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Abstract:  34 

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the 35 

pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal 36 

study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included 37 

SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals 38 

having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for 39 

SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 40 

infection that were initially most strongly manifested in patients with extremely high initial viral 41 

loads, then attenuating within the patient over time as viral loads decreased. Genes correlated 42 

with SARS-CoV-2 viral load over time were similarly differentially expressed across independent 43 

datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and 44 

patient samples. We also generated expression data on the human nose organoid model during 45 

SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response 46 

captured many aspects of responses observed in the above patient samples, while suggesting 47 

the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, 48 

involving both epithelial and cellular immune responses. Our findings provide a catalog of 49 

SARS-CoV-2 host response genes changing over time. 50 

  51 
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Introduction 52 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiologic agent of the 53 

coronavirus disease 2019 (COVID-19) pandemic. The clinical spectrum of COVID-19, caused 54 

by SARS-CoV-2, is wide, ranging from asymptomatic infection to fatal disease. Risk factors for 55 

severe illness and death include age, sex, smoking, and comorbidities, such as obesity, 56 

hypertension, diabetes, and cardiovascular disease. Studies suggested that SARS-CoV-2 viral 57 

load can predict the likelihood of disease spread and severity 1–3. A higher detectable SARS-58 

CoV-2 plasma viral load was associated with worse respiratory disease severity 4.  Conversely, 59 

robust immune responses putatively mediate non-severe illness, in part, by controlling the 60 

replication of SARS-CoV-2 5,6. Emerging evidence indicates that age and sex differences in the 61 

innate and adaptive immune response can explain the higher risks observed in older adults and 62 

male cases 7,8. 63 

Initial site of SARS-CoV-2 replication is the upper respiratory tract, and replication usually peaks 64 

within the first week of infection 6. The amount of virus produced at the respiratory epithelium is 65 

considered to be a critical element in determining SARS-CoV-2 transmissibility, duration of 66 

illness or severity, although it is not the only factor 9,10. Higher viral loads have been observed in 67 

hospitalized patients with severe disease, have been attributed to high transmission and 68 

superspreading events, and have resulted in prolonged viral RNA shedding 1,11–15.  69 

Specific anatomic site or host cell type where viral replication occurs, can also determine the 70 

course of infection.  For example, angiotensin-converting enzyme 2 (ACE-2) and 71 

transmembrane serine protease 2 (TMPRSS2) receptors expression is highest in the upper 72 

respiratory tract and decreases in the distal or lower respiratory tract, incidentally SARS-CoV-2 73 

infection mirrored this pattern, with high replication in proximal (nasal) versus distal pulmonary 74 

(alveolar) epithelial cells 16. Control of viral replication and resolution of the inflammatory 75 
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response is believed to be dependent, in part, on viral load and route of infection as well as the 76 

host immune response 17. The early host immune response is regulated closely by the epithelial 77 

cell cytokine signaling in response to active viral replication 18. Rapid and robust activation of the 78 

antiviral innate immune response at the site of viral replication is required to control and clear 79 

the virus. A delayed cytokine response can result in prolonged viral replication and worst clinical 80 

outcome as seen for other respiratory viruses 19  81 

Our understanding of the viral dynamics of SARS-CoV-2 and host responses driving the 82 

pathogenic mechanisms in COVID-19 is evolving rapidly. Multiple studies have reported various 83 

characteristics of immune/inflammatory responses to SARS-CoV-2. Cytokine or chemokines-84 

related host inflammatory responses such as CCL2/MCP-1, CXCL10/IP-10, CCL3/MIP-1A, and 85 

CCL4/MIP-1B were detected in bronchoalveolar lavage samples of SARS-CoV-2 infected adults 86 

while activation of apoptosis and the P53 signaling pathway were observed in lymphocytes 20. 87 

Inflammatory cytokine such as IL-1, IL-18, and IL-33 were enriched in the airways of COVID-19 88 

patients 21. In addition, a shotgun host transcriptomic analysis on nasopharyngeal samples 89 

revealed a wide range of antiviral responses. These included gamma and alpha interferon 90 

responses, elevated levels of ACE-2, interferon stimulated genes (ISGs), and interferon 91 

inducible (IFI) genes 22. Very few studies have demonstrated the temporal correlation between 92 

viral load and host gene expression. Variation in viral load was associated with the SARS-CoV-93 

2 disease and the host response dynamics via innate and adaptive immunity (To et al., 2020). 94 

Another study revealed that expression of interferon-responsive genes, including ACE-2, 95 

increased as a function of viral load, while transcripts for B cell–specific proteins and neutrophil 96 

chemokines were elevated in patients with lower viral load 23.  Rouchka et.al. reported that 97 

cellular antiviral responses strongly correlated with viral loads. However, COVID-19 patients 98 

who experienced mild symptoms had a higher viral load than those with severe complications6. 99 
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We previously reported on a small group of adults with extremely high SARS-CoV-2 viral load, 100 

who had the potential to be super spreaders and a large group of adults with low SARS-CoV-2 101 

viral load, both groups had mild illness14 . Here, we wanted to determine the host response in 102 

relation to the viral load early during infection. We conducted a longitudinal study to investigate 103 

gene expression patterns detected in the secretion of the nasal epithelium during the acute 104 

phase of SARS-CoV-2 infection. The cases included SARS-CoV-2 infected individuals with an 105 

extremely high viral load early in their illness matched to individuals who either had a low SARS-106 

CoV-2 viral load early in their infection or were otherwise stable patients who tested negative for 107 

SARS-CoV-2 prior to their outpatient surgical or aerosol generating procedure. We also 108 

determined the transcriptional response of a human nose organoid (HNO) line infected with 109 

SARS-CoV-2 and compared it to transcriptomic profiles generated from the upper respiratory 110 

tract secretion collected by nasal swabs from SARS-CoV-2 infected individuals.  111 

Results 112 

Study cohort 113 

Ten SARS-CoV-2 cases were randomly selected from our population of adults with extremely 114 

high viral load (Ct <16 to N1 target) at the time of their first RT-PCR positive test. For each high 115 

viral load case, two additional human subjects were matched based on gender, week of first 116 

SARS-CoV-2 RT-PCR test, age, and home zip code. These additional subjects consisted of 117 

either 1) SARS-CoV-2 infected adults with low viral load (Ct 31-<40) (SARS-CoV-2 low viral 118 

load case) or 2) stable adults who were SARS-CoV-2 RT-PCR negative (SARS-CoV-2 negative 119 

control) for their out-patient surgical or aerosol generating procedure. Each high viral load case 120 

had two to three subsequent SARS-CoV-2 RT-PCR positive mid-turbinate (MT) swab samples 121 

collected over a 4-week period. Each SARS-CoV-2 low viral load case had similarly spaced 122 

