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Abstract

A critical step in how malaria parasites invade red blood cells (RBCs) is the wrapping of the membrane around
the egg-shaped merozoites. Recent experiments have revealed that RBCs can be protected from malaria invasion
by high membrane tension. While cellular and biochemical aspects of parasite actomyosin motor forces during
the malaria invasion have been well studied, the important role of the biophysical forces induced by the RBC
membrane-cytoskeleton composite has not yet been fully understood. In this study, we use a theoretical model
for lipid bilayer mechanics, cytoskeleton deformation, and membrane-merozoite interactions to systematically in-
vestigate the influence of effective RBC membrane tension, which includes contributions from the lipid bilayer
tension, spontaneous tension, interfacial tension, and the resistance of cytoskeleton against shear deformation on
the progression of membrane wrapping during the process of malaria invasion. Our model reveals that this effec-
tive membrane tension creates a wrapping energy barrier for a complete merozoite entry. We calculate the tension
threshold required to impede the malaria invasion. We find that the tension threshold is a nonmonotonic function
of spontaneous tension and undergoes a sharp transition from large to small values as the magnitude of interfacial
tension increases. We also predict that the physical properties of the RBC cytoskeleton layer – particularly the
resting length of the cytoskeleton – play key roles in specifying the degree of the membrane wrapping. We also
found that the shear energy of cytoskeleton deformation diverges at the full wrapping state, suggesting the local
disassembly of the cytoskeleton is required to complete the merozoite entry. Additionally, using our theoretical
framework, we predict the landscape of myosin-mediated forces and the physical properties of the RBC membrane
in regulating successful malaria invasion. Our findings on the crucial role of RBC membrane tension in inhibiting
malaria invasion can have implications for developing novel antimalarial therapeutic or vaccine-based strategies.

Significance

RBC membrane tension plays an important role in regulating RBC shape and functionality. In particular, recent
experimental studies have shown that elevated RBC membrane tension protects against severe malaria infection. In
this study, we sought to identify how different contributions to the the effective membrane tension can contribute
to this mechanically-driven protection against malaria invasion. Using a mathematical model, we derived a rela-
tionship between the effective tension of the RBC membrane – comprising a lipid bilayer and a cytoskeleton layer–
and the degree of membrane wrapping during malaria invasion. Our model shows that the shear resistance of the
RBC cytoskeleton plays an important role in inhibiting malaria invasion. Our findings can be generalized to the
role of cell membrane mechanics in many wrapping phenomena providing insight into the crucial contributions of
the host-cell membrane in protection against severe infections.
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Introduction

Malaria is one of the major infectious diseases and causes nearly half a million deaths per year worldwide [1].
Merozoites, which are protozoan parasites of the Plasmodium family, are small egg-shaped parasites with a diam-
eter of 1-2 µm and are key to infecting red blood cells (RBCs) in the progression of malaria [2–4]. Merozoites
invade healthy RBCs and asexually reproduce inside them; this is a critical step in the survival and reproduction of
the parasites. In recent years, extensive studies have been focused on understanding the molecular and biophysical
mechanisms underlying erythrocyte invasion as a route to develop novel antimalarial therapeutic or vaccine-based
strategies [5–7].

At the cellular level, the invasion of erythrocytes by merozoites can be classified by the biophysical processes that
include parasite binding to the RBC and subsequent membrane bending (Fig. 1A). The formation of the tight
junction between the merozoite and the RBC involves low-affinity attachment of merozoite surface proteins 1
(MSP1) to RBCs, reorientation of the merozoite, and strengthening of the adhesion by binding of the erythrocyte-
binding- like (EBL) or the reticulocyte binding antigen homolog (Rh) proteins and the erythrocyte membrane
receptors (Fig. 1A) [8–10]. For a period of time, the penetration of the parasite into the RBC was assumed to be
solely driven by the parasite actomyosin motors suggesting that the erythrocyte surface played a barrier role in the
entire invasion (Fig. 1A) [11–14]. However, recent evidence has challenged this view [15–17]. Several studies
have demonstrated the reorientation and the formation of host cell actin filaments dense structures at the point of
entry during Toxoplasma and nonerythroid Plasmodium invasion [18–20]. Andenmatten et al. reported a degree of
invasion even by knocking out the myosin and actin in Toxoplasma, proposing the existence of alternative invasion
pathways in apicomplexan parasites [21]. Thus, all of these studies highlight the important role of the host cell
during merozoite entry.

In this study, we specifically focus on the role of the RBC membrane tension on the invasion capability of the
merozoite using a continuum mechanics approach. Our study is motivated by recent evidence that the tension of
the RBC membrane has been implicated as a key determinant of merozoite invasion [22]. We first identify the
known main contributors to the RBC membrane tension and RBC mechanical properties from the literature and
summarize their role in the success or failure of the invasion below.

(i) Role of lipid bilayer incompressibility: The lipid bilayer in an RBC is assumed to be resistant to stretch
and, therefore, areally incompressible [23, 24]. Mathematically, the tension of the bilayer is equivalent to
the Lagrange multiplier used to maintain this incompressibility [25–27]. Several studies have shown that the
rare Dantu variant of the glycophorin A/B receptors, which is associated with increased RBC tension, can
protect against severe malaria [22, 28, 29]. Particularly, a recent experimental work by Kariuki et al. has
shown the direct relationship between RBC tension and the efficiency of merozoite invasion [22]. Using the
membrane flickering spectrometry technique, they demonstrated that Dantu RBCs with high tension deform
less in contact with merozoites, and there is a tension threshold (< 3.8 ± 2 × 10−7 N/m) above which no
invasion can take place [22]. Similar observations have been made about the increased susceptibility of young
RBCs with lower tension to parasite P. falciparum invasion [30].

