints on phenotypes are everywhere in the natural world, setting limits on viable

phenotypic variation. They can arise from the basic laws of mathematics, physics, and chemistry or from
principles of self-organization, as emphasised by Kauffman [25]. Universal constraints are not contingent, in
the sense that if one were to re-run the tape of life again, they would still hold in much the same form. Other
universal constraints may have an element of contingency: one example given by Maynard-Smith et al. [24]
is that the mapping from codons to amino acids in the genetic code could have been different [26, 27] but
once it is fixed, it is unlikely to change again.

It is also not controversial that local developmental constraints are active everywhere in the natural world,
shaping the spectrum of variation upon which natural selection can act. This point is made repeatedly in
The Blind Watchmaker [1]. For example, in the addendum on evolvability, Dawkins argues that: “You
can’t make an elephant by mutation if the existing embryology is octopus embryology”. He further suggests
that such constraints can facilitate more rapid evolution in certain, possibly favorable directions [28]. These
constraints are local because they only affect certain taxa. Moreover, the developmental constraints may
themselves change due to natural selection, a process Dawkins coined as the “evolution of evolvability” [1, 2].
He illustrates this concept with the axial symmetry of the biomorphs, a constraint that can only be overcome
by modifications to the developmental program itself. Dawkins suggests that such changes may be related
to major transitions in evolution.

The language around local developmental constraints has changed since the iconic paper by Maynard-
Smith et al. [24], not least due to the rise of the field of evo-devo [29–33]. There is a modern preference [34,
35] for the term “developmental bias” over developmental constraint, in part because constraints are seen as
too binary: something can or cannot happen because it is or is not constrained, while many developmental
processes are more subtle in their influence [34]. In addition, development may facilitate the generation of new
variation rather than only limiting it [35]. The broad spectrum of effects captured by the terms developmental
bias and developmental constraint, the subtle differences in their meanings, as well as variations in how they
are used by different research communities all contribute to the historical complexity of this debate [36]. The
idea that hard binary constraints –such as those imposed by octopus or elephant developmental programmes
–affect adaptive evolutionary outcomes is much less controversial than the claim that potentially weaker
developmental biases do (see e.g. [37, 38] for some historical examples of such arguments). That said, there
are further reasons for differing attitudes to biases and/or constraints that relate to background issues to be
discussed in the next subsection.

S9.2 Historical theme 2: Mutation and selection as opposing pressures.

The second theme that has long influenced the debate between internalism and structuralism arises from
historical population genetic arguments which state that the “pressure” from mutation is too weak to overcome
selective effects (see [38] for an overview of this history): Statements of this type are often attributed to
the founders of the modern synthesis including influential work by Haldane [39] and Wright [40]. The
mutation pressure argument has historically been used to counter structuralist claims that biases in the
arrival of variation affect adaptive evolutionary outcomes [38]. By contrast, it is not controversial at all that
mutational biases can play an important role in neutral evolution [37, 40, 41].

The prevalence of the mutation pressure argument was influenced by a historical focus on selective changes
in allele frequencies within a gene pool of standing variation (see [38]). This gene-pool regime is certainly an
extremely important evolutionary scenario, especially for highly polygenic quantitative traits in populations
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of sexual organisms, the same regime accessed by breeders who artificially select. Within this picture, the
main source of variation that natural selection can act on comes from recombination within the gene pool [42].
The primary role of mutation is then to act as a fuel that replenishes the gene pool with new variability; it
is not thought to otherwise impart any directionality.

The emphasis on the gene-pool picture can also help explain the historic neglect of models that explicitly
treat the introduction of new mutations. As reviewed by McCandlish and Stoltzfus [43], models that include
both the introduction of a new allele by mutation and its fixation or loss only became important four decades
after the opposing pressures argument first appeared with the pioneering 1969 papers [44, 45] on neutral
evolution, and then only for the case of neutral mutations. It took a further 30+ years before Yampolsky
and Stoltzfus [22] applied these origin-fixation models in an adaptive context and showed that fixation rates
can strongly depend on the rate at which novel mutants are introduced into a population without needing
to be in a regime with high mutation. These predictions, valid for a regime beyond the “gene pool” scenario,
have been corroborated and extended with more detailed population genetic calculations [8, 38, 46–48].

A series of important recent experiments and retrospective analyses in molecular evolution have demon-
strated that mutational biases2 have significant effects on adaptive evolutionary outcomes. Examples include
single celled organisms such as Escherichia coli [49], Mycobacterium tuberculosis [48, 50], Pseudomonas flu-
orescens [51] and Saccharomyces cerevisiae [48]. In particular, good agreement was found with theoretical
calculations of the effects of the bias for such organisms, which can range over as much as two orders of
magnitude, although much smaller biases can be picked out in the data [48, 52]. A meta-analysis of paral-
lelisms found clear evidence for transition bias across taxa ranging from insects to mammals [53]. A related
analysis of mutations related to altitude adaptation in the haemoglobin of high-flying birds found that CpG
mutations were highly over-represented, as expected from mutation bias [54]. While some controversy over
the full implications of this evidence remains [37, 55, 56], there is little doubt that mutational biases can
significantly affect adaptive outcomes in predictable ways [52].

