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Abstract 
 Predicting protein-protein interactions (PPI) is a challenging problem of central importance 
in fundamental biology. With the increasing number of available PPI prediction methods and 
databases, an effective evaluation model would be extremely valuable. Here we introduce ZIPPI 
(Z-score for Information about Protein-Protein Interfaces), which evaluates structural models of 
a complex based on sequence co-evolution and conservation involving residues that are in 
contact in the interface. The interface Z-score (ZIPPI score) is calculated by comparing metrics 
for interface contacts to metrics obtained from randomly chosen surface residues. Since 
contacting residues are defined by the structural model, this obviates the need of accounting for 
indirect interactions with methods such as Direct Coupling Analysis. Although ZIPPI relies on 
species-paired multiple sequence alignments, its focus on contacting interfacial residues and 
the avoidance of direct coupling methods makes it computationally efficient. The performance of 
ZIPPI is evaluated through applications to experimentally determined complexes from the 
Protein Data Bank (PDB) and to decoys from the Critical Assessment of PRedicted Interactions 
(CAPRI) experiment. We demonstrate how ZIPPI can be implemented on a genome-wide scale 
by calculating scores for millions of structural models of protein-protein interactions in the E. coli 
interactome as predicted by PrePPI. Many PrePPI predictions filtered by ZIPPI score are novel. 
In all, this proteome-scale method shows promising feasibility for applications to the full human 
protein interactome, which is not yet accessible to deep learning methods.  
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Introduction 
The past decade has seen continuing developments in the prediction of protein-protein 
interactions (PPIs). One can trace these advances to the use of amino acid coevolution to 
predict inter-residue contacts1,2. These methods have been used to predict the structures of 
small proteins3–5 and, more recently, to predict interaction partners and interfacial residues 
involved in PPIs6–9. The underlying premise is that functional interactions between two residues 
will result in their coevolution, which should be reflected in paired multiple sequence alignments 
(MSAs) of putative orthologues and detectable through mutual information (MI) based metrics 
between the two positions in the alignment. A serious complication is that the correlation 
between two residue positions i and j, i.e., two columns in the MSA, may result from an indirect 
coupling of i and j through their interaction with a third residue k. To solve this problem, 
methods using Potts model10 including Direct Coupling Analysis (DCA)3,11,12 and EVcouplings6,8, 
sparse inverse covariance (PSICOV)13, or pseudolikelihood maximization method such as 
Gremlin4,7 have been developed. However, these methods rely on the availability of large MSAs 
and thus have almost exclusively been applied to bacterial systems. Our main focus in this work 
is E. coli as well but, as will be discussed, there is no barrier to applications to larger genomes. 

The advent of AlphaFold14 and other deep learning-based methods15,16 has fundamentally 
changed the landscape of sequence-based PPI prediction. These methods depend either 
directly on MSAs or may learn them from training on a large number of sequences using various 
deep language models17–20.  Some methods predict contacting residues in PPIs while others 
predict the structures of multimeric complexes by concatenating the sequences of two proteins 
and folding them together as if they were a single protein (see e.g. AlphaFold-Multimer21 and 
AF2Complex22). An underlying problem for MSA-based methods is that, for a heterodimeric pair, 
it is necessary to carry out a species-based matching of the two query sequences which limits 
application to eukaryotic organisms due to the relatively limited number of sequences available 
for a paired MSA. Baker and coworkers discussed the challenges associated with applying deep 
learning and co-evolution-based methods to eukaryotes and were able to apply a hybrid 
RoseTTAFold/AlphaFold approach to a portion of the yeast proteome enabled in part by the 
large number of fungal genomes available23. However, applying deep learning to predict 
whether and how two proteins interact for entire proteomes remains computationally prohibitive 
and is likely to remain a significant challenge for some time.  

The focus on sequence has, in a sense, diverted attention from the use of three-dimensional 
structure information to predict whether and how two proteins interact. Docking-based methods 
predict models of dimers based on the structures of interacting monomers24,25 but have not been 
applied on a proteome-wide scale and have not been used on this scale to predict whether two 
proteins interact. Template-based modeling26 is an alternate approach where the structures of 
individual proteins are superimposed on structurally similar proteins that appear in a complex 
present in the PDB27. In a series of papers we reported the PrePPI (Predicting Protein-Protein 
Interactions) algorithm28 and database29–31 that relies on template-based modeling and, through 
a novel and highly efficient scoring function, leverages structural information on a truly 
proteome-wide scale. For example, PrePPI effectively screens the ~200 million possible 
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pairwise combinations of  human proteins which, in practice, amounts to billions of possible 
domain-domain interactions. 

