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Abstract 
Large-scale pretrained models have become foundation models, leading to breakthroughs in natural language 
processing and related fields. Developing foundation models in life science, aimed at deciphering the 
"languages" of cells and facilitating biomedical research, is challenging yet promising. We developed a large-
scale pretrained model, scFoundation, for this purpose. scFoundation was trained on over 50 million human 
single-cell transcriptomics data, which contain high-throughput observations on the complex molecular 
features in all known types of cells. scFoundation is currently the largest model in terms of the size of trainable 
parameters, dimensionality of genes and the number of cells used in the pre-training. Experiments showed that 
scFoundation can serve as a foundation model for single-cell transcriptomics and can achieve state-of-the-art 
performances in a diverse array of downstream tasks, such as gene expression enhancement, tissue drug 
response prediction, single-cell drug response classification, and single-cell perturbation prediction. 

Introduction 
Large-scale pretrained models are revolutionizing research in natural language processing related fields and 
becoming a new paradigm toward general artificial intelligence. These models trained on huge corpora 
becomes foundation models due to their fundamental importance in leading of breakthroughs in downstream 
tasks and their ability in discerning patterns and entity relationships within language. While in life science, the 
organism has different "languages". Cells, the basic structural and functional units of the human body, 
constitute these "sentences" composed of a myriad of "words" such as DNA, RNA, proteins, and gene 
expression values. The intriguing question is: Can we develop foundation models based on these biological 
"languages" for modeling complex cellular activities? 

Single-cell RNA sequencing (scRNA-seq) data, also known as single-cell transcriptomics, offers high-
throughput observations into cellular systems1–3, making the first groundwork for developing foundation 
models of cells. In transcriptomic data, gene expression profiles depict a complex system of gene-gene co-
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expression and interaction within cells. With the efforts of the Human Cell Atlas4 and other studies, the data 
scale is exponentially growing5. Given the nearly 20,000 protein-coding genes across millions of cells, the 
observed gene expression values scale to magnitude of trillions, which is comparable to the volume of natural 
language text used to train models such as GPT. This paves the way for us to pre-train a large-scale model to 
extract complex, multifaceted internal patterns of cells, similar to how large language models (LLMs) learn 
human knowledge from extensive natural language texts. 

In the LLMs pre-training6,7, the growth in both model and data scale is critical for constructing a foundation 
model that can effectively mine intricate multi-level internal relationships. Despite pre-training models on 
single-cell gene expression data are receiving increased attention8–10, the development of a large-scale 
foundation model still presents unique challenges. First, the gene expression pre-training data needs to 
encompass a landscape of cells across different statuses and types. Currently, scRNA-seq data are loosely 
organized, and a comprehensive database is lacking. Second, when modeling each cell as a sentence and each 
gene expression value as a word, the nearly 20,000 protein-coding genes make the “sentence” exceptionally 
long, a scenario that traditional transformers struggle to handle11,12. Third, scRNA-seq data across different 
sequencing techniques and laboratories exhibit high variance in sequencing read depth. This technical noise 
prohibits the model from learning uniform and meaningful representations for cells. 

In this study, we address these challenges and pre-train the first large-scale foundational model, 
scFoundation. We collect the largest scRNA-seq data set with over 50 million gene expression profiles for pre-
training, covering cells from different statuses and various tissues. We develop an asymmetric architecture 
designed for single-cell RNA-seq data to accelerate the training process and improve model scalability. We 
develop a read-depth-aware pre-training task that enables scFoundation not only to model the gene co-
expression patterns within a cell but also to link the cells with different read-depth.  

To verify the ability of scFoundation for learning the characteristics of both cells and genes, we conduct 
experiments on multiple downstream tasks, including gene expression enhancement, drug response prediction 
on bulk data, single-cell drug response classification, and single-cell perturbation prediction. scFoundation 
achieved state-of-the-art performance by adapting context embeddings to the corresponding downstream 
models. Our work reveals the efficacy and value of large-scale pre-trained models for transcriptomics data and 
demonstrates its foundation function in facilitating both biology and medical tasks learning. We explore and 
push the boundaries of the foundation model in the single-cell field.  

Results 
The scFoundation pre-training framework 

We pre-trained a large-scale model, scFoundation, modeling 19,264 genes with 100 million parameters on over 
50 million scRNA-seq data. To our knowledge, this is the largest model parameter size, gene coverage, and 
data scale in the single-cell field. The ability to efficiently train such a model benefited from our pre-training 
framework, which consists of three parts: model design, pre-training tasks, and data collection (Fig. 1A).  

We developed xTrimoGene13, a scalable transformer-based model with both algorithmically efficient and 
engineering acceleration strategies. It included an embedding module and an asymmetric encoder-decoder. 
The embedding module converted continuous gene expression scalars into learnable high-dimensional vectors, 
which were then used as the input of the encoder and decoder. This module fully retained information from 
the raw expression values, a notable improvement over the discretized values used in previous models9,14. The 
asymmetric encoder-decoder architecture was specifically designed to accommodate the high sparsity 
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characteristics of single-cell gene expression data. The encoder only accepted embeddings of the non-zero and 
non-masked expressed genes’ as input, and the decoder accepted all genes’ embedding (i.e. the encoder 
processed embeddings and zero and mask embeddings) as input. This architecture gave differential attention 
and computational resources to zero and non-zero values, thereby achieving the efficient learning of all genes 
relationships without any selection (e.g., highly variable gene selection). Moreover, the model deployment 
incorporated a variety of large-scale model training optimization techniques to ensure efficient training 
(Methods). 

We developed a new pre-training task called the read-depth-aware (RDA) modeling, which was an extension 
of masked language modeling15, considering single-cell gene expression data had a high variance in read depth, 
especially in the large-scale pre-training data. In RDA, we trained the model to predict the masked gene 
expression of a cell based on other genes’ context. The context was from a counterpart or a low read-depth 
variant of that cell’s gene expression profile. Specifically, we processed a raw gene expression training sample 
with a hierarchical Bayesian downsampling strategy to generate an input sample with an unchanged or altered 
total count (Methods). We treated the total count of all gene expressions as the measure of one cell’s read depth 
and defined two total count indicators: T (representing 'target') and S (representing 'source'), corresponding to 
the total counts of the raw and input samples respectively. We randomly masked the expression values of genes 
in the input sample and record the index of masked genes. Then the model took the masked input sample and 
two indicators to predict the expression value of the raw sample at the masked index (Fig. 1B). A regression 
loss was conducted on the predicted and raw gene expression values. This pre-training process enabled the 
pre-trained model not only to capture the gene-gene relationship within the cell but also to harmonize the cell 
with different read depths. When used for inference, the number T could control the total count of the output 
gene expression profiles. Thus, we could feed the cell's raw gene expression to the pre-training model and set 
the T higher than its total count S to generate a gene expression value with enhanced sequencing depth. 