In summary then, the old “mutation pressure” argument should be retired from employment in opposing
biases in the introduction of variation affecting adaptive evolutionary outcomes. Theoretical calculations,
detailed experiments, and retrospective analyses of mutational biases have robustly shown that this argument
does not hold in key regimes where the introduction of new mutations plays an important role.

S9.3 Historical theme 3: Ultimate and proximate causes

Another principal axis around which these disagreements revolve, and the one we think is the most inter-
esting for this paper, concerns views on evolutionary causation. These are often framed through the lens
of Ernst Mayr’s famous distinction between ultimate and proximate causes [57]. The former relate to “why
is it like this” questions asked by evolutionary biology whereas the latter encompass the “how something
works” questions of functional biology. This distinction has been influential in shaping the landscape of the
discussion, not least because development is often a priori labelled as a proximate cause. See for example
Mayr’s 1994 response to reading the literature on evo-devo [58]: “ .. the two kinds of causations were hope-
lessly mixed up. All I can say is that I hope that the day will come when people realize that the decoding of
a genetic program is something very different from the [adaptive] making and changing of genetic programs
that is done in evolution. ". In other words, Mayr’s argues here that developmental bias is a proximate cause

2For example, on average, individual transitions, nucleotide changes within a class (purines or pyrimidines) are significantly
more likely to occur than individual transversions (nucleotide changes between classes).
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because it ultimately arises from an adaptive historical process behind the developmental program. Mayr’s
views were likely more complex [59], but that has not stopped some authors from simply equating ultimate
causes with adaptive ones [60]. Needless to say, the reception of the ultimate-proximate distinction has a
tangled intellectual history [33, 59, 61–67], with much disagreement about the definition and the usefulness
of the distinction.

One influential way to explore the possibilities for ultimate and proximate causation is to frame them
in terms of Gould’s nomenclature of isotropic variation [68]: “Under these provisos [variation is small,
copious, and undirected and evolution proceeds in gradual steps], variation becomes raw material only – an
isotropic sphere of potential about the modal form of a species . . . [only] natural selection . . . can manufacture
substantial, directional change.”. Scholl and Pigliucci use this concept to explain the differences between those
who do and those who don’t believe that developmental bias can be an ultimate evolutionary cause [64].
If variation is isotropic, then development is not an evolutionary cause. But if variation is anisotropic and
biased, development could be a causal factor in evolutionary outcomes if natural selection cannot overcome
the biases. While this way of formulating the questions has the appeal of clarity, it suffers from the fact
that many adaptationists agree that variation can be anisotropic, but may still not consider it to be an
ultimate cause. For example, Dawkins criticizes the assumption of isotropic variation as a “caricature of
a Darwinian” in Chapter 11 of The Blind Watchmaker [1]. Nevertheless, isotropic variation is often an
unspoken assumption in arguments around evolutionary causes [64]. It can also function as a “useful fiction"
to help clarify arguments.

Because ultimate and adaptive causes are so closely entwined in the literature, we will take a small detour
to explore different types of adaptationism. Consider, for example, how Dawkins describes his view of the role
of processes such as neutral mutations or developmental bias in chapter 11 of The Blind Watchmaker [1]:
“Of course, large quantities of evolutionary change may be non-adaptive, in which case these alternative
theories [neutralism, mutationism] may well be important in parts of evolution, but only in the boring parts
of evolution . . . ". To put this statement into a broader context, it is helpful to use Godfrey-Smith’s[69]
influential threefold categorization of adaptationism 3. At one end of the spectrum, there is the strongest
category, Empirical Adaptationism, where natural selection is the dominant explanatory mechanism behind
evolutionary outcomes. At the other end of the spectrum, Methodological Adaptationism makes the much
weaker assumption that evolutionary research should focus on adaptation because non-adaptive processes are
harder to study. The third category is Explanatory Adaptationism, where selection has unique explanatory
importance because, on this view, the big and interesting questions of evolutionary biology revolve around
the origins of adaptations. Thus, selection will be “of central important even if it is rare” [69]. Godfrey-Smith
argues that Dawkins is an explanatory adaptationist for whom even strong anisotropies in the introduction
of variation that affect evolutionary outcomes are “boring" because they are random w.r.t. improvement of
the organism and therefore don’t explain the adaptations he is primarily interested in.

