Abstract
Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but extremely dangerous side effect that has been reported for several adenoviral (Ad)-vectored COVID-19 vaccines. VITT pathology had been linked to production of antibodies that recognize platelet factor 4 (PF4), an endogenous chemokine. In this work we characterize anti-PF4 antibodies obtained from a VITT patient’s blood. Intact-mass MS measurements indicate that a significant fraction of this ensemble is comprised of antibodies representing a limited number of clones. MS analysis of large antibody fragments (the light chain, as well as the Fc/2 and Fd fragments of the heavy chain) confirms the monoclonal nature of this component of the anti-PF4 antibodies repertoire, and reveals the presence of a fully mature complex biantennary N-glycan within its Fd segment. Peptide mapping using two complementary proteases and LC-MS/MS analysis were used to determine the amino acid sequence of the entire light chain and over 98% of the heavy chain (excluding a short N-terminal segment). The sequence analysis allows the monoclonal antibody to be assigned to IgG2 subclass and verify that the light chain belongs to the λ-type. Incorporation of enzymatic de-N-glycosylation into the peptide mapping routine allows the N-glycan in the Fab region of the antibody to be localized to the framework 3 region of the VH domain. This novel N-glycosylation site (absent in the germline sequence) is a result of a single mutation giving rise to an NDT motif in the antibody sequence. Peptide mapping also provides a wealth of information on lower-abundance proteolytic fragments derived from the polyclonal component of the anti-PF4 antibody ensemble, revealing the presence of all four subclasses (IgG1 through IgG4) and both types of the light chain (λ and κ). The structural information reported in this work will be indispensable for understanding the molecular mechanism of VITT pathogenesis.
Competing Interest Statement
The authors have declared no competing interest.