We constructed a comprehensive single-cell gene expression data set by collecting data from various 
publicly available single-cell resources, including GEO16, Single Cell Portal, HCA4, EMBL-EBI17, etc. We 
aligned all data to a consolidated gene list that comprised 19,264 protein-coding and common mitochondrial 
genes, as identified by the HGNC18. After preliminary data quality control (Methods), we got over 50 million 
human scRNA-seq data for pre-training. The abundant data sources made our pre-training dataset rich in 
biological patterns. From an anatomical perspective, the data covered more than 100 tissue types in different 
diseases, tumors, and normal states (Fig. 1A); From a cell ontology perspective, the data encompassed almost 
all known human cell types and cell states.  

After pre-training, we applied the scFoundation model to several downstream tasks (Fig. 1C). The outputs 
of the scFoundation encoder were pooled into cellular embeddings, which were used for cell clustering and 
drug response prediction. The outputs of the scFoundation decoder were gene-level context embeddings, which 
were used for perturbation prediction. 
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Figure 1. The schematic overview of the pre-training framework. A) 50 million single-cell gene expression profiles were 
collected, covering tumor and non-tumor cells from various tissues. These data were used for the read-depth-aware (RDA) 
task to pre-train the model. In the RDA task, the input consists of the masked gene expression vector and two total count 
indicators (T and S). The output is the predicted expression value for all genes, and the loss is computed at the masked 
positions. B) Outline of the pre-training process. A raw gene expression vector serves as a training sample. A hierarchical 
Bayesian downsampling strategy generates the input sample. The gene expression total count values (T and S) of the raw 
and input samples are computed. Values in the input sample are randomly masked. The scalar values are converted into 
embeddings. Only embeddings corresponding to non-zero and non-masked values (including T and S) are fed into the 
model encoder. The output embeddings of the encoder are then combined with mask and zero embeddings and fed into 
the decoder. Also, the encoder output can be pooled to generate a cell embedding for downstream usage. The decoder 
output embeddings are projected to the gene expression value via a shared multilayer perceptron (MLP) layer. The 
regression loss between the predicted and raw sample’s gene expression values is computed. C) The pre-training 
embeddings can be leveraged as substitutes for the gene expression profiles, facilitating read depth enhanced cell 
clustering, drug response prediction, and perturbation prediction. 

scFoundation is a scalable model for read-depth enhancement without fine-tuning 

In large-scale language models, researchers observed a power-law relationship between the loss and various 
factors, including model size, the amount of computation utilized during training, etc6,19. This relationship, 
commonly referred to as the scaling law, was also confirmed in our framework. Fig. 2A illustrated the training 
of three models with parameter sizes of 3 million, 10 million, and 100 million. It was found that as the model 
parameters and the total number of floating point operations (FLOPs) increased, the loss on the validation 
dataset exhibited a power-law decline. Our scFoundation model, with 100 million parameters, surpassed all 
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previous models8–10,14 in terms of parameter size and achieved the lowest reconstruction loss. 

Our RDA modeling enables scFoundation to enhance the read depth of the input cell by setting T as a higher 
number than S. We first assessed this ability on an independent test dataset. We downsampled the total count 
into 1%, 5%, 10%, and 20% of the original profiles, generating four corresponding datasets with varying total 
count fold changes. For each dataset, we didn’t finetune the scFoundation but directly utilized it to enhance 
the cells with a low total count by setting the desired total count T as the reciprocal of the sample rate. We 
computed the mean absolute error (MAE) and mean relative error (MRE) metric between the predicted and 
ground-truth values of non-zero expressed genes (refer to Methods). Additionally, we evaluated the Pearson 
Correlation Coefficient (PCC) of gene expression between the enhanced and ground-truth data. We employed 
the downsampled gene expression values as the baseline for comparison. As depicted in Fig. 2B and Fig. S1, 
scFoundation demonstrated a significant reduction of half the MAE and MRE compared to the non-enhanced 
baseline. Particularly, when the downsampling rate was below 10%, the baseline results exhibited a 97.5% 
MRE, indicating that most of the non-zero values were sampled as zeros. However, scFoundation consistently 
maintained an MRE of 60%. As the downsampling rates increased, the baseline results showed a lower error 
and a higher PCC, yet scFoundation continued to outperform the baseline. These findings highlight the ability 
of scFoundation to enhance gene expressions in scenarios even with extremely low total counts, and robust to 
be generalized to new datasets. 

Clustering is another common analysis to validate the performance of read-depth enhancement methods. We 
compared scFoundation with imputation methods including MAGIC20, SAVER21, scImpute22, and scVI23 on a 
human pancreatic islet dataset24 processed by SAVER. This dataset comprised manually generated 
downsampled gene expression profiles and their corresponding reference data. For scFoundation, we set T as 
the different folds of S (ranging from 1 to 5), fed the downsampled data, and obtained the five sets of cell 
embeddings. For other methods, we first used the downsampled data to train the methods. Then we got cell 
embeddings from scVI and got the imputed gene expression from other methods. The ground truth cluster 
labels were obtained from the reference data. For evaluating clustering accuracy, we employed metrics 
including Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and Silhouette Coefficient 
(SIL). The clustering performance obtained from the downsampled data was used as the baseline. 

We found that CPT already outperformed both the baseline and scImpute in all metrics when T was equal 
to S (fold change=1, Fig. 2C), indicating that the scFoundation embeddings provided more informative 
representations compared to the raw gene expression. As the fold change increased, we observed an initial 
"jump" in scFoundation's performance, surpassing the other methods, followed by a continuous improvement 
in all metrics. We generated Uniform Manifold Approximation and Projection (UMAP) plots for visualizing 
the scFoundation embedding results at a fold change of 5 and the results obtained from other methods (Fig. 
2D). Notably, scFoundation's cell embeddings exhibited distinct cluster boundaries compared to the baselines 
and other methods. Furthermore, we performed clustering on all methods' results and mapped the cluster labels 
onto the reference UMAP. The labels produced by the other methods were mixed in the reference, particularly 
within the ground truth cluster 0. scFoundation stood out as the only method that visually demonstrated aligned 
cell cluster assignments consistent with the reference results. 