SARS-CoV-2 positive MT swab samples matched to its respective extremely high viral load 123 
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case. On the other hand, the SARS-CoV-2 negative control only had one MT-swab sample 124 

collected with no longitudinal follow-up and was used to establish the transcriptomic baseline in 125 

the respiratory epithelium during the time the extremely high and low viral load matched cases 126 

were identified.  The demographic and visit characteristics for the cohort is presented in Table 1. 127 

In general, age, gender, race, ethnicity, and zip code were comparable between the extremely 128 

high viral load, low viral load, and SARS-CoV-2 negative adults. The adults in the SARS-CoV-2 129 

negative group were mostly asymptomatic at the time of testing, although their demographic 130 

information was not significantly different compared to that of both the SARS-CoV-2 extremely 131 

high and low viral load groups. The median Ct value difference between the extremely high and 132 

low viral load groups were 794,672-fold (19.6 Ct difference) and 724-fold (9.5 Ct difference) 133 

different at Visit 1 and Visit 2, respectively. At Visit 3, approximately 14 to 17 days after their 134 

Visit 1, the Ct values were comparable between the two groups. 135 

 136 

RNA sequencing of serially collected specimens. 137 

Of the 73 MT swab samples from the extremely high and low viral load SARS-CoV-2 groups 138 

with longitudinal follow-up and SARS-CoV-2 negative controls, only 44 (60.3%) MT swab 139 

samples from 20 (66.7%) individuals were of good quality to generate RNA-sequence data to 140 

study the host response to SARS-CoV-2 infection over time (Table 2). Demographic factors 141 

such as age, gender, race, ethnicity, zip code, disease severity and co-morbid conditions were 142 

comparable between the extremely high viral load, low viral load groups, and SARS-CoV-2 143 

negative control group. Host response data were available on eight cases (extremely high viral 144 

load) with 23 samples. Six of the 8 extremely high viral load cases had gene expression data for 145 

Visits 1, 2, and 3, and two others for Visit 1 and 3. On the other hand, eight low viral load cases 146 

had 17 samples with gene expression data. Only two of the low viral load cases had gene 147 
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expression data for Visit 1, 2, and 3. Another two low viral load cases had gene expression data 148 

at Visit 1, Visit 2 or 3, and Visit 4. The remaining four low viral load cases had gene expression 149 

data at Visit 1 only (n=1), Visit 2 only (n=2) or Visit 1 and 2 (n=1). Only 4 of the 10 SARS-CoV-2 150 

negative control adults had gene expression data. All together 44 MT swab samples were 151 

sequenced for RNA to observe gene expression changes in the host response of the cases with 152 

extremely high viral load over time, as compared to the SARS-CoV-2 low viral load matched 153 

cases and the negative controls.  154 

Gene expression changes by viral load 155 

From our RNA-seq dataset, we could identify widespread gene expression changes from the 156 

nasal epithelium attributable to transcriptional host responses to SARS-CoV-2 infection. By 157 

comparing the expression levels of each gene with the sample viral load (representing the 158 

inverse correlation with Ct value) across the 44 MT swab samples, 425 genes were statistically 159 

correlated at p<0.01 significance level and 112 genes at p<0.001 (Figure 1a, Pearson’s 160 

correlation). A stricter statistical cutoff would involve fewer expected false positive genes from 161 

multiple testing. However, the above 425 genes with p<0.01 would still be highly enriched for 162 

true positives, as revealed by integrating these genes with information from external databases, 163 

as described below. We also compared the expression levels of genes at individual time points 164 

during infection of both the extremely high viral load and low viral load groups with the SARS-165 

CoV-2 negative control group (Figure 1b). Comparing Visit 1 MT swab samples from the 166 

extremely high viral load cases (n=8 samples from eight subjects) with the MT swab samples in 167 

the SARS-CoV-2 negative control group (n=4) yielded the highest number of genes with 168 

statistically significant correlated expression, as opposed to comparisons involving later times 169 

for the extremely high viral load group or involving the low viral load group. The gene expression 170 

from the extremely high viral load cases at Visit 1 highly overlapped with the differentially 171 

expressed genes of the low viral load group at Visit 1 (Figure 1c) and remained highly correlated 172 
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throughout their last visit. Interestingly, genes from the extremely high viral load group that did 173 

not overlap with the low viral load group did not show significant overlap with information from 174 

external databases.   175 

To further delineate the differences in host gene expression between extremely high and low 176 

SARS-CoV-2 viral load groups, we performed an upset plot analysis to identify unique and 177 

common intersecting genes between the samples (Figure S1). Among all the differentially 178 

expressed genes (DEGs) in the samples, 614 DEGs were unique to the subjects in the 179 

extremely high viral load group at visit 1 (first visit) and 226 genes were unique for the extremely 180 

high viral load at the last visit. The low viral load subjects on the first and last visit showed 157 181 

and 93 unique DEGs respectively. There were 31 DEGS that were common between all the 182 

groups. We performed the Gene ontology (GO) analysis of the unique and overlapping DEGs 183 

sets, and we found significant enrichment (FDR <0.05, count =3) of the biological processes 184 

including defense response to virus, negative regulation of viral genome replication, innate 185 

immune response, response to virus (Figure S2) that were uniquely expressed in the extremely 186 

high viral load group at visit 1. SARS-CoV-2 infection in the low viral load group at either the 187 

early or later phase of the infection and the extremely high viral load group at the last visit did 188 

not show statistically significant enrichment of GO biological process. These findings indicate 189 

that subjects with extremely high viral load at their initial visit were responding to the infection 190 

with increased immune responses, and thus preventing prolonged viral infection with a poor 191 

prognosis. 192 

Differentially expressed gene in respiratory samples from extremely high viral load adults  193 

Focusing on the 112 top gene expression correlates of viral load across the 44 MT swab 194 

samples (p<0.001, Pearson’s), 108 of these genes were higher in the SARS-CoV-2 infected 195 

adults with extremely high viral load. When visualizing the differential expression patterns of 196 
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these 108 genes by heat map (Figure 2a), the genes were highest at Visit 1 of the extremely 197 

high viral load group, then decreased in expression with subsequent time points, tracking with 198 

the decrease in viral load (i.e., increase in Ct value). The 108 genes showed intermediate 199 

relative expression levels in the low viral load group and low expression in the SARS-CoV-2 200 

negative control group. The 367 genes increased with extremely high viral load at p<0.01 were 201 

highly enriched for functional gene categories, as defined by GO annotation terms. Enriched GO 202 

terms (Figure 2b, p<=3E-5, one-sided Fisher’s exact test) included ‘immune system process’, 203 