(ii) Role of parasite-induced spontaneous tension: Local protein-mediated adhesion of merozoites to the sur-
face of RBCs can induce asymmetry in lipid orientation (including lipid tilt) and distribution such as the
formation of lipid rafts [31–33]. This asymmetry in the lipid membrane composition imposes a curvature on
the membrane, termed spontaneous curvature [34]. The concept of spontaneous curvature has been widely
used to explain different observed shapes of RBCs from stomatocytes to discocytes and echinocytes [35–39].
Additionally, Kabaso et al. showed that the induced local spontaneous curvature due to the spatial attachment
of spectrin filaments to the inner surface of the RBC lipid bilayer is a key mechanism that drives the inside-
out membrane curling phenomena [40]. Despite differences in its molecular origin, spontaneous curvature
is known to contribute to the membrane tension, in what is termed as spontaneous tension [41]. Dasgupta
et al. have investigated the role of spontaneous tension in the malaria invasion by introducing an effective
tension, including the contributions of both RBC membrane tension due to incompressibility and spontaneous
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tension [4]. They found that for high effective tension, the transition between erythrocyte wrapping states is
continuous, whereas, for low effective tension, the transition is associated with an energy barrier [4].

(iii) Role of merozoite adhesion and line tension: A critical step in malaria invasion is the adhesive interaction
between the RBC membrane and the merozoite. For a full membrane-driven merozoite wrapping, the energy
gained by merozoite adhesion to the RBC surface needs to overcome the energy cost due to membrane bend-
ing, membrane tension resistance, and cytoskeleton deformation [42, 43]. For instance, the absence of the
Duffy antigen receptor for chemokines (DARC) on RBC surfaces significantly reduces merozoite adhesion to
the membrane, which makes the Duffy-negative blood group resistant to malaria invasion [44]. Line tension
at the boundary of the merozoite attachment site characterizes the discontinuity in membrane properties be-
tween the region adhering to the merozoite and the free membrane outside of the invagination domain [39].
Interfacial line tension at the merozoite boundary can create a nucleation barrier in the early stage of mero-
zoite wrapping by increasing the energy required to form the initial membrane invagination [45]. Ignoring
the effects of RBC cytoskeleton, Dasgupta et al. suggested that at low adhesion strength, interfacial forces
impede the merozoite entry [4], but at high adhesion strength, these interfacial forces push the merozoite
forward from partial wrapping to full wrapping [4].

(iv) Role of the RBC cytoskeleton: The RBC cytoskeleton is a two dimensional lattice that is made of short F-
actins interconnected by flexible spectrin molecules and provides support for the RBC membrane to maintain
its curvature, tension, and physical properties [46–49]. The RBC cytoskeleton is a strong elastic network that
restricts the deformation of the membrane and also contributes to the organization of the membrane proteins.
Thus, the mechanical properties of the RBC cytoskeleton and its interaction with the lipid bilayer play impor-
tant roles in malaria invasion [13, 15]. For example, several studies have identified that in an ovalocytic ery-
throcyte, a more rigid cytoskeleton (3-4 times higher shear modulus compared to normal cells) significantly
impairs the parasite invasion process [50–52]. In vivo, augmented RBCs with a cytosolic polyamine (e.g.,
spermine) demonstrated strong resistance against malaria invasion [53]. This is because adding polyamines
increases the cohesion of the cytoskeleton and, ultimately, the mechanical rigidity of the whole RBC mem-
brane [53]. Additionally, changes induced in the cytoskeleton structure and the viscoelastic properties of the
RBC membrane due to phosphorylation of transmembrane and cytoskeletal erythrocyte proteins have been
shown to facilitate malaria entry [13, 15, 54].

Previous mathematical models have mainly focused on the different biomechanical aspects of the lipid bilayer in
regulating malaria invasion [4, 6, 55, 56]. However, several studies have suggested that cytoskeletal remodeling
and its posttranslational modifications can play crucial roles during merozoite invasion [15, 19, 50–52]. The RBC
cytoskeleton is free to move in lateral directions. At the continuum level, the empirical constitutive equation
based on thermodynamic invariants has been proposed by Evans and Skalak to describe the elastic energy of the
cytoskeleton in the limit of small deformation [57]. This model has been extensively used, particularly in studies
on red blood cell (RBC) membrane deformation in capillaries and echinocyte formation [46, 58–62]. Recently,
Feng et al. proposed a microstructure-based elastic model that accounts for large cytoskeleton deformation and
strain-hardening behavior at the spectrin level [63]. However, it remains unclear how the induced tension due to
the coupled bilayer-cytoskeleton and the physical properties of the spectrin-actin network affect the progress of
malaria invasion.