We then applied scFoundation to the Zheng68K dataset from human peripheral blood mononuclear cells 
(PBMC)25. This dataset had about 600,000 cells, comprised of cell types that exhibited high similarity and 
were sequenced using the first version of the 10X Chromium platform. Each cell in this dataset only had non-
zero expression values for approximately 500 genes, and the total count was less than 2000 (Fig. S2). We fed 
these cells into scFoundation to obtain the read depth enhanced cell embeddings by setting T as 10,000. 
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Comparing the UMAP plot of the scFoundation embeddings with that of the raw gene expression profiles, we 
observed that the scFoundation embeddings made it easier to distinguish Memory T cells from other T cell 
populations and exhibited improved discrimination between CD14 Monocytes and CD34 cells. To further 
evaluate the clustering performance with other methods, we trained the only scalable model scVI on this dataset 
and compared it with the scFoundation embeddings (Fig. 2F). Both clustering results outperformed the raw 
gene expression profiles and achieved comparable performance in terms of NMI and ARI metrics, and the 
scFoundation embeddings had a higher SIL score. 

These findings demonstrated that scFoundation possessed the capability to enhance the read depth of cells. 
Notably, an important distinction between scFoundation and other imputation methods was that scFoundation 
could achieve the best performance without the need for dataset-dependent training procedures.  
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Figure 2 A) Training loss under different parameter sizes and FLOPs. B) Evaluation of read depth enhancement 
performance on an unseen dataset. Mean relative error among non-zero expressed genes and Pearson correlation among 
all genes were used as metrics to evaluate the recovered gene expression performance. Lower error values indicate better 
performance, while higher Pearson correlation values indicate better performance. C) Comparison of the scFoundation 
model with other imputation methods based on cell clustering metrics. The x-axis represents the fold change between the 
desired total count value and the input total count value, while the y-axis represents the score. D) UMAP plots of cell 
embeddings generated by different methods. The left plot shows the reference UMAP plot obtained using raw gene 
expression, with colors indicating cell clusters. The upper-right plots display clustering results obtained by different 
methods (Sample, MAGIC, scImpute, scVI, and scFoundation). "Sample" refers to no imputation process. The number 
of clusters is aligned. The lower-right plots depict the clustering results of each method mapped onto the reference UMAP 
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plot. E) UMAP plot comparing raw gene expression and scFoundation-imputed cell embeddings on the Zheng68K dataset. 
F) Comparison of clustering performance among scFoundation, scVI, and raw data on the Zheng68K dataset. 

scFoundation improves cancer drug response prediction  

Cancer Drug Responses (CDRs) study the tumor cell response upon drug intervention. Computationally 
predicting CDR is critical to guiding anticancer drug design and understanding cancer biology26. We combined 
scFoundation with a CDR prediction method, DeepCDR27, to predict the half-maximal inhibitory 
concentrations IC50 values of drugs across several cell line data. This experiment served as a validation of 
whether scFoundation could provide informative embeddings for bulk-level gene expression data, despite 
being trained on single cells. 

The original DeepCDR model used drug structural information and multi-omics data as input and outputted 
the predicted IC50. Here, we focused on gene expression data and replaced the transcriptome MLP subnetwork 
in DeepCDR with scFoundation. In other words, we used scFoundation to extract transcriptome features and 
fed them into the subsequent prediction module (Fig. 3A). We integrated the Cancer Cell Line Encyclopedia 
(CCLE)28 and Genomics of Cancer Drug Sensitivity (GDSC)29 datasets to obtain the input cell line gene 
expression data, the input drugs and IC50 labels.  

We evaluated the performance of scFoundation-based results and gene expression-based results across 
multiple drugs and cell lines (Fig. 3B). Most drugs and all cancer types achieved a higher PCC by using 
scFoundation embeddings. We further visualized the best prediction case of drug and cancer types (Fig. 3C). 
Regardless of the high or low lC50, the scFoundation embedding-based DeepCDR model could predict 
accurate values and achieved a PCC above 0.93. 

The CDR prediction models were often used to predict the IC50 of the new unseen compound across the 
cell line. For testing the generalization ability to new drugs, we then left one drug-related dataset at a time as 
the test set and used the remaining data as the training set. Under this drug-blind test, we found that models 
based on scFoundation embeddings consistently outperformed the original model. The top 1 PCC-gaining drug, 
PHA-793887, was a potent ATP-competitive CDK inhibitor, and its PCC improved from 0.07 to 0.73. Even 
for the 200th-ranked drug, Zobotentan, which was used for blocking Endothelin A receptor activity, its PCC 
improved from 0.49 to 0.64.  

We further grouped drugs into different therapy types to examine whether the IC50 prediction performance 
was related to their intrinsic mechanisms. We observed that, based on scFoundation-predicted results, drugs 
belonging to chemotherapy, such as anti-tumor antibiotics and topoisomerase inhibitors, had a higher PCC 
than drugs belonging to targeted therapy, such as ATM and PARP inhibitors (Fig. 3C right). This may be due 
to the fact that specific gene mutations often have an important impact on targeted therapy26, but mutation 
information is difficult to reveal from gene expression data; while chemotherapy drugs were widely reported 
to be related to gene expression30,31 so their IC50 is easier to predict. Gene expression-based results had an 
overall lower PCC, and we did not observe a significant difference between drug types. 

Then we used our model to predict unknown CDR in the data, and thus each drug would have a predicted 
IC50 on all cell lines. To validate these new predictions, we performed a Gene Set Enrichment Analysis 
(GSEA)32 on the new predictions with relatively low IC50, which indicated the sensitivity of the cell line to 
the drug. For instance, the sphingolipid signaling pathway was enriched in Doxorubicin-sensitive cell lines. 
According to the KEGG database33, this pathway was related to sphingomyelin (SM) and its metabolism. And 
SM was reported to interact synergistically with Doxorubicin by altering cell membrane permeability resulting 
in a lower IC50 of the drug in these cell lines34. Additionally, the mTOR signaling pathway was enriched in 
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Vorinostat-sensitive cell lines. Previous studies have shown that Vorinostat inhibits carcinoma growth by 
dampening the mTOR signaling pathway35. And other clinical studies have also shown that mTOR inhibitors 
were often used in conjunction with Vorinostat36,37, suggesting the relationship between Vorinostat and the 
mTOR pathway. These examples support the validity of our predictions. 

Our results demonstrated that although the CPT model was pre-trained on single-cell transcriptomics data, 
the learnt gene relationships were transferable to bulk-level expression data to produce condensed embeddings, 
facilitating more accurate IC50 prediction. These findings illustrated the potential of scFoundation in 
expanding our understanding of drug responses in cancer biology and possibly guiding the design of more 
effective anticancer treatments. 