‘response to virus‘, ‘type I interferon signaling pathway’, ‘cytokine-mediated signaling pathway’, 204 

‘response to stress’, ‘regulation of viral life cycle’, ‘immune response’, ‘response to cytokine’, 205 

‘innate immune response’, ‘response to interferon-gamma’, ‘regulation of I-kappaB kinase/NF-206 

kappaB signaling’, ‘JAK-STAT cascade’, ‘protein ubiquitination’,  ‘regulation of cell death’, ‘T cell 207 

activation’, ‘vesicle-mediated transport’, and ‘complement activation’. Of the 17 functional gene 208 

categories, there were five gene categories - ‘response to virus’, ‘type 1 interferon signaling’, 209 

‘regulation of viral life cycle’, ‘response to interferon-gamma’, and ‘JAK-STAT cascade’ – where 210 

approximately 20% or higher of the genes were over expressed for that pathway. Overall, the 211 

above gene categories were highly indicative as representing a host immune response to an 212 

acute viral infection. Some of the genes that were upregulated were EIF2AK2 (eukaryotic 213 

translation initiation factor 2 alpha kinase 2), and ZC3HAV1 (zinc finger CCCH-type containing, 214 

antiviral 1), which have anti-viral activity. Other genes like IFIT2 and IFIT3 (interferon induced 215 

protein with tetratricopeptide repeats) aid in apoptosis. Chemokine genes like CXCL9 and 216 

CXCL10 that are involved in T-cell trafficking were also highly expressed. In contrast, the 62 217 

genes decreased with high viral load at p<0.01 were not highly enriched for GO terms. Some of 218 

the genes that were downregulated included OR4A16 and OR10X1, involved in olfactory 219 

responses; SALL3 and MAGB6, which aid in downregulation of transcription; and TUBA3E, 220 

MLN, and ISTN1, affecting tubulin functions. 221 
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Comparison of the top over expressed genes in respiratory samples from the extremely high 222 

and low viral load groups to other published data sets 223 

Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed 224 

across independent datasets of SARS-CoV-2 infected lung and upper airway cells (Figure 3). 225 

We examined differential expression patterns for the top 112 genes, at p<0.001 significance 226 

level, correlated with SARS-CoV-2 viral load across our serial sampling cohort (by Pearson’s) in 227 

two independent RNA-seq datasets of SARS-CoV-2 infection: one of lung cancer cell lines A549 228 

and Calu-3 infected with SARS-CoV-2 for 24 hours from Blanco-Melo et al 24. and one of 229 

nasopharyngeal/oropharyngeal samples in 238 patients with COVID-19, other viral, or non-viral 230 

acute respiratory illnesses from Mick et al 25. As a group, the genes that positively correlated 231 

with SARS-CoV-2 viral load were increased in SARS-CoV-2-infected Calu-3 cells and were high 232 

in samples of human subjects infected with SARS-CoV-2 or other viruses (Figure 3a). For the 233 

Mick et al. dataset, SARS-CoV-2 viral load data was available. Of the 112 genes correlated with 234 

viral load in our dataset, 105 were in common with the Mick et al. dataset, and 99 (94%) of 235 

these genes were positively correlated (Pearson’s p<0.05) with viral load across the 94 SARS-236 

CoV-2 infected patients. In contrast to Calu-3, A549 infected cells did not show as strong a 237 

correspondence to our 112-gene signature pattern. Taking the top genes that correlated 238 

positively with SARS-CoV-2 viral load across the Mick et al. patient samples (p<0.01, Pearson’s 239 

correlation) and the top genes over-expressed in SARS-CoV-2-infected Calu-3 cells (p<0.01, t-240 

test), these significantly overlapped with the genes that positively correlated (p<0.01, Pearson’s) 241 

with SARS-CoV-2 viral load across our serially collected MT swab samples with a high overlap 242 

among the respective dataset results (Figure 3b). The 136 genes overlapping among all three 243 

datasets involved cytokines and inflammatory response pathways. In contrast, there was limited 244 

overlap among the datasets involving genes under-expressed with SARS-CoV-2 infection 245 

between our data set to either Mick et al. or Calu-3 cells (Figure 3c). This in part may reflect the 246 
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potential differences in the respective SARS-CoV-2 variants causing the infection or differences 247 

in the illness severity of the host. 248 

Comparison of our respiratory sample gene sets to the transcriptional response of the human 249 

nose organoid infected with SARS-CoV-2 250 

As another means to identify host transcriptional responses to SARS-CoV-2 infection, we 251 

generated RNA-seq data on the human nose organoid model HNO 26. We sampled HNO cells 252 

infected with SARS-CoV-2 and mock control cells at 6hrs, 72hrs, and 6 days post-infection, and 253 

we profiled these samples for gene expression. In the HNO204 RNA-seq dataset, 1760 genes 254 

were statistically significant at p<0.05 significance level and 341 genes, at p<0.01, exceeding 255 

chance expected. The top 867 genes over-expressed in HNO with SARS-CoV-2 infection 256 

(p<0.05, t-test) showed significant overlapping patterns with the above-mentioned independent 257 

RNA-seq datasets of SARS-CoV-2 infection (Figure 4a). Only a small, albeit statistically 258 

significant, fraction of the HNO204 over-expressed genes overlapped with the top 367 genes 259 

that correlated positively with SARS-CoV-2 viral load in our serial MT swab dataset (Figure 4b). 260 

Of the 867 overexpressed genes in SARS-CoV-2 infected HNO, 35 overlapped with the 367 261 

over expressed genes in the respiratory samples of extremely high and low viral load groups 262 

(p=1E-5, one-sided Fisher’s exact test). At the same time, a substantial fraction of the 867 HNO 263 

genes overlapped with the genes high with SARS-CoV-2 infection in both A549 and Calu-3 lung 264 

cancer cell lines (Figures 4a and 4b), with 178 Calu-3 genes overlapping (p<1E-20, one-sided 265 