In this work, we sought to answer the following specific questions. How does RBC membrane tension including the
effects of lipid bilayer incompressibility, spontaneous curvature, interfacial tension, and the cytoskeleton resistance
against deformation, impact the morphological progression of parasite wrapping during malaria invasion? What are
the roles of adhesion energy and interfacial line tension at the edge of merozoite in modulating these relationships?
And finally, how do changes in the physical properties of RBCs alter the mechanical landscape of actomyosin
forces required to complete invasion? To answer these questions, we used a general theoretical framework that
incorporates the mechanics of a lipid bilayer with cytoskeleton deformation and membrane-merozoite interactions
during the malaria invasion process. Our results show that the success of parasite invasion, as measured by the
wrapping of the RBC membrane around the parasite, depends on the magnitude of the effective membrane tension
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of the RBC, which in turn depends on both the mechanics of the membrane and cytoskeleton.
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Figure 1: Schematic depiction of the molecular machinery of erythrocytic invasion by malaria parasites. Different
stages of malaria invasion. The activity of the parasite actomyosin motors generates forces that push the merozoite
into the RBC. In this study, we only focus on the erythrocyte membrane wrapping stage (iii). Msp1 is a merozoite
surface protein 1, EBL is an erythrocyte-binding-like protein, and Rh is a reticulocyte binding antigen homolog
protein on the malaria parasite surface.

Model Development

Assumptions

• We model the RBC membrane as a two layer manifold with one layer for the lipid bilayer and the other for
the cytoskeleton (Fig. 2A). We assume that the system is at mechanical equilibrium at all times and neglect
both fluctuations and inertia [64–66]. Analogous to the cup-like model [67], we assume that the free lipid
bilayer and cytoskeleton outside of the parasite surface are almost flat and we only calculate the total free
energy of the system on the adhered parasite area (Fig. 2B) [4, 68].

• We treat the lipid bilayer as a continuous thin elastic shell, assuming that the bilayer thickness is negligible
compared to the radii of membrane curvature [34, 35]. We also assume that the lipid bilayer is incompressible
and model the bending energy of the lipid bilayer using Helfrich–Canham energy, which depends on the local
curvatures of the surface and bilayer properties [24, 34, 37, 69, 70].

• We treat the cytoskeleton as a triangular elastic network with two different orientations and the network
bonds (mediated by spectrin) that behave as an elastic worm-like polymer (Fig. 2C) [71, 72]. This allows
us to model the entropic free energy stored in the spectrin proteins using the Worm Like Chain (WLC)
model [73, 74]. We also assume that the cytoskeleton convects with the bilayer, which imposes the areal
incompressibility of the bilayer-cytoskeleton composite [75–79].

• We model the contact energy between the merozoite surface and erythrocyte membrane with a contact poten-

4

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2023.05.30.542792doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542792
http://creativecommons.org/licenses/by-nd/4.0/


tial, assuming that adhesive strength is homogeneous on the surface of the parasite [42, 43, 80]. Additionally,
to accommodate the transition from the free membrane domain to the domain where the membrane adheres
to the parasite, we consider the contribution of interfacial line tension at the edge of the adhering merozoite
(Fig. 2B) [4, 42, 81].

• We assume that the movement of anchored myosin motors on the polymerized actin filaments inside the
parasite pushes the RBC adhered area rearwards and propels the merozoite forward into the target cell (Fig.
2B) [14]. We model the net effect of parasite motor forces as a work done on the RBC membrane and do not
include the molecular details of the actomyosin assembly; these have been considered in [4, 48, 82].

• For ease of computation, we assume that a flat circular patch of a lipid bilayer and relaxed cytoskeleton
deformed to fit the merozoite contour in the adhesive region (Fig. 2A) [59, 61]. We also assume that the
shape of merozoite and the deformed bilayer/cytoskeleton composite are rotationally symmetric (Fig. 2B)
[4].

Free energy of the system

The total energy of the system (E) is a sum of three terms: the energy associated with the bilayer-merozoite interac-
tions (Eb), the work done by the parasite actomyosin forces (Ef ), and the energy associated with the cytoskeleton
deformation (Ec)

E = Eb − Ef + Ec. (1)

The bilayer-merozoite interactions energy includes the bending energy of the lipid bilayer, the work done against
the lateral tension of the bilayer to pull excess membrane toward the parasite wrapping site, the adhesion energy due
to merozoite attachment to the membrane surface, and the interfacial line tension at the edge of adhering merozoite,
which is given as [4, 34, 80]

Eb = 2κ

∫
Aad

(H)2da︸ ︷︷ ︸
Bending energy

+ σbilayer∆A︸ ︷︷ ︸
Work done

against bilayer tension

− ω

∫
Aad

da︸ ︷︷ ︸
Adhesion energy

+ γ

∮
∂l
dl︸ ︷︷ ︸

Line tension

, (2)

where Aad is the surface area over the adhered parasite region, H is the membrane mean curvature, σbilayer is the
lateral bilayer tension, ∆A is the excess area compared to a flat membrane, κ is the bending modulus of the lipid
bilayer, ω is the adhesion energy per area, γ represents the strength of line tension, and the integral is over the
interfacial line dl.