 
Figure 3. Performance of drug response prediction using scFoundation embeddings. A) Illustration of the embedding-
based CDR prediction model. B) Pearson correlation coefficient (PCC) between all drugs and cancer types in the test set. 
Each dot represents a drug or cancer type, with the x-axis and y-axis showing the PCC obtained by DeepCDR using gene 
expression and scFoundation embeddings, respectively. C) Comparison of predicted and observed IC50 values for the 
drug WZ-1-84 on the cancer-type low-grade gliomas. Each dot represents a drug and cell line combination. D) Leave-
one-drug-out blind test performance. The left plot shows the PCC gain obtained by replacing gene expression with cellular 
embeddings. Each dot represents a drug, with the y-axis indicating the gained PCC values and the x-axis representing the 
rank. Higher-ranked drugs have a higher PCC gain. The right plot groups the drugs into different types. E) Gene set 
enrichment analysis (GSEA) results on cell line data with lower predicted IC50 values. The Sphingolipid signaling 
pathway was enriched in Doxorubicin-sensitive cell lines, while the mTOR signaling pathway was enriched in Vorinostat-
sensitive cell lines. 
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scFoundation transfers bulk-level drug sensitivity prediction model to single-cell 
data 

Intratumor heterogeneity is a well-known issue that often leads to treatment failure38,39. Inference of drug 
sensitivities at the single-cell level can help identify specific cell subtypes that exhibit different drug resistance 
characteristics, offering valuable insights into underlying mechanisms and potential new therapies40–42. We 
applied scFoundation to tackle this crucial task of single-cell level drug response classification based on the 
SCAD43 downstream model. Due to the fact that the limited availability of cellular-level drug response data 
for only a small subset of drugs and cancer types, SCAD was trained on the bulk-level datasets to learn 
pharmacogenomic information and then transferred this knowledge to infer drug efficacy at the single-cell 
level. In other words, it took both bulk and single-cell data, affected by the same drug, as input and provided 
sensitive or non-sensitive labels for each cell. In our study, we used scFoundation to obtain unified embeddings 
of bulk and single-cell data (Fig. 4A). Subsequently, we used these embeddings to train SCAD models and 
assessed the classification performance. 

We focused on four drugs (Sorafenib, NVP-TAE684, PLX4720, and Etoposide) that exhibited lower 
AUROC values as reported in the original study. These drugs had drug-sensitive labels of bulk data in the 
GDSC29 database and the cell-level drug-sensitive labels were obtained in different ways. For the drug 
PLX4720 and Etoposide-affected single cells, cells from drug-untreated cell lines were considered sensitive, 
while cells that survived after drug exposure were considered resistant44. For drug Sorafenib and NVP-TAE684 
affected cells, the cells' sensitive labels were determined by the value of senescence-related (EpiSen) program 
scores which were proved to have a relation with drug responses previously45.  

We compared our results with the baseline SCAD model, which took all genes’ expression values as input. 
We found that the scFoundation embedding-based model achieved higher AUROC values for all four drugs 
(Fig. 4B). Particularly for drugs NVP-TAE684 and Sorafenib, the scFoundation embedding-based model 
exhibited an improvement of above 0.2 in AUROC. We then employed the Spearman correlation as a metric 
to assess the agreement between the predicted probability of drug sensitivity provided by the model and the 
EpiSen score. As depicted in Fig. 4C, drug sensitivity for NVP-TAE684 and Sorafenib was positively and 
negatively correlated with EpiSen scores, respectively. The scFoundation embedding-based model yielded a 
Spearman correlation of 0.56 and -0.55 for the two drugs, while the baseline model achieved a Spearman 
correlation of only 0.24 and -0.06. These findings indicated that the embedding obtained from scFoundation 
facilitated drug sensitivity prediction in the original single-cell dataset with poor performance, and the 
embedding-based SCAD model had the potential to capture the signal of drug sensitivity biomarkers. 

These results further motivated us to investigate whether the embedding itself was more informative than 
gene expression without the necessity for the SCAD model to extract the signal. We conducted principal 
component analysis (PCA) on the single-cell dataset SSC47, corresponding to drugs NVP-TAE684 and 
Sorafenib. By visualizing cells with different EpiSen scores on the first two principal components (PC) plots 
(Fig. 4D), we observed that compared to gene expression data, the first two PCs of the embeddings displayed 
less linear correlation, indicating the provision of richer information. Additionally, we used drug sensitivity as 
the label and computed the clustering performance of the embeddings and gene expression for both bulk and 
single-cell data. Calinski-Harabasz (CH) and SIL scores were used as metrics. The results for both single-cell 
and bulk data (Fig. 4E and Fig. S3) demonstrated that the scFoundation embedding better-grouped cells or 
bulk cell lines with the same drug response, compared to the gene expression baseline. 

Overall, these findings highlighted that the unified embedding obtained from scFoundation aligned bulk and 
single-cell data into a unified representation space, and this condensed representation effectively facilitated the 
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transfer of pharmacogenomics information from bulk cell lines to single-cell data. 

 

Figure 4. Single-cell drug response classification tasks based on scFoundation cell embeddings. A) Illustration of the 
embedding-based single-cell response classification model. B) Receiver operating characteristic (ROC) curves for the 
four drugs. The red and blue lines represent the performance of SCAD using scFoundation embeddings and gene 
expressions, respectively. C) Correlation between drug sensitivity probability and normalized EpiSen score. Each row 
corresponds to a model, and each column represents a drug. D) PCA plot of the SSC47 single-cell dataset from cell lines. 
Color denotes the reference epithelial senescence-related program (EpiSen) score. Cells with different EpiSen scores 
exhibit distinct responses to drugs. E) Clustering performance on all three drugs-related bulk datasets. Each bulk dataset 
has two types of labels: sensitive and resistant. CH score: Calinski-Harabasz score. SIL score: Silhouette Coefficient score.  

scFoundation predicts more accurate perturbation responses 

Cellular response to perturbation is crucial for biomedical applications and drug design, as it helps identify 
gene-gene interactions across different cell types and potential drug targets46,47. Perturb-seq48,49 was a recently 
developed method for screening single-cell gene expression responses to several perturbations. Using these 
perturbation data resources to train models for modeling cellular response to perturbations is a central goal of 
computational biology50–52.  
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We combined the scFoundation with an advanced model GEARS50 for the perturbation prediction task. In 
the original GEARS model, a gene co-expression graph was combined with perturbation information to predict 
the post-perturbation gene expression. Each node in the co-expression graph represented a gene, with initially 
randomized embeddings, and edges connected co-expressed genes. This graph was not cell-specific and was 
shared across all cells. In our setting, we obtained gene context embeddings for each cell from the scFoundation 
decoder and set these embeddings as the nodes in the graph (Method). This resulted in a cell-specific gene co-
expression graph for predicting perturbations (Fig. 5A).   