Here we use PrePPI predicted complex structures in E. coli to examine the extent to which 
simple evolution-based metrics are informative even in those cases for which the multiple 
sequence alignment (MSA) depth is shallow. Co-evolution methods are based on sequence 
alone without prior knowledge of interfacial residues. We turn this problem around and ask if, 
given an interface (predicted for example by PrePPI), can one use covariance across the 
interface to discriminate cognate from non-cognate binding partners? This problem is much 
simpler than the more general one which begins with sequence, and requires methods such as 
DCA, since it involves evaluating interfaces where interacting residues are already defined. 
Thus, we expect that MI calculations alone would be sufficient, even for eukaryotic proteins, as 
very deep MSAs required for DCA analysis would not be necessary. Our method, ZIPPI (for Z-
score Information for Protein-Protein Interfaces), uses MSAs to determine coevolutionary 
information across interfaces but also leverages sequence conservation which provides an 
additional signal as to the reliability of a predicted interface. An essential feature of ZIPPI is the 
comparison of predicted interfaces evaluated with evolutionary metrics derived from MSAs to 
those created by replacing interfacial residues with randomly chosen surface residues. 

Our focus on interfacial residues leads to a significant speedup in interface evaluation that 
allows us to apply ZIPPI on a genome-wide scale.  Similarly, our finding that DCA is not needed 
for heterodimeric complexes effectively removes the need for large species-paired MSAs. As 
shown below ZIPPI is extremely effective in distinguishing correct from incorrect protein-protein 
interfaces as indicated by tests on PDB structures and on a CAPRI benchmark set32,33. Most 
notably there is a strong inverse correlation between ZIPPI scores and false positive rates 
(FPRs) for PrePPI predictions thus providing strong support for the reliability of ZIPPI’s efficacy 
and applicability to genome-wide interactomes.  

 
Results 
ZIPPI overview  
Given a structural model of a protein-protein complex, we first identify interfacial contacts and all 
surface residues. A species-paired MSA is created and used to calculate the following metrics 
for the interfacial contacts: mutual information (MI), conservation (Con) and direct coupling 
(DCA). For each of these, an average product correction (APC)34 is used to remove the random 
and background signal potentially arising from an insufficient number of sequences in the MSA 
and the common phylogenetic relationships of the species represented in the alignment. We 
then calculate the average value of each metric for the entire interface and, in addition, retain 
the highest scoring contact, denoted as “top”, for each of the six metrics, resulting in a total of 
twelve metrics that characterize a predicted interface.  
 
The next step is to substitute the contacting residues in the interface with a set of randomly 
chosen surface residues that are not in the interface (Figure 1). A hundred such interfaces are 
generated in this way for each complex. A Z-score of the predicted interface is then calculated 
for each of the twelve metrics based on a comparison to the corresponding values for the 
randomly generated interfaces. 
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Testing ZIPPI on PDB complexes 
Dimeric PDB complexes were collected from the first bioassembly as defined in the PDB 
structure file, for both bacterial and human complexes allowing us to test performance on both 
prokaryotic and eukaryotic MSAs with very different MSA depths. As described in Methods, 
complexes were selected based on resolution, chain length and the requirement that the 
proteins from the same species are present in the complex. In total, we obtained results for 279 
bacterial heterodimers, 247 human heterodimers, 3976 bacterial homodimers and 717 human 
homodimers. For each complex we calculated values of the 12 metrics. 
 