The work done on the membrane by applied forces by the parasite actomyosin motors is given by [83, 48]

Ef =

∫
Aad

f · (r − r0)da, (3)

where f is the applied force per unit area, r is the position vector in the current configuration, and r0 is the position
vector in the reference frame. The energy density of the membrane cytoskeleton energy including the entropic
energy stored in the spectrin proteins and the steric interactions between chain elements was recently derived in
[63] building on the previous models presented in [72, 84]. We expand on the details in the supplementary material
and provide the free energy density per unit area here for brevity. For a 2-D triangle spectrin filament network with
two different orientations, the spectrin persistence length p, the maximal spectrin chain length Lmax, the spectrin
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length of L0 in stress free state, the free energy density of the membrane skeleton (Wc) can be written as (Fig. 2C)
[63, 85],

Wc =
2cβ
3x20

(
(λ22 + 3λ21)x

2
0

3−
√
(λ22 + 3λ21)x0

1−
√

λ2
2
4 +

3λ2
1

4 x0︸ ︷︷ ︸
Entropic energy of spectrin
filament at orientation π/6

+(λ21 + 3λ22)x
2
0

3−
√
(λ21 + 3λ22)x0

1−
√

λ2
1
4 +

3λ2
2

4 x0︸ ︷︷ ︸
Entropic energy of spectrin
filament at orientation π/3

+

λ22x
2
0

3− 2λ2x0
2− 2λ2x0︸ ︷︷ ︸

Entropic energy of spectrin
filament at orientation π/2

+ λ21x
2
0

3− 2λ1x0
2− 2λ1x0︸ ︷︷ ︸

Entropic energy of spectrin
filament at orientation π

)
+ cβ

4x20 − 9x0 + 6

(1− x0)2︸ ︷︷ ︸
Steric interactions

,

(4)

where we define x0 = L0/Lmax, λ1,2 are the local principal stretches, and cβ =
√
3kBT

4pLmax
(kB is Boltzmann’s constant

and T is the absolute temperature). The total energy of the skeleton can be obtained by the integral of the energy
density over the adhered area to the parasite given by

Ec =

∫
Aad

Wc. (5)

Thus, the total energy of the membrane-cytoskeleton composite is given by the sum of Eq. 2, Eq. 3, and Eq. 5. We
seek to calculate the change in the energy of the system from a locally flat state to a wrapped state (Figs. 2A and
B); this energy change is given by

∆E(θ) = Ewrapped(θ)− Eflat =

∫
Aad

(
2κ(H −H0)

2 − ω − f · (r − r0) +Wc

)
da+ γ

∮
∂l
dl + σbilayer∆A, (6)

where H0 is the parasite-induced spontaneous curvature on the bilayer surface.

Numerical implementation

A key challenge in membrane biomechanics problems is energy minimization associated with mechanical equi-
librium. Traditionally, we minimize the membrane energy using the principle of virtual work to obtain the shape
of the membrane in response to induced curvatures and external forces [25, 86–91]. Here, we adopt an inverse
problem approach [92, 93]. Parameterizing the egg shape of the merozoite as (X2 + Y 2 + Z2) = RaX

3 + (Ra −
Rb)X(Y 2 + Z2), with Ra = 1µm, Rb = 0.7µm [4], we fix the shape of the membrane adhered to the merozoite
and minimize the energy (Eq. 6) associated with mechanical equilibrium to find the degree of membrane wrapping
θ∗ for any given set of membrane properties. This approach has the advantage of focusing on extent of wrapping
without extensive computational overhead. Biologically relevant values for the parameters that have been used in
the mathematical model are listed in Table 1.

Results

Successful malaria invasion is associated with an energy barrier controlled by bilayer tension

Motivated by a recent experimental observation that high RBC membrane tension can inhibit malaria invasion
[22], we asked how does the interplay between the strength of merozoite adhesion and bilayer tension due to lipid
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Figure 2: Schematic illustration of membrane wrapping and the RBC cytoskeleton. (A) Bilayer-cytoskeleton
deforms from a flat circular patch to the membrane wrapping state. We model the lipid bilayer as a continuous
thin elastic shell and the cytoskeleton as a hexagonal elastic network. (B) The axisymmetric parametrization of an
idealized egg-shaped merozoite [4] in the wrapped state. The adhered part of the membrane is shown in dashed red,
the free part of the membrane is shown in solid red, and their interface is shown by a green ring. R is the merozoite
radius and θ is the wrapping angle. We assume that the actomyosin motors apply forces tangent to the surface
(f) and the RBC membrane is under tension due to both lipid bilayer incompressibility and bilayer-cytoskeleton
interactions. (C) The cytoskeleton network with two different orientations. λ1 and λ2 are the principal stretch
directions. We model the spectrin filament as an elastic worm-like polymer with a persistence length of p, a
maximum length of Lmax, and a resting length of L0 [63].

incompressibility affect the degree of parasite wrapping around the RBC membrane? To answer this question, we
calculated the change in the energy of bilayer/cytoskeleton composite (Eq. 6) as a function of wrapping angle
(θ) for a fixed σbilayer = 0.5 pN/nm and three different magnitudes of adhesion strength (Fig. 3A). To answer
this question, we calculated the change in the energy of bilayer/cytoskeleton composite (Eq. 6) as a function of
wrapping angle (θ) for two different magnitudes of bilayer tension and adhesion strengths (Fig. 3A). Here, we set
p = 25 nm, L0 = 35 nm, and Lmax = 200 nm and there is no spontaneous curvature (H0 = 0) and no interfacial
force (γ = 0). We find that depending on the magnitude of adhesion strength, there are three states which minimize
the change in the energy; (i) a non-wrapped state (θ∗ = 0), (ii) a partially wrapped state with a small wrapping
fraction ( 0 < θ∗ < π/4), and (iii) a completely wrapped state (θ∗ > π/2) (Fig. 3A). As can be seen in Fig. 3A,
the partially wrapped state is separated from the completely wrapped state by an energy barrier. Additionally, we
found that the total energy of the bilayer/cytoskeleton composite diverges toward ∞ as θ → π (Fig. 3A). This
is because the first principle stretch (λ1) and the energy associated with the cytoskeleton resistance diverges for
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Table 1: Parameters used in the model.