We trained and tested models on three perturbation datasets which were also used in the original study: the 
Adamson dataset48 with 87 1-gene perturbations, the Dixit49 dataset with 24 1-gene perturbations, and the 
Norman53 dataset with 131 2-gene perturbations and 105 1-gene perturbations. We reprocessed the gene 
numbers to the full gene length of 19,264, ensuring a comprehensive modeling of gene co-expression. For the 
1-gene perturbation datasets, we leave a subset of perturbations for testing. For the 2-gene perturbation Norman 
dataset, we followed the original study to group 3 2-gene perturbations subsets for testing: 0/2, 1/2 and 2/2, 
where the first number indicated how many perturbations were not seen in the training set.  

We computed the mean square error (MSE) of the top 20 differentially expressed (DE) genes between pre- 
and post-gene expression profiles to evaluate the models' performance. The scFoundation-combined model 
achieved lower MSE values on all 1-gene perturbation datasets compared to the original GEARS baseline 
model (Fig. 5B and Fig. S4). For 2-gene perturbations, the model achieved the lowest MSE in the 0/2 unseen 
case and outperformed across all cases. We further examined the proportion of predicted values that fell within 
(+-5%) of the true mean expression value of the top 20 DE genes. The results in Fig. 5C demonstrated that the 
scFoundation-based model exhibited a higher percentage close to 10%, indicating that it provided a more 
reasonable distribution of post-gene expression values. We then showcased the 2-gene perturbation 
ETS2+CEBPE in Fig. 5D for an instance of prediction. The scFoundation-based model achieved a more 
accurate mean post-expression value and a distribution that closely aligned with the ground truth, 
outperforming the baseline model. 

One application for predicting 2-gene perturbations was to classify 2-gene perturbation into different genetic 
interaction (GI) types. Here, we identified synergy and suppressor GI types by using the magnitude score 
(Methods). We first computed the PCC between predicted and ground truth magnitude scores of all test set 2-
gene perturbations and found that the scFoundation-combined model achieved a higher PCC compared to the 
baseline (Fig. 5E). Next, we ranked the 2-gene perturbations according to the predicted magnitude score and 
regarded the top 20 and bottom 20 perturbations as potential synergy and suppressor GI types, respectively. 
The Venn plot in Fig. 5F revealed that the scFoundation-based model identified a higher number of true 
perturbations for both synergy and suppressor types. 

These results highlighted the cell-specific gene context embeddings obtained from the scFoundation model 
served as valuable foundational representations for perturbation prediction. Furthermore, the analysis of 2-
gene perturbations underscored the model's capability to accurately classify different types of genetic 
interactions. 
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Figure 5. Perturbation prediction tasks using scFoundation gene context embeddings. A) Illustration of the perturbation 
prediction model based on cell-specific gene embeddings. B) Mean square error between predicted and ground truth post-
gene expressions. Results given by the GEARS model using scFoundation cell-specific gene embeddings and gene 
expression are shown in red and blue, respectively. C) Proportion of predicted values within (+-5%) of the true mean 
expression value of the top 20 differentially expressed (DE) genes. The black dashed line represents the expected 
percentage (10%). Colors represent the same results as in panel A. D) Predicted gene expression over control for the top 
20 most differentially expressed genes after a combinatorial perturbation (ETS2+CEBPE). The red and blue boxes 
indicate the gene prediction results by the GEARS model using scFoundation gene embeddings and pre-gene expression, 
respectively. The green box represents the ground truth post-gene distribution. E) Magnitude scores computed for all test 
perturbing combinations on the Norman dataset. Each dot represents a specific perturbing combination. The y-axis shows 
the magnitude score computed from the prediction results, while the x-axis represents the ground truth magnitude score 
computed using real post-gene expression. F) Top 20 perturbations with synergistic and suppressor gene interaction types 
identified using scFoundation and baseline methods. The Venn plot illustrates the relationship between the identified 
perturbation set and the verified perturbation set. 
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Discussion 
Recent breakthroughs in large-scale models demonstrated their ability to grasp complex natural language 
patterns through self-supervised pre-training. This motivated us to explore whether large-scale models can also 
be effective for life science “languages”, especially for single-cell transcriptomic data, which exhibits large 
data scales, complex biological patterns, diversity, and technical noise.  

We developed the xTrimogene architecture to enable non-destructive modeling of all protein-coding genes 
and continuous expression values in cells. Combining this architecture with our read depth-aware pre-training 
task, we presented scFoundation, the largest pre-training foundation model on the single-cell field, with 100 
million parameters pre-trained on over 50 million single-cell data. 

Our experiments showcased the model's remarkable capabilities across various tasks. The proposed pre-
training framework scaled up effectively, surpassing other models in terms of parameter size. scFoundation 
model enhanced read depth for gene expression without requiring additional fine-tuning, as supported by 
superior gene expression restoration and cell clustering performance compared to other imputation methods. 
In the Cancer Drug Response task, the cellular embeddings derived from scFoundation significantly improved 
the prediction accuracy of drugs' IC50 values. In the single-cell drug sensitivity task, scFoundation effectively 
integrated the unique characteristics of both bulk and single-cell data, resulting in superior performance in 
drug prediction. In the perturbation prediction task, our model overcame the limitations of prior approaches by 
constructing cell-specific gene co-expression maps, yielding the most accurate perturbation predictions to date. 

It is worth noting that scFoundation followed a similar training approach to the linear probing54 in all tasks, 
which added a task-specific predicting head after the pre-trained model output. The pre-trained model itself 
was not further fine-tuned, but the downstream task model was trained based on the obtained cell or gene 
context embeddings. This usage reduced computational and time costs for downstream users and offered 
flexibility in downstream model design. By adopting this paradigm, we envisioned scFoundation serving as a 
foundational model in the field of single cells, benefiting researchers and enabling further advancements. 

In the future, we will pre-train models with more parameters and larger datasets using our effective pre-
training framework. Additionally, the single-cell multi-omics data55,56 opens up new avenues for modeling 
cellular regulatory relationships and cell state transitions57. These data can be used to train multi-omics large-
scale models and provide deeper insights into cellular biological processes, towards modeling the multi-level 
complex laws of cells.  

We expect that our pre-training architecture and the scFoundation model can serve as fundamental 
contributions supporting both biological large-scale model pre-training and downstream analysis research. We 
hold high expectations that single-cell pre-trained models will become indispensable tools in driving biological 
discovery and medical research. 