Figure S1, for each of the twelve metrics, plots the fraction of PPIs with a Z-score above the 
threshold denoted along the x-axis. It is evident that, for bacterial and human heterodimers, the 
APC correction improves performance relative to raw (uncorrected) metrics for MI and DCA but 
not for Con. In contrast, for homodimers the APC corrected Con metric is more effective than 
the corresponding raw metric. Further, choosing the top value for each metric is less effective 
than choosing the value averaged over the entire interface (Figures S1-S2, Figure 2). This is not 
unexpected since all contacts identified in PDB complexes are presumed to be correct and likely 
contribute to the total score. In Figure 2, we have plotted a single curve for the average value of 
MI, Con, DCA and their “top” equivalents. For each, the metric that contributes the highest Z-
score is chosen (e.g. the MI curve is based on choosing the larger of the Z-values from <MI> or  
<MIapc>).  In addition, the ZIPPI curve is generated by choosing the maximum value over all 
twelve metrics for each interface. In the following, for any property, the ZIPPI score will always 
correspond to the maximum value of all metrics such that the score for one interface may be 
based on a different metric than for another interface. 
 
Heterodimers –The best performing metric for bacterial heterodimers is MI, followed by DCA 
(Figure 2A). About 90% of the PPIs have a ZIPPI-score > 2, ~80% have a score > 3 and 65% 
have a score > 4. In contrast to bacteria, for human heterodimers the most significant metric is 
conservation (Figure 2B). We suggest that the difference is due to greater coevolutionary 
divergence underlying bacterial MSAs as opposed to eukaryotic MSAs.  For human 
heterodimers about 82% of the PPIs have a ZIPPI-score > 2 and ~63% have a ZIPPI-score > 3. 
 
Homodimers - DCA is the best performing metric for both bacterial and human homodimers 
(Figures 2C,D), likely because for homodimers MI signal is strongest for coevolutionary coupling 
of intramolecular interactions rather versus intermolecular coupling. Secondly, the sequence 
depth in MSA is much larger (reflecting two copies of a single protein) than for paired 
alignments in heterodimer case, and DCA is thus more reliable for homodimers. The percent of 
bacterial homodimers that have a ZIPPI-score > 2, 3, 4 is ~92%, 83% and 74% respectively. 
These values for human homodimers are ~82%, 75% and 65%, respectively. 
 
Overall, our results show that DCA works well for homodimers but that MI works best for 
heterodimers. This is likely a consequence of our analysis of interfacial residues alone and of 
the fact that we only consider observed contacts in a 3D structure. 
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Effect of MSA depth – Figure 3 plots ZIPPI score versus NMSA, the sequence depth of the MSAs. 
The figure also contains a histogram that displays the number of interfaces as a function of 
ZIPPI score. Surprisingly, there are cases where ZIPPI scores > 2 are obtained for values of 
NMSA < 10. Most of these cases result from significant sequence conservation of interfacial 
residues but there are cases where even MI yields a significant signal. Although these few 
cases may well be statistical anomalies, there are many more interfaces with values of NMSA 

between 10-50 where high Z-scores are calculated. These results highlight the success of ZIPPI 
in leveraging even shallow MSAs, made possible by the evaluation of interfacial residues in an 
experimentally determined structure. The next sections explore ZIPPI performance on predicted 
protein-protein complexes.  
 
Test on CAPRI benchmark decoys  
We applied ZIPPI to a widely used decoy set, score_set33, to test CAPRI (Critical Assessment of 
Prediction of Interactions)  models. This set contains docking models predicted by 47 different 
groups based on targets including proteins from bacteria, yeast, vertebrates and artificial 
design. We considered 13 widely studied targets for which there are 18,538 decoys, about 10% 
of which represent docking predictions of acceptable, medium or high quality based on CAPRI-
defined criteria (we define this combined group as “acceptable+”) whereas the remaining are 
considered to be “incorrect.” Even though two of the targets, T53 and T54 contain designed 
proteins (both in T53 and one in T54),we found 2110 shared species for Target 53 and 198 
shared species for Target 54. Table S1 reports MSA depth for all targets along with the number 
of acceptable+ and incorrect decoys, and the area under ROC curve (AUROC) for each target. 
It is clear from the table that extremely shallow MSA depths can produce good AUROCs and, 
further, that ZIPPI can handle cases with few interfacial residues and when there are only a few 
acceptable targets.  
 
Figure 4 plots the percentage of all models that have a given ZIPPI score in each category 
across targets. There is a clear distinction between acceptable+ and incorrect decoys. 
Essentially 90% of the acceptable+ models have Z-scores > 2. Nevertheless, some incorrect 
decoys do have high Z-scores and some correct decoys have low Z-scores. The first of the two 
peaks in the high-quality curve is due to T40 that involves a trimeric complex between a bovine 
protein and two copies of the same plant protein which bind in different locations. Only one is 
considered in the decoy set but the other forms a second interface complicating the creation of 
non-interacting residues in randomly generated  interfaces. This issue that does not affect 
docking approaches but compromises ZIPPI analysis. 
 