Fisher’s exact test). In contrast, little overlap was observed between the genes under-expressed 266 

with SARS-CoV-2 infection in HNO and genes similarly under-expressed with SARS-CoV-2 in 267 

the other datasets (Figure 4c). 268 

The 867 genes over-expressed in HNO at p<0.05 were significantly enriched for functional GO 269 

gene categories. Enriched GO terms (Figure 4d, p<=0.0001, one-sided Fisher’s exact test) 270 
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included ‘vesicle’, ‘extracellular vesicle’, ‘intracellular vesicles’, ‘MAP kinase phosphatase 271 

activity‘, ‘regulation of locomotion’, ‘peptidase activator activity’, ‘endosome membrane’, 272 

‘regulation of smooth muscle cell proliferation’, ‘regulation of cell motility’, ‘proteasomal protein 273 

catabolic process’, ‘negative regulation of signaling’, ‘programmed cell death’ , proteolysis 274 

involved in cellular protein catabolic process’, and ‘inactivation of MAPK pathway’. Overall, the 275 

over expressed genes are representative of the regulation of extracellular signaling from virus 276 

infection on a wide range of cellular responses and function. The above findings of the HNO 277 

transcriptional response to SARS-CoV-2 in relation to transcriptional responses observed in 278 

other models and patient samples would suggest the existence of distinct host responses to 279 

SARS-CoV-2 depending on cellular context, such as we previously observed between A549 and 280 

Calu-3 lung cancer cell lines. The host response observed in HNO is reflective of a complex 281 

epithelial cell population responding to a SARS-CoV-2 infection. On the other hand, the host 282 

response genes detected in the upper respiratory tract secretion of our prospective longitudinal 283 

cohort and those of Mick et al. patient samples are a composite of the epithelial and cellular 284 

immune responses to the viral infection.   285 

Discussion 286 

The primary site for SARS-CoV-2 replication is thought to be the ciliated cells in the 287 

nasopharynx or nasal olfactory mucosa. The viral replication initiates a signaling cascade to 288 

promote the production of interferons and chemokines by epithelial cells and thereby promote 289 

immune cell activation to control the virus. SARS-CoV-2 infection causes upregulation of 290 

cytokines including IL-2, IL-6, IL-10, IL-12 and MCP-1 detected in tissues and serum, as well as 291 

infiltration of infected tissues by inflammatory cells such as macrophages 27. In the present 292 

study, RNA seq analysis of MT swabs from SARS-CoV-2 infected individuals identified robust 293 

induction of interferon inducible, cytokine, stress response, and immune-related genes. A 294 

variety of genes such as OAS2, PARP9, OASL, IFIT2, IFI3, CCL8, CXCL10, etc., were highly 295 
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upregulated and correlated with high viral load, suggesting that innate immune response genes 296 

were activated in a viral load dose response manner to control the viral infection. These results 297 

are very consistent with recent studies from upper respiratory tract samples, which reported 298 

upregulation of anti-viral factors and interferon response pathways 22,23,28 .  299 

In our study samples, the numbers of genes that were upregulated were much higher compared 300 

to down regulated genes (367 vs 62). Some of genes that were downregulated included those 301 

which operate olfactory functions (OR4A16 and OR10X1), downregulation of transcription 302 

(SALL3 and MAGB6), and tubulin functions (TUBA3E and MLN, and ISTN1). Previous studies 303 

have reported larger numbers of down regulated host response genes especially involving 304 

olfactory receptor pathway, neutrophil degranulation, and vesicle formation—indicating the role 305 

of these genes in loss of olfactory function in SARS-CoV-2 infections as well as the viral control 306 

of host-cell machinery 20,22,23. One other study also showed very low number of downregulated 307 

genes with SARS-CoV-2 infection 29, one reason for the low number of downregulated genes 308 

observed in our longitudinal study could conceivably relate to the mild illness experienced by 309 

both the extremely high and low viral load groups, in addition to the timing of sample collection 310 

as compared to other studies as well as the SARS-CoV-2 variants respectively involved. 311 

Remarkably, the highest number of significant expressed genes were driven by the extremely 312 

high viral load group at Visit 1 (first visit). Also, all the genes that were upregulated with the low 313 

viral load group at Visit 1 completely overlapped with the extremely high viral load group at Visit 314 

1 except for one gene, -CNN2, which plays a role in cell adhesion and muscle contraction. The 315 

predominant sets of genes involved in defense response to virus, type I interferon signaling 316 

pathway, cytokine-mediated signaling pathway—such as CXCL10, TGFB, IFIT2, IFIT3, OAS1, 317 

and IRF1—were not found significantly upregulated in the low viral load group. Consonant with 318 

this, Rouchka et. al. also observed that subjects with high viral loads had robust interferon and 319 

cellular anti-viral response and even exhibited strong inverse correlation with disease severity 6. 320 
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We previously noted that some SARS-CoV-2 infected adults with low viral load experienced 321 

prolonged viral shedding and low fluctuation in viral load over time 14. Absence or low 322 

expression of the anti-viral response in the low viral load group strengthens our observation of 323 

prolonged shedding in adults with a low viral load early in infection. 324 

In our longitudinal study, the up-regulated host response genes that correlated with SARS-CoV-325 

2 viral load over time in the respiratory secretion collected by the MT swabs were similarly 326 

differentially expressed across independent data sets of SARS-CoV-2 infected lung and upper 327 

airway cells 24. About 170 of the differentially expressed genes observed in our study 328 

overlapped with SARS-COV-2 infected Calu-3 lung adenocarcinoma cell line but not with A549 329 

cells. The observed difference across the cell lines could possibly be attributed to A549 cells not 330 

supporting robust replication of SARS-CoV-2 due to the low expression of ACE-2 30. Similarly, 331 

207 up-regulated genes from our longitudinal study overlapped with nasopharyngeal swabs 332 

from SARS-CoV-2 infected patients (3). Genes involved in cytokines and inflammatory response 333 

pathways were the ones that overlapped the most, demonstrating that anti-viral innate immune 334 

responses are common with SARS-CoV-2 infections. In addition, the up-regulation of 335 

differentially expressed genes related to an inflammatory response in COVID-19 patients can 336 

result in the induction of interleukin-6 (IL-6), CXCL10 (IP-10), and TNF-α with hyperactivation of 337 

Th1/Th17 responses that results the recruitment and activation of pro-inflammatory neutrophils 338 

and macrophages into the airways 31. This has been proposed as the prime reason for failure to 339 

resolve inflammation in severely symptomatic patients 31,32. 340 

To better understand the contribution of epithelial cellular responses to SARS-CoV-2, we 341 

compared differentially expressed genes in the respiratory secretion of adults infected with 342 