Methods 
Pre-training Data collection and preprocessing 

Data collection  

The human scRNA-seq public data were stored in the Gene Expression Omnibus (GEO) repository, human 
cell atlas, Single Cell Portal, EMBL-EBI, etc. There were also several studies to integrate human single cells 
from multiple resources, such as hECA58, DISCO59, etc. Each dataset in these databases was linked to a 
published study and thus had a corresponding DOI id. We manually collected scRNA-seq data from these 
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databases and removed the dataset with duplicated id. Most of the datasets provide the raw count matrix. For 
the dataset with normalized expression profiles, we converted them back to the raw count form: We treated the 
smallest non-zero value in the original matrix as a raw count value of 1, all remaining non-zero values were 
divided by this smallest value and the integer part was taken.  For the dataset with TPM or FKPM expression 
profiles that cannot be converted back to raw counts, we kept them unchanged. 

We collected more than 50 million single cells across multiple organs (e.g. heart, kidney, brain) and tissues 
(i.e. connective tissues, epithelial tissue, muscle tissue, and nerve tissue). Our database also included cells from 
various diseases and various cancer dissection regions of different cancer types, aiming to cover all known 
possible gene expression profiles of the human single cells.  

Gene symbol unification  

We unified the gene symbols of all raw count gene expression matrices by using the gene symbol mapping 
reference provided by HUGO Gene Nomenclature Committee. We included human protein-coding genes and 
common mitochondrial genes, constituting a total of 19,264 genes. If some symbols were missing, we padded 
them with zero values. 

Quality control 

To filter extremely low-quality or damaged cells, we kept cells with over 200 genes expressed (i.e., expression 
vector with non-zero value count > 200) for pre-training by using the Seurat60 and Scanpy61 packages.  

scFoundation model architecture 

We developed the xTrimoGene model as the backbone model of scFoundation. It had three modules: The 
embedding module converted scalar value into embeddings that were required for the transformer block; The 
encoder focused on the informative non-zero and non-masked expressed genes; And the decoder integrated 
information across all genes. 

Embedding module 

Given a cell’s gene expression value vector 𝑿!"#$% ∈ ℝ&'()*+,, the expression value 𝑿-
!"#$% of gene 𝑖 was a 

continuous scalar greater than or equal to zero. Unlike the previous language or recently developed single-cell 
transformer-based model, the embedding module directly converted the scalars into learnable value 
embeddings without any discretization. And then the value embeddings were added with gene embeddings to 
form the final input embeddings.  

Specifically, the zero and non-zero values were converted in different ways. Zero value was directly 
converted into a randomly initialized embedding (with dimension 𝑑): 

0 ↦ 𝑬.					𝑬. ∈ ℝ/ 

For non-zero expression value, a look-up table 𝑻 ∈ ℝ0×/ was randomly initialized, where 𝑑 was the hidden 
embedding dimension and 𝑏  was the pre-defined retrieved token number. We used 𝑏 = 100  for our 

scFoundation model. Then for a non-zero expression value	𝑿-
!"#$% of gene 𝑖, it was first fed into a linear layer 

with leaky ReLU activation to get an intermediate embedding 𝒗𝟏: 

𝒗𝟏 = leakyReLU7𝑿-
!"#$% ×𝒘𝟏:				 

where 𝒘𝟏 ∈ ℝ(×0 was the parameter. Then another linear layer and a scaling factor 𝛼 were used to further 
process 𝒗𝟏: 

𝒗𝟐 = 𝒗𝟏 ∙ 𝒘𝟐 + 𝛼 × 𝒗𝟏 
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where 𝒘𝟐 ∈ ℝ0×0 and 𝛼 were the learnable parameters. And the obtained vector 𝒗𝟐 was normalized with 
the SoftMax function to get the attention score vector 𝒗𝟑 ∈ ℝ0: 

𝒗𝟑 = [𝑣5., … , 𝑣5! , … ]				𝑣5! =
exp	(𝑣*!)

∑ exp	(𝑣*!)
6
-'(

 

And the final value embedding 𝑬- ∈ ℝ/ of gene 𝑖  was the weighted summation of all embeddings in the 
look-up table 𝑻: 

𝑬𝒙 = 𝒗𝟑 ∙ 𝑻 

During pre-training, some expression value in the input gene expression 𝑿 would be randomly replaced by 
the masked value 𝑚, and the masked value were corresponding to a mask embedding: 

0 ↦ 𝑬8					𝑬8 ∈ ℝ/ 

After converting scalar values into embeddings, an additional gene embedding was necessary to distinguish 
and indicate different genes. This design was similar to the positional embedding in the conventional language 
model15. We employed a gene look-up table 𝑻9 ∈ ℝ()*++×/  to retrieve embedding for all genes and two 
indicators T and S, where 𝑑 is the same hidden dimension size as value embedding. For each gene 𝑖, the final 

input embedding 𝑬-
!"#$% was the element-wise sum of the gene and value embeddings: 

𝑬-
!"#$% = 𝑬-⨁𝑻-9  

The input embeddings of all genes formed the final input tensor 𝑿!"#$% = [𝑬(, 𝑬*, … , 𝑬()*++]: ∈ ℝ()*++×/. 

Encoder 

The encoder only processed the embeddings of non-zero and non-masked values (i.e. the expressed genes and 
two total count numbers) and so that the input length of the encoder was about 10% of the full gene length. 
Denote 𝑆; = {𝑆.; , 𝑆(; , … , 𝑆<;} as the index set of non-zero and non-masked values with K elements, the input 
of encoder was defined as: 

𝑿=">?!"#$% = M𝐸@"# , 𝐸@$# , … O 

The design of encoder greatly reduced the required computational resources, making it possible for the 
encoder to employ a series of vanilla transformer blocks to capture gene dependency without any kernel or 
low-rank approximation. The outputs of encoder were intermediate embeddings 𝑿!"%AB:	

𝑿!"%AB = Trm(𝑿=">?!"#$%) ∈ ℝ<×/ 

where Trm  represents the transformer blocks. These intermediate embeddings had two usages: 1) they were 
then sent into the decoder with the zero and mask embeddings. 2) they could be pooled into cellular 
embeddings for downstream usages. 