The AUROC and the Success Rate (the number of targets out of the total number considered 
for which at least one decoy of acceptable+ quality is present in the top N predictions), are 
widely used to evaluate CAPRI scoring functions. Table S2 lists AUROC and Success Rates for 
individual metrics as well as for the ZIPPI score. DCA, which is time consuming and not 
effective for heterodimers (Figure 2, Figure S1), is only used for homodimeric complexes. In 
contrast to the analysis of PDB complexes, all metrics perform approximately the same. Further, 
the improved performance of “top” relative to PDB complexes is likely because when not all 
contacts in an interface are real, incorrect contacts will lower the mean while only one correct 
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contact needs to be predicted to yield a good “top” score. Of note, for this decoy set, an 
individual metric can produce a better score than the ZIPPI score (see Table S1A). This can 
result if some metric, e.g. Con, strongly favors an incorrect decoy and thus lowers the ZIPPI 
score for an acceptable+ model, while another metric, e.g. MI, favors an acceptable+ model. 
This can result in ZIPPI producing a false positive while MI chooses the acceptable+ model.   
 
Table 1 compares ZIPPI performance to that of other methods35–40, most of which are based on 
machine learning. The data for other methods was taken from Table S8 of Réau et al.36 (see 
also Methods). ZIPPI, despite not being based on training, is essentially tied as the top 
performer as measured by AUROC and is the best performer based on top 100 Success Rate. 
However, ZIPPI is outperformed by a number of other methods as measured by top 1 and top 5 
success rates while, based on these criteria, iScore is the best performer. Of note, AUROC is 
affected by the distribution of false and true positives in a list of predictions while Success Rate 
depends on the number of good predictions at the top of the list. Success Rates are central to 
CAPRI rankings while ROC curve performance may be more important in asking whether a 
particular prediction is correct.  
 
Relating ZIPPI scores to PrePPI modeling scores 
In recent work we reported PrePPI calculations for the E. coli interactome focusing solely on the 
structural modeling score, SM, for interactions between structured domains31.  The score was 
trained on the human HINT high-quality literature-curated (HINT-HQ-LC) dataset which is 
designed to contain high confidence binary interactions41. In that study, we analyzed  the set of 
~9 million possible E. coli PPIs and were able to construct ~5.4 million PrePPI models of varying 
quality. A ROC curve was reported for testing these models on the E. coli HINT-HQ-LC data set 
yielding an AUROC of 0.88, thus, attesting to the overall high-quality of the predictions.   

 
Figure 5 displays whisker plots for the range of ZIPPI scores for PrePPI predictions in different 
FPR bins. As is clear from the diagram, as the PrePPI predictions become more reliable (lower 
FPR), the median ZIPPI score increases. These results provide a strong consistency check in 
that better structural models as defined by PrePPI produce stronger evolutionary signals as 
measured by ZIPPI. For heterodimers, at FPR < 10-4, the percentage of predicted PPIs with a 
ZIPPI score > 2, 3, 4 is 94%, 81% and 67%, respectively. The comparable numbers for PDB 
structures (see discussion of Figure 2) are 95%, 85% and 71% suggesting that PrePPI’s highest 
confidence predictions have ZIPPI scores close to those of PDB structures. Performance 
deteriorates as FPR increases but there are still many good ZIPPI scores for higher FPR 
values.  Figure 5 demonstrates that high and low ZIPPI scores are obtained in all FPR bins 
suggesting ZIPPI score can be used as an additional evidence source for prioritizing PrePPI 
models. 
 
The E. coli structural interactome 
The size of the E. coli binary interactome has been estimated to be on the order of 10,000 but 
such estimates are necessarily, at the best, very rough approximations. Table 2 lists the number 
of proteins and number of PPIs (out of the 5.4 million predicted) for different FPR rates and 
different ZIPPI scores. At FPR < 0.01 PrePPI predicts ~63,000 PPIs involving ~3,500 proteins 
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but these numbers are significantly decreased when more stringent PrePPI FPRs and ZIPPI 
scores are applied. Only ~2,100 PPIs satisfy the restrictive criteria of FPR < 0.00001 and ZIPPI 
score > 4. 

