New Results
Learning Random Numbers to Realize Appendable Memory System for Artificial Intelligence to Acquire New Knowledge after Deployment
Kazunori D Yamada
doi: https://doi.org/10.1101/2023.05.25.542376
Kazunori D Yamada
1Graduate School of Information Sciences, Tohoku University, Sendai, Japan
2Unprecedented-scale Data Analytics Center, Tohoku University, Sendai, Japan

Article usage
Posted July 28, 2024.
Learning Random Numbers to Realize Appendable Memory System for Artificial Intelligence to Acquire New Knowledge after Deployment
Kazunori D Yamada
bioRxiv 2023.05.25.542376; doi: https://doi.org/10.1101/2023.05.25.542376
Subject Area
Subject Areas
- Biochemistry (13868)
- Bioengineering (10571)
- Bioinformatics (33587)
- Biophysics (17310)
- Cancer Biology (14375)
- Cell Biology (20355)
- Clinical Trials (138)
- Developmental Biology (10973)
- Ecology (16203)
- Epidemiology (2067)
- Evolutionary Biology (20513)
- Genetics (13512)
- Genomics (18805)
- Immunology (13937)
- Microbiology (32479)
- Molecular Biology (13523)
- Neuroscience (70807)
- Paleontology (532)
- Pathology (2222)
- Pharmacology and Toxicology (3778)
- Physiology (5958)
- Plant Biology (12147)
- Synthetic Biology (3401)
- Systems Biology (8239)
- Zoology (1869)