Parameter Significance Value Ref(s)
κ Bending rigidity 125 pN·nm [22]

σbilayer Lipid bilayer tension 10−4 – 1 pN/nm [22, 23, 94, 95, 48]
ω Adhesion strength 10−3 – 1 pN/nm [22, 96–100]
γ Interfacial force 0 – 50 pN [101, 102]
H0 Spontaneous curvature 0 – 0.1 nm−1

L0 Resting length of spectrin 25 – 85 nm [103–106, 85]
Lmax Maximum length of spectrin 180 – 210 nm [107–109]
p Persistence length of spectrin 10 – 25 nm [63]

large deformations (Eq. S13). Thus, we conclude that the complete merozoite entry into the RBCs requires a local
disassembly of the cytoskeleton.

In Fig. 3B, we plotted the merozoite wrapping phase diagram for a range of bilayer tension (σbilayer) and adhesion
strength (ω). The orange region denotes a non-wrapped state, the yellow region represents a partially wrapped state,
and the blue region indicates a state where a merozoite is completely wrapped by the RBC membrane (Fig. 3B).
We marked the continuous transition between the non-wrapped state (orange region) and the partially wrapped state
(yellow region) and the discontinuous transition between the partially wrapped state and the completely wrapped
state (blue region) by dashed and solid lines, respectively (Fig. 3B). In the case of a spherical particle wrapping with
no cytoskeletal effects, the sphere is fully wrapped by membrane when σbilayer < ω−2κ/a2 (shown as a dotted line
in Fig. 3B). Here, a is the radius of the sphere with the same surface area as the egg-shaped parasite (Eq. S17) [43].
As expected, the cytoskeletal resistance against deformation shifts the transition to successful invasion toward the
higher adhesion strengths (arrow in Fig. 3B), implying that larger adhesive forces are required for successful entry
into an RBC. In Figs. 3C and D, we show the discontinuous transition between partially wrapped states (failed
invasion) and completely wrapped states (successful invasion) with increasing the magnitude of adhesion strength
and bilayer tension, respectively.

The discontinuous transition between the partially and completely wrapped states is in agreement with the proposed
concept of membrane tension threshold for successful malaria invasion in a recent study by Kariuki et al.[22]. Ad-
ditionally, Dasgupta et al. [4] and other studies have shown the existence of energy barriers in merozoite wrapping
by RBC membrane and generally in the wrapping of nanoparticles by cellular membranes [43, 110]. We marked
the maximum tension above which the invasion is impaired as σthld (Fig. 3D). Kariuki et al. suggested a tension
threshold in order of 10−4 pN/nm to limit malaria invasion. However, based on our results, σthld is almost linearly
proportional to the adhesion strength; lower σthld is required when the parasite adhesion strength is smaller (Fig.
3E). The linear relationship between the tension threshold and adhesion strength was expected from the analytical
expression, σthld/no cytoskeleton ∼ ω (Eq. S17). However, our results show that the resistance of the cytoskeleton
against deformation shifts the tension threshold to significantly lower values (Fig. 3E). Therefore, our model pre-
dicts that tension due to lipid bilayer incompressibility sets an energy barrier for a complete merozoite wrapping,
while the minimum tension to impede the malaria invasion depends linearly on the strength of merozoite adhesion
to the RBC membrane.

Spontaneous tension can impede malaria invasion

It has been suggested that any asymmetry between the leaflets of the lipid bilayer or surrounding environment can
induce a relatively large spontaneous tension in order of 1 pN/nm [41]. We next investigated how this induced
spontaneous tension can change the efficiency of malaria invasion. Based on the analytical approximations for
the membrane wrapping of a spherical particle with no cytoskeletal effects, the successful invasion occurs when
σbilayer < ω − 2κ(1/a − H0)

2 (below dotted line in Fig. 4A, Eq. S18). This suggests when the spontaneous
curvature is smaller than the curvature of the merozoite (H0 < 1/a), the induced spontaneous tension facilitates
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Figure 3: Complete merozoite wrapping by RBC membrane is associated with an energy barrier, p = 25 nm,
L0 = 35 nm, and Lmax = 200 nm. (A) The change in the energy of the RBC bilayer/cytoskeleton composite
as a function of wrapping angle (θ) for a fixed σbilayer = 0.5 pN/nm and three different magnitudes of adhesion
strength. The change in the energy is minimized either for (i) a non-wrapped state (θ∗ = θ|minimum energy = 0),
or (ii) a partially wrapped state with a small wrapping fraction (0 < θ∗ < π/4), or (iii) a completely wrapped
state (θ∗ > π/2). Arrows show the location of minimum energy. (B) Merozoite wrapping phase diagram for a
range of lipid bilayer tension (σbilayer) and adhesion strength (ω). Orange denotes a non-wrapped state, yellow
denotes a partially wrapped state, and blue are situations in which a merozoite is completely wrapped by the RBC
membrane. The dashed and solid lines mark a continuous and a discontinuous transition, respectively. The dotted
line represents the transition boundary below which a spherical particle is fully wrapped by the plasma membrane
with no cytoskeletal effects (Eq. S17). The arrow shows the shift in the completely wrapped state toward the
higher adhesion strength considering the cytoskeletal effects. (C) Wrapping angle at the minimized energy (θ∗)
as a function of adhesion strength for a fixed bilayer tension (σbilayer = 0.5 pN/nm). An energy barrier separated
a partially wrapped (failed invasion) from a completely wrapped state (successful invasion). (D) θ∗ as a function
of bilayer tension for a fixed adhesion strength (ω = 0.2.5 pN/nm). The maximum bilayer tension required for a
successful malaria invasion is marked as σthld. (E) The bilayer tension threshold (σthld) increases almost linearly as
a function of adhesion strength.