 
Table 2 also lists the overlap of ZIPPI-filtered PrePPI predictions with PPIs annotated in 
experimental databases. Any PPI that appears in the listed databases (see methods) is 
considered whether or not the interaction is likely to be direct or indirect since our goal is to 
determine the number of truly novel PPIs that our methods predict. At the most stringent end of 
the scale (FPR < 0.0001, ZIPPI score > 4) 472 novel predictions are made. On the other hand, 
as an example, there are 9,851 predictions made for FPR < 0.01, ZIPPI score > 4 suggesting 
that using ZIPPI may facilitate the discovery of meaningful predictions that might be missed 
based on PrePPI alone (see Figure 5). In future work we plan to train classifiers based on both 
the PrePPI SM score and the ZIPPI score so as to more fully integrate the two methods. 

 
 

Discussion 
Here we have introduced ZIPPI, a novel method that uses paired MSAs as a basis for scoring 
predicted models of protein-protein interfaces. ZIPPI leverages evolutionary information 
involving contacting residues in a 3D structural model rather than full length protein sequences. 
In addition to reducing the amount of computer time required to evaluate an interface, the fact 
that interacting residues are known from the structure obviates the need to carry out DCA and 
related methods to avoid the problem of indirect couplings. Methods such as AlphaFold-
multimer21 and AF2Complex22 produce models of complexes but, due to computational 
limitations, have not been applied on an interactome-wide scale to ask which of all possible PPI 
pairs in a proteome will form a binary complex. However, in contrast, PrePPI uses structure to 
accomplish this task for the ~200 million possible PPIs in human and for the ~9 million possible 
PPIs in E. coli. More recently, the Threpp threading algorithm has also been used to screen the 
entire E. coli interactome for plausible structural models of complexes42. These studies highlight 
the fact that structure-based screening of entire interactomes is far more efficient than using 
sequence based deep learning structure-prediction methods for screening purposes. However, 
deep-learning based methods are in many cases likely to produce more accurate models than 
high-throughput computational procedures such as the ones used in PrePPI and Threpp. This 
suggests using structure-based approaches to provide interactome-wide yes/no answers along 
with 3D models and turning to increasingly accurate deep learning methods for a more limited 
set of interactions of particular interest. We emphasize that ZIPPI can quickly be applied to any 
structural model and is computationally efficient. 
 
We first tested ZIPPI on bacterial and human complexes in the PDB and found that mutual 
information was the best scoring metric for bacterial heterodimers while sequence conservation 
was the most effective metric for human heterodimers. We found that DCA is not necessary for 
the evaluation of models of heterodimeric complexes when the interfacial contacts of a model 
are known and, rather, that the use of direct mutual information is sufficient. Moreover, given a 
structural model for a complex, we find  that shallow MSAs are able to produce significant 
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mutual information and conservation signals. DCA was found to be the most effective metric for 
homodimers and is retained in ZIPPI only for these cases. 
  
ZIPPI was also tested on thirteen CAPRI targets which contained what are termed acceptable, 
medium and high quality models as well as a large number of incorrect decoys. Overall, ZIPPI 
performance was found to be comparable to or better than other approaches. Thus ZIPPI, 
especially if combined with other sources of evidence, may prove to be an effective means of 
evaluating future CAPRI predictions. We note in  this regard that evolutionary information has 
been used for some time in the evaluation of docking models but usually in combination with 
other evidence sources. Nevretheless, ZIPPI’s focus on the use of MSAs to evaluate interfaces 
and its method of calculating Z-scores through the generation of random interfaces interfaces, 
offers a novel, computationally efficient and highly effective measure of interface quality that can 
easily be combined with other sources of evidence. 
 
Finally, we implemented ZIPPI for 4.5 million E. coli PPI interfaces predicted by PrePPI.  As 
suggested by the results in Table 2, the inclusion of ZIPPI in PrePPI predictions has the 
potential both to increase the reliability of “high confidence “predictions while identifying low 
confidence predictions that are worthy of further consideration. Despite its general applicability, 
an immediate application of ZIPPI is its combination with the PrePPI algorithm with the goal of 
combining evolutionary signals with a method based entirely on 3D structure. Indeed despite 
oversall correlation (Figure 5) the existence of PrePPI-predicted PPIs with high ZIPPI scores 
and low PrePPI-predicted FPRs (Table 2), indicates that the information in ZIPPI is highly 
complementary. Integration of the two methods should prove to be quite valuable, especially in 
applications to the human proteome and other eukaryotic organisms.  
 