SARS-CoV-2 to those that were expressed in HNO infected with SARS-CoV-2. A small, albeit 343 

statistically significant, fraction (35 of 867) of the HNO up-regulated genes overlapped with the 344 

367 differentially expressed up-regulated genes detected from the SARS-CoV-2 cases from our 345 
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longitudinal cohorts. These included functional genes involved with intrinsic antiviral immunity 346 

and interferon signaling representing the epithelial cellular responses to SARS-CoV-2 infection.  347 

A greater number of up-regulated genes overlap between our longitudinal cohorts [170 (46.3%) 348 

of 367 genes] and the SARS-CoV-2 infected Calu-3 cell line [170 (9.3%) of 1836 genes] 349 

compared to our SARS-CoV-2 infected HNO204 line [35 (4.0%) of 867 genes]. This could 350 

reflect the difference in cellular complexity between the cell lines and greater diversity of the 351 

HNO epithelium resulting in fewer overlapping up-regulated genes. HNO204 is a complex 352 

pseudostratified epithelium composed of at least 9 different cell types including ciliated, goblet, 353 

secretory and basal cells 33,34. In contrast, the Calu-3 cell line, was generated from a bronchial 354 

adenocarcinoma, a submucosal gland cell line of a single cell type 35  355 

Previous studies have demonstrated high expression of ACE2 in SARS-CoV-2 infected 356 

nasopharyngeal samples and these were greatly elevated in high viral load subjects, suggesting 357 

that higher replication occurs with increased receptor expression 22. In our cohort we did not 358 

observe a statistically significant increase in ACE2 expression in both extremely high and low 359 

viral load groups. However, the expression of ACE2 was elevated in our HNO infected with 360 

SARS-CoV-2 but not TMPRSS2, which has increased expression in nasal airway epithelial 361 

brushings 36. 362 

In summary, our longitudinal study investigated gene expression patterns in SARS-CoV-2 363 

infected individuals with an extremely high viral load displayed strong immune responses that 364 

decreased over time, and eventually became comparable to those with low viral loads.  We 365 

detected hundreds of up-regulated genes that were highly correlated to the SARS-CoV-2 viral 366 

load. Enriched cellular pathways involved in the innate immune response, antiviral interferon 367 

responses were observed in other cohorts of SARS-CoV-2 infected adults. A limited but highly 368 

significant up-regulated gene response overlapped with our human nose organoid line, a 369 

complex pseudostratified ciliated epithelium, suggesting that the gene expression profile 370 
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detected in SARS-CoV-2 infected adults is generated from both the epithelial and cellular 371 

immune responses. In conclusion, high SARS-CoV-2 viral loads primarily elicit a heightened 372 

host immune response for the control of viral replication and clearance.  373 

374 
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Materials and Methods 375 

Study cohort  376 

Ten extremely high, viral load SARS-CoV-2 positive cases were matched to 10 low viral load 377 

SARS-CoV-2 positive adults, and 10 stable adults (SARS-CoV-2 negative controls) who were 378 

cleared for having an out-patient surgical or aerosol generating procedure. The cases and 379 

controls were selected from our population of 17,644 adults (24,822 samples) evaluated in the 380 

outpatient clinics at Baylor College of Medicine (BCM) and their affiliate institutions from March 381 

18, 2020, through January 16, 2021, as previously described14. Three distinct adult populations 382 

were tested: 1) symptomatic employees utilizing occupational health services, 2) patients 383 

evaluated at medical and surgical clinics, and 3) patients who required clearance for an out-384 

patient surgical or aerosol generating procedure. Serial samples were obtained from individuals 385 

who came back to be tested for evidence that the virus was cleared or were enrolled as sub-386 

study to determine the viral shedding kinetics. Testing for SARS-CoV-2 was performed in our 387 

Clinical Laboratory Improvement Amendments (CLIA) Certified Respiratory Virus Diagnostic 388 

Laboratory (ID#: 45D0919666). Although RT-PCR testing was performed as a service to BCM, 389 

the collection of metadata was performed under an Institutional Review Board approved 390 

protocol with waiver of consent. 391 

The extremely high viral load cases consisted of adults with an extremely high viral load (Ct 392 

<16) for the N1 target on their first mid-turbinate (MT) sample and had at least two subsequent 393 

positive MT samples 14. Of the 104 individuals with an extremely high viral load in their first test, 394 

30 individuals met the criteria for multiple positive samples over the ensuing 4 weeks. Adults 395 

from two other groups were matched to each extremely high viral load case: a low viral load (Ct 396 

31-<40) SARS-CoV-2 positive adult (SARS-CoV-2 low viral load) and an otherwise stable 397 

control who tested negative for SARS-CoV-2 (SARS-CoV-2 negative control) and was cleared 398 
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for an out-patient surgical or aerosol generating procedure. Of the 453 individuals with a low 399 

viral load in their first test, 126 individuals met the criteria for multiple positive samples over the 400 

ensuing 4 weeks. The extremely high viral load cases were matched to the other two groups by 401 

gender, week of first test (+ 1 week), age (+ 1 year) and zip code (5 digits). If a match could not 402 

be found the range of the factors were expanded to + 3 weeks of first test, + 10 years and 3 403 

digits for the zip code. The ten extremely high viral load cases were randomly selected from our 404 

pool of 30 individuals with an extremely high viral load with multiple positive MT samples. The 405 

best matched SARS-CoV-2 low viral load case and negative control were then selected for each 406 

extremely high viral load case.  407 

SARS-CoV-2 RT- PCR 408 

Viral RNA extraction and RT-PCR testing was performed as previously described (Avadhanula 409 

et al., 2021). In brief, viral RNA was extracted using the Qiagen Viral RNA Mini Kit (QIAGEN 410 

Sciences, Maryland, USA) with an automated extraction platform QIAcube (QIAGEN, Hilden, 411 

Germany). The extracted RNA samples were tested by CDC 2019-novel coronavirus (2019-412 

ncoV) Real-Time RT-PCR Diagnostic panel [CDC 2019-Novel Coronavirus (2019-nCoV) Real-413 

Time RT-PCR Diagnostic Panel for Emergency Use Only Instructions for Use]. RT-PCR 414 

reaction was set up using TaqPath™ 1-Step RT-qPCR Master Mix, CG (Applied Biosystems, 415 

CA) and run on 7500 Fast Dx Real-Time PCR Instrument with SDS 1.4 software.  Respiratory 416 

samples with cycle threshold (Ct) values <40 for both N1 and N2 primers were considered RT-417 