merozoite wrapping. However, a large spontaneous curvature (H0 > 1/a) increases the membrane resistance to
invasion. To investigate the engulfment of an egg-shaped merozoite by the RBC membrane, we set the physical
properties of the membrane cytoskeleton as Fig. 3 (p = 25 nm, L0 = 35 nm, Lmax = 200 nm) and plotted the
wrapping phase diagram for a range of bilayer tension (σbilayer) and induced spontaneous tension (σspon = κH2

0 , κ
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is fixed and H0 varies) at a fixed adhesion strength, ω = 2.5 pN/nm (Fig. 4A).

Considering the energy contribution due to the elastic deformation of the membrane cytoskeleton (Eq. 5), we found
that a failed malaria invasion for an egg-shaped merozoite shifts toward the smaller spontaneous tension, σspon <
0.5 pN/nm (arrow in Fig. 4A). To better visualize the effect of spontaneous tension on the merozoite wrapping
transition, we plotted the wrapping angle (θ∗) as a function of spontaneous tension at σbilayer = 0.5 pN/nm (Fig.
4B). As the induced spontaneous tension increases, we observed a discontinuous transition from a completely
wrapped state to a partially wrapped state and then a continuous transition from a partially wrapped state to a
non-wrapped state (Fig. 4B). Based on our results, σthld is a nonmonotonic function of spontaneous tension; as
spontaneous tension increases, σthld increases and then decreases again (Fig. 4C). This is consistent with the
analytical approximation for wrapping of a spherical particle with no cytoskeletal effects. Thus, we predict that a
large spontaneous tension can act as a protective mechanism against malaria invasion.
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Figure 4: Large spontaneous tension results in malaria invasion resistance. p = 25 nm, L0 = 35 nm, Lmax =
200 nm, and ω = 2.5 pN/nm. (A) Merozoite wrapping phase diagram for a range of bilayer tension (σbilayer) and
induced spontaneous tension (σspon = κH2

0 ) due to the local attachment of merozoites on the RBC surface. The
colors indicate the same wrapping states as Fig. 3 and the solid line demonstrates the discontinuous transition
between states. The dotted line represents the analytical approximation for wrapping of a spherical particle with
no cytoskeletal effects (Eq. S18). The arrow shows the shift in the completely wrapped state toward the smaller
spontaneous curvature due to the energy associated with the cytoskeleton deformation. (B) θ∗ as a function of
induced spontaneous tension at a fixed σbilayer = 0.5 pN/nm. With increasing the magnitude of induced spontaneous
tension, there is an energy barrier that separates the partially and completely wrapped states. (C) The nonmonotonic
behavior of membrane tension threshold (σthld) with increasing the induced spontaneous tension. When H0 < 1/a,
σthld increases as the induced spontaneous tension increases, but when H0 > 1/a, σthld decreases with an increase
in spontaneous tension.

Interfacial tension creates a nucleation barrier in merozoite wrapping

How do interfacial forces between the membrane at the site of invasion and the free membrane outside of adhered
area influence the parasite wrapping behavior? Based on analytical approximation, the effects of interfacial forces
on the wrapping process of a spherical particle with no cytoskeletal layer can be classified into three regimes
(Eq. S19). (i) Interfacial forces create a large energy barrier (“nucleation barrier”) such that the particle does not
attach to the membrane (θ∗ < 0) [42, 45, 111]. (ii) Interfacial forces create an energy barrier that impedes the
full envelopment of a partially wrapped particle by the membrane (θ∗ < π/2) (Eq. S19a). (iii) Interfacial forces
facilitate the encapsulation process when the membrane wrapping passes the equator of the sphere (θ∗ > π/2)
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(Eq. S19b) [45, 111]. Physically, the net effects of interfacial forces or line tension (γ) between two boundaries
with different properties can be represented by an interfacial tension defined as σinter = γ2/κ. To understand how
interfacial tension impacts the entry of an egg-shaped merozoite into an RBC with a cytoskeleton layer, we plotted
the wrapping phase diagram for a range of bilayer tension (σbilayer) and interfacial tension (γ2/κ, κ is fixed and γ
varies). Here, we considered a wide range of line tension (0 < γ < 50 pN) to mimic line tension at lipid domain
boundaries and line tension due to protein phase separation [101, 102].