The combination of PrePPI with ZIPPI alters the prevailing paradigm of deep-learning-based 
approaches exemplified by AlphaFold-multimer which predict the structure of a complex from 
sequence alone. Rather, the strategy proposed here is to start with monomer structures (for 
example taken from AlphaFold as now done in PrePPI) and then to generate complex structures 
either through template-based modeling, as in PrePPI or, in principle, from docking. Our own 
focus is predicting PPIs on a proteome-wide scale as made possible with the PrePPI algorithm. 
ZIPPI now allows us to couple 3D structural information as provided by PrePPI with evolutionary 
information from MSAs. As such it opens the door to the integration of PrePPI, not only with 
ZIPPI but also with deep learning based approaches that are computationally efficient enough to 
provide residue-contact probabilities on a proteome-wide scale which for human, may involve 
billions of PPIs if predictions are to be made at the domain level.  
 
 
Methods:  
Selecting bacterial and human PDB dimer structures  
Taxonomy and UniProtKB summary files for all PDB chains were downloaded from SIFTS43. 
From the SIFTS PDB chain taxonomy file, PDB chains that only correspond to one taxonomy ID 
were selected and then filtered to bacteria and human PDB chains. The taxonomy list of 
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bacteria was collected from searching both UniProtKB-proteome44 and NCBI Taxonomy 
databases45. The union of the two databases provided 521,897 unique bacteria taxonomy IDs. 
 
From the SIFTS PDB chain UniProt file, PDB files with only two UniProt IDs for heterodimers 
and one ID for homodimers, two chains and both chains longer than 30 amino acids are 
selected. PDBs that have any chain mapped to ≥ 2 UniProt IDs are excluded to avoid fusion or 
chimera proteins. Structure resolution information is obtained through the PDB API service27. 
PDBs that are protein-only as the polymer entity type, and either from X-ray with 
resolution ≤ 4 Å or from EM with resolution ≤ 4.5 Å are selected. NMR structures are not used. 
Further, through reading the PDB file header, PDBs where the oligomer state of the first 
BioAssembly (aka. BioUnit or BioMolecule) defined as “DIMERIC” by either the author or 
software with resolved sequence lengths  longer than 30 amino acids are selected. PDB dimer 
structures that have redundant UniProt ID pairs are removed by keeping the structure with 
either longer length (at least twice as long) or better structural resolution. Lastly, to remove 
closely related homolog proteins, we compared the pairwise sequence identities and removed 
redundant structures where both protein sequences have 90% sequence identity with another 
structure. The detailed pipeline is provided in the supplemental information. 
 
Defining protein surface and protein-protein interface 
The accessible surface area (ASA) of residues for individual chain A, B, and their complex AB 
are obtained using our in-house C++ program AREA. An interface is defined as long as the 
buried ASA larger than zero. The interface between proteins A and B consists of contacting 
residues where the distance between any heavy atoms is less than 6.0 Å. All the residue indices 
from the PDB are updated after mapping the PDB sequences to their full UniProt sequences 
using hhalign of the hh-suite package46. 
 
Generating random protein-protein interfaces 
The interfacial residues on proteins A and B are replaced, one by one, by randomly chosen 
surface residues of the same protein as indicated in Figure 1. This way of generating random 
interfaces preserves the interaction network of different interfacial residues. To ensure statistical 
significance of the Z-score calculations, 100 random interfaces are generated for each protein-
protein interface.  
 
Generating and pairing MSAs 
To avoid biased sequence sampling due to over-studied model species, we carried out homolog 
sequence search on 5,090 representative proteomes that were carefully curated and selected in 
EggNog 5.047. This database includes 4,445 prokaryotic reference genomes selected from 
original 25,038 bacteria genomes, and 477 eukaryotic genomes. Homologous sequences are 
searched using Jackhmmer (hmmer-3.2.1)48 with 5 iterations and the default E-value of 0.001. 
In the final outputted multiple sequence alignment, only the sequence with highest identity to the 
query is kept as the representative sequence for each species. 
 