Decoder 

To establish a transcriptome-wide gene regulation relationship, the zero-expressed genes should also be 
considered for recovering expression values at mask positions. The intermediate embeddings from encoder 
were concatenated with the zero and mask embeddings to form a decoder input tensor 𝑿CA>?!"#$% with full 
gene length: 

𝑿CA>?!"#$% = S𝑿!"%AB, 𝑬.., … , 𝑬<"
. , 𝑬.8, … , 𝑬<%

D T: ∈ ℝ()*++×/ 

where 𝐾. and 𝐾D were the number of zero and masked embeddings, respectively. We used the kernel-based 
approximation transformer variant Performer11 as the transformer blocks in the decoder, since the attention 
calculation was challenging for long sequences11,62.  
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	𝑿E$% = Perfromer(𝑿CA>?!"#$%) ∈ ℝ()*++×F 

where 𝑿E$% ∈ ℝ()*++×/  was the output tensor of the decoder with dimension 𝑓 . For predicting the 
expression value, the embeddings of T and S were dropped and a MLP was followed to project other 𝑓-
dimension embedding to scalars. These scalars formed a prediction vector 𝑷: 

𝑷 = MLP(𝑿E$%) ∈ ℝ()*+, 

All parameters 𝚯 = {𝑬., 𝑻, 𝒘𝟏, 𝒘𝟐, 𝛼, 𝑬8, 𝑻9 , 𝚯=">GHAB, 𝚯CA>GHAB, 𝚯IJK}  were optimized during the pre-
training. The detailed hyper-parameter setting of different models could be found in the Table S1. 

Read-depth-aware pre-training task 

We trained our model with a read-depth-aware (RDA) gene expression prediction task. This task followed a 
similar self-supervised learning setting but with augmented input data. For each raw pre-training single-cell 
gene expression vector, we used a hierarchical Bayesian downsampling strategy to generate its low total count 
variant or unchanged profiles as the input vector. Then we defined two total count indicator T and S and set 
their values as the total count of the raw and input vectors, respectively. The raw and input vector were 
normalized and log-transformed.  

  Then we randomly masked the genes' expressions of the input vector. In this study, we used 30% as our 
masking ratio for both zero and non-zero values. Then the partial masked input vector was concatenated with 
two total count indicator T and S and fed into the model. After getting the model-predicted raw gene expression, 
we conducted the regression loss on the masked genes between the predicted and the raw value. If the input 
vector was unchanged, the model learned to capture the relation between genes within a single cell. If the input 
vector was the low total count variant, the model learned the relationship between cells with different read 
depths. 

Total count indicator 

Besides gene expression values, there were two additional indicators S and T in our model input, indicating 
the value of the input and the output total count, respectively. At the pre-training stage, these two indicators 
were computed from the input and raw gene expression vectors. During the inference, the value of S was still 
computed from the sum of the input cell's gene expression, but the value of T was set as the desired total count 
value (e.g., two folds of the input total count). 

Hierarchical Bayesian downsampling strategy 

For a single-cell gene expression vector 𝑿 ∈ ℝ()*+,, we introduced a two-hierarchy Bayesian sampling to 
generate its corresponding input vector 𝑿-&LMN. In the first hierarchy, a Bernoulli-distributed random variable 
𝛾 was introduced to decide whether 𝑿 would be downsampled. If 𝛾 equaled to 0, the input vector 𝑿-&LMN was 
the copy of 𝑿; If 𝛾 equaled to 1, the input vector 𝑿-&LMN was the downsampled variant of vector 𝑿 given by 
the second hierarchy. For those gene expression with total count lower than 1,000, we thought their quality 
were not good for downsampling and fixed 𝛾 = 0. 

  In the second hierarchy, we downsampled the raw count value of each gene via a binomial distribution: 

𝑋-
-&LMN ∼ 𝐵(𝑋- , 𝑏) 

where 𝑋-
-&LMN was the downsampled raw count value of gene i, 𝑋- was the gene i observed raw count value 

and 𝑏 was the downsampling rate. for each cell, all genes shared the same downsampling rate 𝑏. And thus the 
expectation of the downsampled cell's total count satisfying: 
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𝐸S𝑇𝐶c𝑿-&LMNdT = 𝐸S𝑋.
-&LMN+. . . +𝑋O

-&LMNT = 𝐸S𝑋.
-&LMNT + ⋯+ 𝐸S𝑋O

-&LMNT 

= 𝑏 ⋅ 𝑋. +⋯+ 𝑏 ⋅ 𝑋O = 𝑏 ⋅ 𝑇𝐶(𝑿) 

This design ensured that the expectation of the fold change between the raw and downsampled cell's total 
count was fixed as 1/𝑏. But for each gene in the 𝑿-&LMN, the expression value is an observation of the random 
variable. 

Further, we let the parameter 𝑏 followed a beta distribution:   

𝑏~𝐵𝑒𝑡𝑎(2,2) 

This prior distribution guaranteed that the different fold changes between input and output could be seen 
during training.  

Overall, the input vector 𝑿-&LMN can be defined as: 

𝑿-&LMN = n
𝑿																																																												𝑖𝑓	𝛾 = 0
[𝐵(𝑋., 𝑏), 𝐵(𝑋(, 𝑏), … , 𝐵(𝑋O , 𝑏)]		𝑖𝑓	𝛾 = 1 											𝛾~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5)		𝑏~𝐵𝑒𝑡𝑎(2,2) 

Then this input vector would be random masked and sent into the xTrimoGene model. 

Mean square error (MSE) loss 

Unlike other works that discretize expression values, our model operated on continuous raw gene expression 
values. So we used the regression loss as the loss function: 

𝐿 =
1
|𝑀|

x(𝑋- − 𝑃-)*
|Q|

-'.

 

where M was a binary vector indicating which gene is masked (i.e. value 1 refers to be masked), 𝑋- and 𝑃- 
were the ground truth and predicted gene expression values, respectively. And | | was a 1-norm operator.  

Implementation 

The attention mechanism in language modeling determined that increasing sequence length given near 
quadratic growth of time and space complexity. Even with the model architecture improvements which reduced 
the complexity from quadratic to linear, experiments with a large training corpus and large model parameter 
size still required a significant amount of resources. Therefore, time and resource-efficient training techniques 
were crucial for this work to collect abundant solid experimental results and supported training on 50M data. 

HPC cluster infrastructure with NVIDIA Ampere GPU, NVLink for inter-GPU communication inside a 
server, and a high-speed interconnection network between servers, were utilized as a multi-node deep learning 
environment to optimize our experiment process. 

Since half-precision operations could be executed on FP16 or BFLOAT16 Tensor Core which had 2 times 
more arithmetic throughput than TF32 on NVIDIA Ampere GPU, besides mixed-precision training decreased 
both the required amount of memory and the memory bandwidth consumption while maintaining model 
accuracy, our experiments were conducted with mixed-precision training strategy to gain time saving within a 
given amount of computational resource. 