PCR positive for SARS-CoV-2. 418 

Human Nose organoid model. 419 

The differentiated human nose organoid derived air liquid interface (HNO-ALI) cells were 420 

apically infected with SARS-CoV-2 [Isolate USA-WA1/2020, obtained from Biodefense and 421 

Emerging Infectious resources (BEI)] at a multiplicity of infection of 0.01 or mock infected with 422 
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airway organoid differentiation media, as previously described 26 . At the respective time points, 423 

the apical side of the transwells was washed twice and the cells were lysed using lysis buffer of 424 

RNeasy mini kit and RNA extracted.  425 

RNA extraction, library preparation and sequencing 426 

Samples were extracted using the Qiagen RNeasy mini kit (#74104 rev. 10/19) following the 427 

manufacturer's protocol for samples <5e6 cells. Samples were eluted in 50ul RNase-free water. 428 

RNA quality and quantity were estimated using Agilent Bioanalyzer OR Caliper GX. To monitor 429 

sample and process consistency, 1 µl of the 1:50 diluted synthetic RNA designed by External 430 

RNA Controls Consortium (ERCC) (4456740, ThermoFisher) was added. Whole transcriptome 431 

sequencing (total RNAseq) data was generated using the Illumina TruSeq Stranded Total RNA 432 

with Ribo-Zero Globin kit (20020612, Illumina Inc.) cDNA was prepared following rRNA and 433 

Globin mRNA depletion, and paired-end libraries were prepared on Beckman BioMek FXp liquid 434 

handlers. For this, cDNA was A-tailed followed by ligation of the TruSeq UD Indexes (Cat # 435 

20022370) and amplified for 15 PCR cycles following manufacturer’s recommendation. AMPure 436 

XP beads (A63882, Beckman Coulter) were used for library purification. Libraries were 437 

quantified using a Fragment Analyzer (Agilent Technologies, Inc) electrophoresis system and 438 

pooled in equimolar ratios. This pool was quantified using qPCR to determine loading 439 

concentration for sequencing. Sequencing was performed on the NovaSeq 6000 instrument 440 

using the S4 reagent kit (300 cycles) to generate 2x150bp paired end reads. 441 

Primary Analysis for Total RNASeq  442 

The RNA-Seq analysis pipeline cleans and processes raw RNA sequencing data (FASTQs), 443 

providing robust QC metrics and has the flexibility to map the reads to GRCh38 reference 444 

genome (after excluding the alternate contigs). The latest versions of software for sequence 445 

alignment (STAR v2.7.3a), for marking of duplicate reads (Picard v2.22.5) and for conversion of 446 

BAM files to FASTQ files (Samtools v.1.9) are part of this pipeline. In addition to these 447 
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components, the pipeline uses RSEM (v.1.3.3) for measuring gene expression and RNA-SeQC 448 

(v.1.1.9), Qualimap2 (v2.2.1) and ERCCQC (v.1.0) to generate quality control metrics on the 449 

RNA-Seq data. The pipeline also produces the raw gene features counts by using 450 

featureCounts (v2.0.1). 451 

Gene expression analysis 452 

For our serial MT swab dataset, where RNA-seq data were generated in different batches 453 

involving time and differences in extraction and processing methods, Combat algorithm 37 was 454 

used to correct for any observed batch effects. Fragments Per Kilobase Million (FPKM) values 455 

were quantile normalized 38 and log2-transformed. The differential expression analyses to define 456 

the host transcriptional response focus on 20000 genes for which an Entrez identifier could be 457 

associated with the transcript feature. To identify expression patterns associated with the host 458 

transcriptional response to SARS-CoV-2 infection in the serial MT swab dataset, Log2 459 

expression values correlated with SARS-CoV-2 Ct values across all 44 samples in the RNA-seq 460 

dataset. Additional two-group comparisons were carried using t-test on log2 expression values. 461 

For the HNO204 nose organoid dataset, Log2 expression values were compared between 462 

SARS-CoV-2 and Mock control by t-test, combining time points of 6hrs, 72hrs, and 6 days for 463 

each group.  464 

Analysis of external transcriptome datasets 465 

To define transcriptional signatures of the host cell response to SARS-CoV-2 infection in lung 466 

cancer cells, we referred to the GSE147507 RNA-seq dataset 39. In this dataset, A549 and 467 

Calu-3 were mock-treated or infected with SARS-CoV-2 and then profiled for gene expression. 468 

We used data from the SARS-CoV-2 profiling experiments involving multiplicity-of-Infection 469 

(MOI) of 2. We converted raw gene-level sequencing read counts to reads per million Mapped 470 

(RPM) values and then log2-transformed them 37. For the Mick et al. RNA-seq dataset of 471 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.24.542181doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542181
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

nasopharyngeal/oropharyngeal samples in 238 patients with COVID-19, other viral, or non-viral 472 

acute respiratory illnesses 25, RPM values were quantile normalized before the analysis.  473 

Statistical analysis 474 

All p-values were two-sided unless otherwise specified. We performed all tests using log2-475 

transformed gene expression values. False Discovery Rates (FDRs) due to multiple testing of 476 

genes were estimated using the method of Storey and Tibshirini 40. Even in instances of 477 

nominally significant genes only moderately exceeding chance expectations by FDR, the 478 

nominally significant genes were found in downstream enrichment analyses (involving functional 479 

gene sets and results of external SARS-CoV-2-related RNA-seq datasets) to contain molecular 480 

information representing real biological differences. We evaluated enrichment of GO annotation 481 

terms 41 within sets of differentially expressed genes using SigTerms software 42 and one-sided 482 

Fisher’s exact tests. Visualization using heat maps was performed using JavaTreeview (version 483 

1.1.6r4) 43,44. Gene ontology (GO) analysis of DEGs used in the upset plot (Figure S1) was 484 

performed using the web-based Database for Annotation, Visualization, and Integrated 485 

Discovery (DAVID; version - v2023q1) 45,46 486 

Data Availability 487 

The RNA-seq dataset of serially collected samples and of nose organoids will be deposited at 488 

Gene Expression Omnibus (GEO) (GEO accession number pending). In terms of previously 489 

published data, we obtained RNA-seq expression data from experimental models of SARS-490 

CoV-2 viral infection or other treatments from GEO (GSE147507). The Mick et al. RNA-seq 491 

dataset is available at GEO (GSE156063).  492 

  493 
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Figure Legends 494 

Figure 1. Differential gene sets associated with the transcriptional host response to 495 