The MSAs of two proteins, p1 and p2, are paired based on the shared common species. 
Sequence rows that cover less than 50% of surface residue positions of p1 or p2 are excluded 
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from the paired MSA. Sequence columns, either interface residual or surface residual positions, 
that have more than 50% gaps are excluded.  
 
Calculating mutual information, conservation, DCA, and their APC-corrected terms 
For two positions (a, b) in the paired MSA, their mutual information (MI) is calculated through 
Eq. 1, where x and y denote their amino acid type and the gap in MSA is treated as the 21th 
amino acid type or state. The p(x) and p(y) are the frequency of a certain amino acid types and 
p(x, y) is the frequency of a certain pairs of amino acid types. The conservation score between 
two positions (a, b) is defined through the complement of their normalized joint entropy S(a, b) 
(Eq. 2). The direct coupling information is calculated through the mean field DCA method which 
is based on the maximum-entropy model3. The final direct coupling information is quantified 
using a similar definition as in the mutual information except p(dir)(x, y) involves only the isolated 
direct coupling strength of (a, b) from the DCA calculations (Eq. 3). 
 
The average product correction (APC) is applied to all measurements. Taking MI as an 
example, the APC term between position (a, b) (from p1 and p2, respectively) is calculated as 
the product of the average MI signal of position a with positions of p2, and position b with 
positions of p1,  between interfacial residues on both proteins, then normalized by the average 
measurement of all protein to the other (Eq. 4). The APC-corrected term is given 
correspondingly for MI, Con, and DCA (Eq. 5).  

 
 
 

 
 
 
 

 
 
 
 
 

 
Calculating Z-scores of the interface 
For each interface contact of the given interface between protein p1 and p2 and the generated 
100 random interfaces, the following six measurements are calculated: mutual information, 
conservation, direct coupling information and their corresponding APC-corrected terms. Of all 
the interface contacts, we choose the top and the mean as the representative metric for each 
measurement, denoted as MItop and <MI>, for example. The Z-score of the 12 metrics are then 
calculated for the given interface versus the generated random interfaces. The larger Z-score of 
the raw metric and its APC-corrected metric is taken as Z-score for this metric. The maximum of 
all metrics is taken as the final ZIPPI score. 
 
Building the E. coli experimental PPI database 
The experimental database of E. coli PPI is integrated from several major resources including 
Interactome3D49, HINT41, APID50, STRING51 and Ecocyc52, as well as previously known large-
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scale E. coli PPI screening using experimental methods such as APMS53 and Y2H54. Before 
their integration, each database was pre-processed by selecting only E. coli K12 proteins 
(proteome size: 4391) and sorting the uniport IDs for each pair of PPIs. During the integration, 
redundant PPIs were removed. Note that Interactome3D also includes homology-modeled PPIs 
and the STRING database has inferred PPIs, which are not determined by direct physical 
interaction experiments but inferred by other methods such as gene-related methods or species 
PPI transfer. By excluding these two contributions, we also built a purely experimental PPI 
database of E. coli based on direct physical experiments. In all, there are 565,007 PPIs in the 
integrated experimental database set and 45,634 PPIs in the physical experimental PPI dataset.  
 