We can identify three different tension regimes in Fig. 5A. At low bilayer tension (σbilayer < 0.5 pN/nm), indepen-
dent of the magnitude of the interfacial tension, the particle is fully wrapped by the membrane. At intermediate
bilayer tension (0.5 < σbilayer < 0.7 pN/nm), we observed a distinct contrast with the membrane wrapping of
a spherical particle with no cytoskeleton layer (Eq. S19b), wherein an increase in interfacial tension results in a
discontinuous transition from a completely wrapped state to a non-adhesive state (Figs. 5A and B). This discrep-
ancy could arise from the combined effects of the merozoite’s egg-like shape and the substantial energy associated
with the cytoskeleton deformation in the fully wrapped state. (Fig. 3A). In particular, for membrane wrapping of
an egg-shaped merozoite with no cytoskeleton layer, we found that, depending on the combinations of the bilayer
tension and adhesion strength, increasing the magnitude of interfacial tension leads to the transition of a wrapping
state with θ∗ > π/2 to either a fully wrapped state of θ∗ = π (Fig. S1A) or a non-adhered state of θ∗ = 0 (Fig.
S1B), which is in agreement with the previous study [4]. Finally, in the case of high bilayer tension (σbilayer > 0.7
pN/nm), we found that similar to the membrane wrapping of the spherical particle and the egg-shape merozoite
with no cytoskeleton layer (Fig. S1C), interfacial tension creates a nucleation barrier (shown by a solid gray line
in Fig. 5A) which separates a partially wrapped state from a non-adhered region (Figs. 5A and B). In Fig. 5C, we
plotted σthld as a function of interfacial tension. Interestingly, we observed a switch-like behavior in σthld, wherein
σthld sharply drops from 0.6 pN/nm to 0.5 pN/nm with increasing interfacial tension (Fig. 5C). These results sug-
gest that interfacial tension can inhibit malaria invasion by creating two energy barriers; (1) a nucleation barrier
that impedes the merozoite attachment to the RBC membrane and (2) a wrapping energy barrier that hinders the
full merozoite entry.

Physical properties of RBC cytoskeleton control the efficiency of malaria invasion

Thus far, we have fixed the properties of the membrane cytoskeleton and have focused on the role of induced
tensions within the lipid bilayer in inhibiting malaria invasion. We next asked how does the tension due to the
resistance of the cytoskeleton against deformation alter the degree of parasite wrapping around the RBC membrane?
In this study, we assumed that the membrane cytoskeleton is areally incompressible and the spectrin network can
only move in lateral directions (shear deformation). The resistance to the shear deformation is represented by the
shear modulus µ. Initially, it has been proposed that the shear modulus of the RBC cytoskeleton is constant and is
in the order of µ ∼ 2.5 pN/µm [112–114]. However, recent studies have suggested that similar to the nonlinear
response of biopolymers, the shear modulus magnitude of the spectrin network in the RBC cytoskeleton depends
on the extension ratios and exhibits a strain hardening behavior in large deformations [63, 62]. For example, using
a WLC model, Feng et al. derived the shear modulus of an incompressible RBC cytoskeleton as a function of
principal stretches and the physical properties of the cytoskeleton (Eq. 19 in [63]).

To understand how the physical properties of the cytoskeleton affect the resistance of the RBC membrane against
the malaria invasion, we fixed H0 = 0, γ = 0, ω = 2.5 pN/nm, and plotted the wrapping phase diagrams for the
egg-shaped merozoite for a range of bilayer tension and natural length of spectrin (L0), the maximum length of
spectrin (Lmax), and persistence length of spectrin (p) (Figs. 6A-C). We defined the average of the shear modulus
of the cytoskeleton ( average of µ in Eq. 19 in [63]) as a shear tension (σshear). The value of the shear tension is
given at the top of each panel in Figs. 6A-C . Based on our results, the merozoite wrapping process is inhibited
by increasing the natural length of spectrin from L0 = 25 nm to L0 = 85 nm (Fig. 6A). This is because a larger
L0 results in a higher shear tension which makes the cytoskeletal layer more rigid against deformation (Fig. 6A).
In contrast to the natural length of spectrin, we found that the shear tension of the cytoskeleton decreases with an
increase in the maximum or persistence length of spectrin (Figs. 6B and C). This decreases in the magnitude of
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Figure 5: Interfacial tension plays an important role in regulating the success or failure of malaria invasion. p =
25 nm, L0 = 35 nm, Lmax = 200 nm, and ω = 2.5 pN/nm. (A) Merozoite wrapping phase diagram for a range of
bilayer tension (σbilayer) and induced interfacial tension (σint = γ2/κ). Yellow and blue colors indicate the same
wrapping states as Fig. 3, while the orange color represents a non-adhered state (θ∗ < 0). The solid lines illustrate
the discontinuous transitions associated with energy barriers between different states. We marked the nucleation
barrier between the partially wrapped state and the non-adhered region by a solid gray line. (B) θ∗ as a function of
induced interfacial tension for two different bilayer tensions. With increasing the magnitude of induced interfacial
tension, there is a discontinuous transition from completely and partially wrapped states to the non-adhered state.
(C) A switch-like behavior in the tension threshold (σthld) with increasing the magnitude of interfacial tension.

shear tension facilitates the complete merozoite wrapping transition (Figs. 6B and C). It should be mentioned in
all panels of Fig. 6, the transition between the completely and partially wrapped states is discontinuous (shown by
a solid line), but the transition between the partial and non-wrapped states is continuous (shown by a dashed line)
(see Figs. S2A-C). From these results, we can conclude that the physical properties of the cytoskeleton play key
roles in specifying the magnitude of shear tension and, ultimately, the RBC resistance against malaria invasion.