SARS-CoV-2 infection across serially collected samples. (a) For each of 20000 genes, 496 

expression (log2 FPKM) was correlated with viral load (inverse correlation with Ct value) across 497 

44 samples from 20 subjects. Numbers of statistically significant genes (by Pearson’s) at both 498 

p<0.01 and p<0.001 significance levels are represented, as compared to the chance expected 499 

by multiple testing. (b) Numbers of differential genes (p<0.01, t-test) when comparing: 1) Visit 1 500 

samples from the extremely high viral load group (n=8 samples from eight subjects) with the 501 

samples in the negative group (n=4); samples at the latest time points for each of the subjects 502 

from the extremely high viral load group (n=8 samples) with the samples in the negative group; 503 

samples from the low viral load group (n=8 samples from eight subjects, using earliest time 504 

point) with the samples in the negative group. Chance expected genes at p<0.01 due to multiple 505 

testing would be on the order of 200 40. (c) Heat map comparing differential patterns across the 506 

three comparisons from part b, for the 1357 genes significant (p<0.01) for any comparison. 507 

Columns off to the side indicated which genes were correlated with viral load (p<0.01) across all 508 

44 samples (from part a), and which genes have Gene Ontology (GO) annotation 41 ‘response 509 

to virus’. 510 

Figure 2. Differential expression patterns and functional gene groups associated with 511 

SARS-CoV-2 viral load across serially collected samples. (a) Across 44 MT swab samples 512 

representing 20 subjects, differential gene expression patterns for the set of 112 genes 513 

significantly correlated with SARS-CoV-2 viral load (i.e., inversely correlated with Ct value) at 514 

p<0.001 (Pearson’s) are represented. Heat map contrast (bright yellow/blue) is 3-fold change 515 

from the average of the samples from the low viral load group. Genes listed off to the right have 516 

GO annotation ‘response to virus’. Extremely high viral load, Ct<20. (b) Selected significantly 517 

enriched GO terms 41 within the genes over-expressed with SARS-CoV-2 viral load (p<0.01, 518 
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Pearson’s). For each GO term, enrichment p-values and numbers of genes in the SARS-CoV-2-519 

associated gene set are indicated. Enrichment p-values by one-sided Fisher’s exact test. 520 

Figure 3. Genes correlated with SARS-CoV-2 viral load over time are similarly expressed 521 

in independent datasets of SARS-CoV-2 infected lung and upper airway cells. (a) 522 

Differential expression patterns for the 112 genes correlated with SARS-CoV-2 viral load across 523 

our serial sampling cohort (p<0.001, from Figure 2a) were examined in two independent RNA-524 

seq datasets of SARS-CoV-2 infection: one of lung cancer cell lines (A549 and Calu-3) infected 525 

with SARS-CoV-2 at multiplicity-of-Infection (MOI) of 2 for 24 hours 39, and one of 526 

nasopharyngeal/oropharyngeal samples in 238 patients with COVID-19, other viral, or non-viral 527 

acute respiratory illnesses 25. Gene order is the same across all datasets. Heat map contrast 528 

(bright yellow/blue) is 3-fold change from the corresponding comparison group (serial sampling 529 

dataset, average of the samples from the low viral load group; lung cancer cell line dataset, 530 

average of corresponding mock control group; Mick et al. dataset, average of “no virus” 531 

samples). (b) Venn diagram representing the gene set overlaps among the genes increased 532 

with SARS-CoV-2 infection in each of the three RNA-seq datasets from part a (with Calu-3 lung 533 

cancer cell line being considered here over A549). A p-value cutoff of p<0.01 was used to 534 

define top genes for each dataset (serial MT swab and Mick et al. 535 

nasopharyngeal/oropharyngeal datasets, Pearson’s correlation with viral load; Calu-3 dataset, t-536 

test). Gene set enrichment p-values by one-sided Fisher’s exact test. Genes overlapping 537 

between all three datasets are listed. (c) Similar to part b, but for genes decreased with SARS-538 

CoV-2 infection. 539 

Figure 4. Differential expression patterns and functional gene groups associated with 540 

SARS-CoV-2 infection of nose organoids. (a) HNO204 human nose organoids were infected 541 

with SARS-CoV-2 at an MOI of 0.01, and samples at 6hrs, 72hrs, and 6 days post infection 542 

were profiled for gene expression. Differential expression patterns for the top 867 genes over-543 
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expressed in HNO204 with SARS-CoV-2 infection (p<0.05, t-test) are represented here. Next to 544 

the HNO204 dataset are the corresponding patterns for independent RNA-seq datasets of 545 

SARS-CoV-2 infection: lung cancer cell lines (A549 and Calu-3)37, our serially collected MT 546 

swab samples from patients, and nasopharyngeal/oropharyngeal samples from Mick et al 25. 547 

Gene order is the same across all datasets. Heat map contrast (bright yellow/blue) is 3-fold 548 

change from the corresponding comparison group. (b) Venn diagram representing the gene set 549 

overlaps among the genes increased with SARS-CoV-2 infection in each of the following RNA-550 

seq datasets: HNO204, serial MT swab, and Calu-3 lung cancer cell line. Gene set enrichment 551 

p-values by one-sided Fisher’s exact test. Genes overlapping between HNO204 and serial MT 552 

swab datasets are listed. (c) Similar to part b, but for genes decreased with SARS-CoV-2 553 

infection. (d) Selected significantly enriched GO terms 41 within the genes over-expressed with 554 

SARS-CoV-2 infection in HNO204 (p<0.05, t-test). For each GO term, enrichment p-values and 555 

numbers of genes in the SARS-CoV-2-associated gene set are indicated. Enrichment p-values 556 

by one-sided Fisher’s exact test.  557 
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TABLE 1. Demographic and Visit Characteristics by Matched Groups  708 

 Extremely 

high viral load 

cases 

Low viral load 

cases 

Negative for 

SARS-CoV-2 

  

  (n = 10) (n = 10) (n = 10) p-value 
 

Age
a
, years 51.5 

(22.0, 69.0) 

46.0 

(24.0, 80.0) 

51.0 

(25.0, 70.0) 

    0.998 

Gender        1.000 

      Male 6 (60.0%) 6 (60.0%) 6 (60.0%)  

      Female 4 (40.0%) 4 (40.0%) 4 (40.0%)  

Race        0.126 

      Asian 1 (10.0%) 1 (10.0%) 0 (0.0%)  