In summary, the integrated experimental database set includes: all HINT binary and complex 
PPIs (updates of 2021/11), all APID PPIs (updates of 2021/11), all Interactome3D PPIs 
(updates of 2021/11), all STRING PPIs (v11.5), the gold standard dataset used in Zhang and 
coworkers’ Threpp work42, the high throughput experimental PPI set from Threpp (Table S1), 
the Ecocyc PPIs downloaded Cong et al.55(Table S5), the Y2H PPI set from Rajagopala et al.54 
(Supplementary Table 2), the high-confidence and median-confidence APMS PPI set from Babu 
et al.53 (Supplementary Table 2). For the physical experimental PPI dataset, only physical links 
in the STRING database with experimental score >0 are included; only the PDB subset of 
Interactome3D is included; the other datasets remain the same as in the integrated 
experimental database.  
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Figure 1. Schematic of the ZIPPI algorithm. Two proteins, A and B, form a complex with 
interfacial contacts between residues A1 and B3, A5 and B6, A8 and B6 or B9. Various 
evolutionary metrics (see text), calculated from the paired multiple sequence alignment in the 
right panel, are calculated for these contacting residues. The columns in the alignment that 
correspond to these interface residues are marked in purple. The false interfaces are generated 
by replacing the interface residues with randomly picked surface residues that are not on the 
interface. The dashed orange lines in the left panel indicate one such interface and the 
corresponding columns in the alignment are marked in orange. 
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Figure 2. Percentage of PDB PPIs with a Z-score above a threshold. Colors indicate curves 
for different metrics each of which corresponds to the maximum of the raw and APC value for a 
given PPI. The mean and top metric of all interface contacts are denoted as <>, and top, 
respectively The ZIPPI curve is shown in purple and, for a given PPI, is the largest Z-score 
among all metrics. A). Bacterial PDB heterodimers. B). Human PDB heterodimers. C). Bacterial 
PDB homodimers. D). Human PDB homodimers. 

Bacterial
Homodimers

Human
Homodimers

Bacterial
Heterodimers

Human
Heterodimers

C) D)

A) B)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.25.542344doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.25.542344
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3. Effect of MSA depth on ZIPPI score for PDB dimers.  The ZIPPI score is plotted 
against MSA depth, NMSA, where each red dot corresponds to the average ZIPPI score in a 
given bin. A histogram of the numbers of PPIs in each bin is shown in blue. Data is plotted on a 
log scale.  

 
Figure 4. Percentage of CAPRI models having a given ZIPPI score. Percentages are plotted along the y-

axis for four classes of CAPRI models. The total number of models in each class is indicated in the text at 

the lower left. 

Incorrect: 16220
Acceptable: 863
Medium: 816
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Figure 5. Relationship between ZIPPI scores and the False Positive Rate (FPR) of PrePPI-
predicted PPIs. FPR ranges indicated below each set of bar charts and color-coded.  
 

 
Table 1. Performance of different scoring methods on CAPRI decoys. Area under the 
receiver operating characteristic curve (AUROC) is calculated by averaging over values for 
each of 13 targets. Success Rates of Top N indicates the number of targets where there are 
acceptable or better predictions in the Top N predictions. 
 
 

Success Rates
AUROCMethod

Top100Top5Top1

12/132/132/130.72 ± 0.13ZIPPI

9/133/132/130.57 ± 0.23HADDOCK

9/136/135/130.68 ± 0.21iScore

9/131/131/130.64 ± 0.19DeepRank

10/132/131/130.56 ± 0.14DOVE

8/136/131/130.63 ± 0.16GNN-DOVE

10/135/131/130.72 ± 0.19DeepRank-GNN
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Table 2. Number of proteins, PPIs and novel predictions for different PrePPI FPRs and 
different ZIPPI-scores. 
 

 

 

 

 

# Novel 

PPIs

# PPIs in 

Experiment 

Databases

# Proteins# PPIsZIPPI scorePrePPI FPR

49,06213,5863,52862,648none0.01

31,41110,7693,38242,18020.01

18,8608,2053,21527,06530.01

9,8515,7302,94315,58140.01

3,8184,6952,3588,513none0.001

3,1414,2922,1907,43320.001

2,4523,7532,0306,20530.001

1,7453,0131,8404,75840.001

7332,3251,5843,058none0.0001

6642,1751,4842,83920.0001

5681,9541,3862,52230.0001

4721,6721,2482,14440.0001
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SI Figure S1. Percentage of PDB PPIs with a Z-score above a threshold for the raw and 
APC-corrected metrics averaged over interface contacts. Colors indicate curves for different 
metrics A). Bacterial PDB heterodimers. B). Human PDB heterodimers. C). Bacterial PDB 
homodimers. D). Human PDB homodimers. 
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SI Figure S2. Percentage of PDB PPIs with a Z-score above a threshold for the interface 
contact with the top value for a given metric. Colors indicate curves for different metrics. A). 
Bacterial PDB heterodimers. B). Human PDB heterodimers. C). Bacterial PDB homodimers. 
D).Human PDB homodimers. 
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SI Table S1. Properties associated with each CAPRI target. 

 

 

SI Table S2. Detailed AUROC performances of ZIPPI metrics for each CAPRI Target. 
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