These different attitudes to adaptationism will have implications for the interpretation of new evidence
related to the role of developmental bias. For empirical and explanatory adaptationists, ultimate explana-
tions will by definition be selective ones. For the methodological adaptationist, the question is open but
could be (too) hard to adjudicate. While an empirical adaptationist may be willing to include developmental
bias as a significant evolutionary cause if sufficiently strong evidence demonstrated its influence on evolu-
tionary outcomes, such evidence is unlikely to be convincing for explanatory adaptationists because theirs is
fundamentally a philosophical position on what is important or interesting.

3The distinctions can be refined further, e.g. Lewens has seven categories [70].
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To avoid the complexities surrounding adaptationism, we turn to an important definition of ultimate
causes put forward by Ariew [71], who equates them with “statistical population-level explanation[s]” that
answer questions about the prevalence and maintenance of traits in a population. Such ensemble-level
causes of course include natural selection, but could also include genetic drift and other causes that act on
populations at a population-level. We will then add to Ariew’s definition the additional stipulation that such
causes be universal, that is they are not limited only to certain taxa. This more stringent requirement has
the advantage of clarity. If it can be shown that certain developmental biases are universal and also affect
long-term evolutionary outcomes at a population level, then it is hard to see why these should not be classed
as ultimate rather than proximate causes.

S9.4 Historical theme 4: Contingency, convergence, and counterfactuals

The final set of implicit assumptions that bedevil this debate relates to the role of contingency in evolution.
On the one hand, we have Gould’s memorable expression of radical contingency in his book Wonderful
Life: [72]: “..any replay of the tape [of life] would lead evolution down a pathway radically different from the
road actually taken”. This famous gedankenexperiment of rerunning the tape of life is effectively an exercise in
counterfactuals – things that could have happened but did not – which play an important role in these kinds
of big-picture arguments about evolution. In this case, Gould was writing about the development, more
specifically, the emergence of body plans (baupläne or blueprints) during the Cambrian explosion. Once
established, these developmental patterns are largely fixed and strongly constrain the spectrum of future
evolutionary innovations. Gould argued that contingent accidents of history determine which bodyplans
survived, and which did not. But the arguments he made about contingency were broader than just this
example, and multifaceted, as emphasized by Beatty [73]. One can ask what would happen if one reran the
tape of life from a time well before the Cambrian explosion. If similar conditions to the Cambrian explosion
occurred, would the same initial set of bodyplans emerge? While we are not sure exactly what Gould’s view
was on this specific question, given his take on contingency, it is likely that he would have thought that the
bodyplans that first appear on a replay would be different, and therefore a subset of a much larger possibility
space of body plans that could have appeared but didn’t.

The unimaginably vast size of genotype spaces also plays a role in arguments for contingency (see [74]
for a broader discussion). Nature can only have explored a minuscule fraction of the space of all genotypes,
and so it is natural to assume that if life were to restart in a different part of that genotypic space, we would
observe different evolutionary outcomes.

There range of views on contingency is broad. On the other side of this debate, we have important thinkers
such as Simon Conway Morris, one of the scientific heroes of Gould’s book [72] who, rather ironically, has
a radically different interpretation of the research that Gould was popularizing. He argues that something
close to replaying the tape of life is “ubiquitous" as evidenced by many striking evolutionary convergences,
where similar phenotypes evolve independently [75]. In other words, his view on counterfactuals is that we
should expect something similar to evolve again when we replay the tape of life. Presumably, he believes that
the possibility space of biologically feasible body plans is much more constrained (by what he calls “deeper
structures") than someone emphasizing contingency would think. Dawkins’s concept of the evolution of
evolvability, and Mayr’s arguments about the ultimate origin of developmental programs that we quoted
above, don’t necessarily assume that the possibility space of body plans is small. But they do assume that
natural selection has access to alternative body plans. Behind the Gouldian perspective on contingency, there
may also be an assumption that it is very hard for alternate body plans to appear as potential selectable
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variation, once a given set has fixed. Such a pre-commitment will affect how useful one thinks the concept
of ultimate (adaptive) evolutionary causes are.

Where someone sits on this contingency to convergence continuum, and what specific background assump-
tions they hold about the space of phenotypic possibilities and the possibilities of changing developmental
programs, can influence how arguments about the relative role of developmental bias and natural selection
in determining evolutionary outcomes are weighed [74]. If one believes that developmental programs (e.g.
those of elephants or octopuses) are contingent accidents of history, that many different options could have
occurred, but that once fixed they are hard to change, then it is easier to believe that developmental bias
is akin to an ultimate cause of evolutionary outcomes, or perhaps that Mayr’s distinction itself is not that
useful. On the other hand, if one thinks that developmental programs are themselves quite amenable to
natural selection, then developmental bias is less likely to be interpreted as an ultimate cause. This latter
viewpoint also makes the implicit assumption that the timescales on which natural selection can access and
traverse the landscape of developmental programs are accessible in practice.
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