      Black 2 (20.0%) 0 (0.0%) 2 (20.0%)  

      White 6 (60.0%) 3 (30.0%) 5 (50.0%)  

      Other/Multiracial 1 (10.0%) 1 (10.0%) 0 (0.0%)  

      Unknown/Declined 0 (0.0%) 5 (50.0%) 3 (30.0%)  

Ethnicity        0.322 

      Hispanic 3 (30.0%) 4 (40.0%) 3 (30.0%)  

      Non-Hispanic 7 (70.0%) 3 (30.0%) 5 (50.0%)  

      Unknown/Declined 0 (0.0%) 3 (30.0%) 2 (20.0%)  

Disease Severity                0.066 

      Asymptomatic/Mild 4 (40.0%) 5 (50.0%) 9 (90.0%)  

      Mild/Moderate 6 (60.0%) 5 (50.0%) 1 (10.0%)  

Number of Co-morbid 

Conditions 

               0.906 

      None 6 (60.0%) 5 (50.0%) 8 (80.0%)  

      One 2 (20.0%) 3 (30.0%) 1 (10.0%)  

      Two 1 (10.0%) 1 (10.0%) 0 (0.0%)  

      Three + 1 (10.0%) 1 (10.0%) 1 (10.0%)  

CDC week
b
 [end date] at Visit 1 32 [08Aug20] 

(26 [27Jun20]- 

41 [10Oct20]) 

27.5 [11Jul20] 

(24 [13Jun20]- 

28 [11Jul20]) 

32 [08Aug20] 

(26 [27Jun20]- 

41 [10Oct20]) 

 

Duration
a
, days     

      between Visit 1 - Visit 2 7.0 (5.0, 12.0) 9.5 (4.0, 13.0) N/A  

      between Visit 2 - Visit 3 7.5 (4.0, 20.0) 8.0 (4.0, 13.0) N/A  

      between Visit 3 - Visit 4 7.0 9.5 (7.0, 12.0) N/A  

N1 Ct value
a
     

      at Visit 1 14.5 (9.8, 15.8) 34.1 (31.7, 36.3) N/A  

      at Visit 2 26.6 (24.2, 33.9) 36.1 (30.8, 38.2) N/A  

      at Visit 3 35.7 (32.4, 38.2) 35.6 (32.2, 38.5) N/A  

      at Visit 4 34.3 33.6 (33.6, 33.7) N/A  
 

Abbreviations: Ct=cycle threshold,  
a
Median (Min, Max)

b
Median (IQR) or Median (Q1-Q3) or Median 709 

(25
th

 percentile-75
th

 percentile) or Median (lower quartile-upper quartile) 710 

Differences between groups were determined using the Kruskal-Wallis test for variables with non-711 

parametric distribution and by Fisher’s Exact test for categorical variables. P-value <0.05 was considered 712 

significantly different between groups.  713 
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TABLE 2. Demographic Characteristics by Matched Groups with RNA sequencing Data 714 

 Extremely 

high viral load 

cases 

Low viral load 

cases 

Negative for 

SARS-CoV-2 

  

  (N = 8) (N = 8) (N = 4) p-value 
 

Age           0.879
a
 

      Median (Q1, Q3) 39.5 (27.5, 57.5) 46.0 (33.0, 55.0) 45.5 (32.0, 57.0)  

      Min, Max 22.0, 60.0 24.0, 80.0 30.0, 57.0  

Gender        0.851
b
 

      Male 4 (50.0%) 5 (62.5%) 3 (75.0%)  

      Female 4 (50.0%) 3 (37.5%) 1 (25.0%)  

Race        0.158
b
 

      Asian 1 (12.5%) 1 (12.5%) 0 (0.0%)  

      Black 2 (25.0%) 0 (0.0%) 0 (0.0%)  

      White 4 (50.0%) 2 (25.0%) 1 (25.0%)  

      Other/Multiracial 1 (12.5%) 1 (12.5%) 0 (0.0%)  

      Unknown 0 (0.0%) 4 (50.0%) 3 (75.0%)  

Ethnicity        0.297
b
 

      Hispanic 2 (25.0%) 3 (37.5%) 1 (25.0%)  

      Non-Hispanic 6 (75.0%) 3 (37.5%) 1 (25.0%)  

      Unknown 0 (0.0%) 2 (25.0%) 2 (50.0%)  

Disease Severity        0.603
b
 

      Asymptomatic/Mild 3 (37.5%) 3 (37.5%) 3 (75.0%)  

      Mild/Moderate 5 (62.5%) 5 (62.5%) 1 (25.0%)  

Number of Co-morbid 

Conditions 

       0.656
b
 

      None 5 (62.5%) 4 (50.0%) 4 (100.0%)  

      One 1 (12.5%) 3 (37.5%) 0 (0.0%)  

      Two 1 (12.5%) 0 (0.0%) 0 (0.0%)  

      Three + 1 (12.5%) 1 (12.5%) 0 (0.0%)  

Sample Collected     

      at Visit 1 only 0 1 4  

      at Visits 1, 2, 3 5 2 0  

      at Visits 1, 2, 3, 4 1 0 0  

      at Visit 2 only 0 2 0  

      at Visits 1, 2 0 1 0  

      at Visits 1, 3 2 0 0  

      at Visits 1, 2, 4 0 1 0  

      at Visits 1, 3, 4 0 1 0  

Number of Samples per Subject     

      One 0 3 4  

      Two 2 1 0  

      Three 5 4 0  

      Four 1 0 0  
 

Differences between groups were determined using the Kruskal-Wallis test for variables with non-715 

parametric distribution and by Fisher’s Exact test for categorical variables. P-value <0.05 was considered 716 

significantly different between groups. 717 
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Figure S1: Upset plot summarising key differentially 
expressed gene trends between high and low SARS 
virus infected groups. The plot depicts common and 
unique genes shared between groups. Set size 
indicates number of differentially expressed genes in 
each comparison. Intersection size is the number of 
statistically significant (FDR < 0.05) differentially 
expressed genes in designated sets or groups. 
Connected circles at the bottom of the plot indicate an 
intersection of differentially expressed genes between 
groups.
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Figure S2: Gene ontology analysis of differentially expressed genes present only in high day 0 infection. The
top10 enriched GO terms for biological processes altered in shown. Significantly enriched GO terms with a
minimum three enriched genes were ranked by significance. The x-axis denoting the negative log fold change
of significance. Dotted red line depicts the significance threshold of FDR <0.05.
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