Distributed Data Parallelism was another widely used training strategy in our work to handle large corpus 
on HPC cluster, as our model architecture has greatly cut off the necessity of model parallelism in space and 
time complexity for long sequence modeling. Single Ampere GPU provided a sufficient amount of memory 
for one model replica of billions of parameters to perform forward and backward passes and gradient 
accumulation was used to increase the effective batch size to enhance large model training. 
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To achieve a larger model size without introducing model parallelism, ZeRO-DP stage two63 and 
checkpointing technique64 were experimentally verified reducing model state memory and residual state 
memory in our environment settings without expanding training time too much while introducing extra 
communication and computational costs. 

For efficient and stable training of the model, we put the layer normalization inside the transformer block 
and thus the gradients were well-behaved at initialization65, reducing the hyperparameter tuning cost for the 
learning rate warm-up stage. 

Read depth enhancement analysis 

For the gene expression prediction evaluation, we sampled 10,000 cells with a high total count (higher than 
1,000) from 50 million single-cell data as the validation dataset. These 10,000 cells were excluded at the 
training stage. Then we used a binomial distribution to generate the low total count gene expression vector and 
fed it into our model. We only evaluate non-zero gene expression values considering that 0 expression values 
do not change in value after downsampling. In addition to using MSE as the evaluation metric, we also used 
the mean relative error (MRE), which can reflect the relative error: 

𝑀𝑅𝐸 =
1
|𝑀|

x
(𝑋- − 𝑃-)*

𝑋-

|Q|

-'.

 

For the clustering analysis, we got the cell embeddings from scFoundation and scVI encoder. For others, we 
got the imputed gene expression profiles. All methods were used with the default parameter setting. Then we 
followed the SCANPY pbmc3k tutorial and got the cell cluster by the function 'sc.tl.leiden'.  

For the evaluation of the clustering results, we first used ARI and NMI as indicators to evaluate the degree 
of consistency between the clustering results obtained by different methods and the actual cell type labels. 
Considering that the acquisition of cluster labels will also be affected by the choice of the clustering algorithm, 
we used SIL as another evaluation indicator. Compared with ARI and NMI, SIL measures the aggregation 
degree of true cell type labels on the cell neighborhood maps given by different methods, and thus is 
independent of the choice of clustering algorithm, reflecting the intrinsic properties of cell representation. 

Downstream methods 

We dumped the cell embeddings for DeepCDR and SCAD tasks, and gene embeddings for GEARS task. And 
we trained the downstream model based on these embeddings. All baseline models were trained with default 
parameters. 

DeepCDR 

We used the cell line and drug-paired data pre-processed by DeepCDR. The cell line data contains 697 gene 
expression profiles, and we aligned these genes with our unified list. The drugs were represented as graphs 
with consistent feature matrices and adjacent matrices sizes.  

In total 223 drugs and 561 cell lines data from 31 cancer types were considered and 89,585 and 4,729 cell 
line-drug samples were used for training and test, respectively.  For each cell line, we set both indicators S and 
T equal to the sum of all gene expression values. And we fed the non-zero gene expression values and two 
indicators into the model encoder and got the context embedding for each gene. The cell line embedding was 
obtained by the max-pooling operation for each embedding dimension across all genes.  

We trained the baseline model by setting parameters "-use_gexp" as True and "-use_mut" and "-use_methy" 
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as False. Then for the embedding-based model, we directly replaced the gene expression with the cell 
embedding and trained the DeepCDR with the same setting. Pearson’s correlation coefficient (PCC) was used 
as the evaluation matrix. For each gene, we computed the PCC between predicted IC50 and truth IC50 across 
all cell lines. For each cell line, we computed the PCC across all drugs conducted on this cell line.   

SCAD 

For training the baseline model, we used the processed data provided in their repository. Gene expression 
values were transformed into the z-score in the processed data. We used all genes and conducted the weighted 
sampling in the model training process, following the same experimental setting as the original SCAD study.  

For training the embedding-based model, we used the normalized gene expression data. For bulk data, we 
set both S and T equal to the sum of all gene expression values. The same values of S and T would guide the 
model to keep the original cell line features. For single-cell data, we set the marker S to the sum of all gene 
expression values, and uniformly set the marker T to 10,000, which empirically is the maximum sequencing 
depth of a single cell. This setting made the model output consistent in read depth and was as close to Bulk 
data's read depth as possible. Then the non-zero values of each bulk-level/single-cell gene expression sample 
and two indicators were fed into the encoder of the pre-trained model. The outputs were the context 
embeddings of genes for each sample. We found that the best performance can be achieved by concatenating 
the embeddings obtained in four ways. 1) the max-pooling operation for each embedding dimension across all 
genes. 2) the mean-pooling operation for each embedding dimension across all genes. 3) the context embedding 
corresponding to the indictor S. 4) the context embedding corresponding to the indictor T. These four types of 
embeddings built the new cell embeddings with 3072 dimensions. We used these cells’ embeddings to train a 

new SCAD model.  

GEARS 

We downloaded the raw gene expression data and unified the gene list to 19,264. We regenerated the gene co-
expression network on each dataset. Then we trained the baseline model by setting epoch to 15 and batch size 
to 30. For the embedding-based model, we first set each cell's T and S values equal to the its total count. Then 
the gene expression and these two indicators were fed into the model. We dropped the last MLP layer in our 
model and got the gene context embeddings from decoder. The cell-specific gene context embeddings were 
set as the node features of the co-expression graph. Then we trained the GEARS model's parameter and froze 
others. We used the gradient accumulation technique to guarantee the same batch size as the baseline during 
training. 

We followed the definition and metrics used in GEARS and Norman. We focused on the synergy and 
suppression gene intersection types since they were the most basic types. Identification of these two types was 
based on the magnitude score which measured the similarity between the two-gene perturbation and combining 
two single-gene perturbations. Specifically, let the mean change between post- and pre-A perturbed cells as 
𝛿𝑔R. A linear model was used to fit the effect of 𝛿𝑔R, 𝛿𝑔0, and 𝛿𝑔RS0: 

𝛿𝑔RS0 =	cT × 𝛿𝑔R 	+ 	cU × 𝛿𝑔0 + ϵ 

where ϵ captures the error in the model fit. We used the robust regression with a Theil-Sen estimator following 
the same procedure used in []. Using the values of the coefficients, the magnitude was defined as: 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒		 = 	�𝑐R* + 𝑐0* 

Two gene perturbations were ranked by magnitude score, with the top and bottom-ranked being considered 
synergistic and repressive types, respectively.  
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