Biophysical properties of RBCs alter the magnitude of actomyosin forces required for a successful
malaria invasion

While the parasite’s motor forces are known as the primary driving mechanism for malaria invasion [11–14], we
next asked whether the magnitude of motor-driven forces varies based on the biophysical properties of the host
RBC membrane. To answer this question, we first estimated the minimum axial forces (Fz) required for a full
envelopment of a spherical particle with no cytoskeleton layer (Eq. S22). Based on our analytical approximation,
Fz is linearly proportional to the lipid bilayer bending rigidity (κ), bilayer tension (σ), adhesion strength (ω), and
line tension (γ), and it varies as a quadratic function of spontaneous curvature (H0) (Eq. S22). For example, in the
case of a tensionless bilayer, with no adhesion energy, no spontaneous curvature, and no line tension, a minimum
axial force of Fz ∼ 3 pN is required for a full wrapping of a spherical particle (Eq. S22), which is of the order
of the reported actomyosin forces needed for a complete merozoite invasion by Dasgupta et al. [4]. Taking into
account the energy contribution of cytoskeleton deformation, we numerically calculated the minimum axial forces
required for a successful invasion by an egg-shaped merozoite, considering a range of lipid bilayer and cytoskeleton
properties (Figs. 7A-F).

Consistent with the analytical approximations for a membrane wrapping of a spherical particle with no cytoskeleton
layer, we observed a linear increase in the magnitude of the axial force (Fz) with respect to bilayer tension and
spontaneous tension, and a linear decrease as adhesion strength increases (Figs. 7A-B and S3A-C). Moreover, our
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Figure 6: Significance of RBC cytoskeleton for inhibiting parasite invasion, ω = 2.5 pN/nm. Merozoite wrapping
phase diagram for a range of bilayer tension and (A) the resting length of spectrin L0 (p = 25 nm and Lmax =
200 nm), (B) the maximum length of spectrin Lmax (p = 25 nm and L0 = 35 nm), and (C) the persistence length of
spectrin p (L0 = 35 nm and Lmax = 200 nm). In all panels, the colors show the same wrapping states as Fig. 3.
The dashed and solid lines represent the continuous and discontinuous transition between the states, respectively.
Shear tension (σshear) is defined as the average shear modulus of the cytoskeleton ( average of µ in Eq. 19 in [63]).

numerical results show that Fz undergoes a switch-like transition from a smaller to a larger value in response to
increasing interfacial tension (Figs. 7C and S3A-D). Based on our results, the magnitude of axial forces required
for complete merozoite entry significantly increases when taking into account the shear energy associated with
cytoskeleton deformation (Figs. 7 and S3). For example, considering the case of a bilayer/cytoskeleton composite
with a tensionless bilayer, with no adhesion energy, no spontaneous curvature, and no line tension, a minimum
axial force of Fz ∼ 6 nN is required for a successful invasion (Fig. 7A). This is almost three orders of magnitudes
larger than the case with no cytoskeletal layer [4].

In Figs. 7D-F, we showed the effect of the spectrin length scales on the degree of forces required to facilitate para-
site transitions to a completed invasion. As expected from Fig. 6, larger axial forces are needed for a cytoskeleton
network with longer spectrin filaments in the resting condition (Fig. 7D) or shorter spectrin filaments in the maxi-
mum stretched state (Fig. 7E) and in the persistence state (Fig. 7F). Based on our results, the natural length scale
of spectrin (L0) has a considerable effect –compared to the other length scales of spectrin (Lmax and L0)– on the
degree of motor forces required for a successful invasion (Figs. 7D-F). For example, for fixed bilayer properties
and L0 = 25 nm, the merozoite is completely wrapped with no need for extra forces (Fz = 0), while at L0 = 50 nm,
a minimum axial force of Fz ∼ 8 nN is required to push the parasite into the RBC (Fig. 7D). This is because the
shear tension of the cytoskeleton strongly depends on the natural length scale of the spectrin filaments. Overall,
these results indicate that the biophysical properties of the RBC lipid bilayer and cytoskeleton layer adjust the de-
gree of the motor forces required for a complete merozoite invasion. Particularly, our mechanical model predicts
that large actomyosin forces (Fz ∼ O (1 nN)) are needed to drive the merozoite forward into the RBC, considering
the resistance of the cytoskeletal layer against deformation.

Conclusions and Discussion

During the blood stage of malaria infection, thousands of merozoites, which are the smallest egg-shaped parasites
with a typical size of 1-2 µm, invade healthy RBCs and asexually reproduce inside them. The invasion process
was initially assumed to be solely driven by the parasite actomyosin motor forces. However, recent experiments
have shown that the biophysical properties of the RBC membrane, particularly the tension of the RBC membrane,
also play an important role in controlling the malaria invasion [22, 17, 115]. The RBC membrane is a two layer
manifold composed of an incompressible lipid bilayer and elastic spectrin-actin network. Previous theoretical
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Figure 7: The magnitude of actomyosin forces required for a complete invasion depends on the biophysical proper-
ties of RBC membrane. Contour plots of the required actomyosin forces for a complete membrane wrapping for a
range of bilayer tension and (A) the adhesion strength, (B) the spontaneous tension, (C) interfacial tension, (D) the
resting length of cytoskeleton L0, (E) the maximum length of cytoskeleton Lmax, and (F) the persistence length
of cytoskeleton p. In panels A-C, the physical properties of the cytoskeleton are set as p = 25 nm, L0 = 35 nm,
and Lmax = 200 nm and the results in panels B-F, are obtained for ω = 2.5 pN/nm. Also, in panels D-F, we set
H0 = 0 and γ = 0 to focus on the cytoskeleton effects. The marked point X in panel A shows the minimum axial
force (Fz ∼ 6 nN) required for successful invasion in a bilayer/cytoskeleton composite with a tensionless bilayer,
no adhesion energy, no spontaneous curvature, and no line tension.

studies for malaria invasion have not considered the active role of the RBC cytoskeleton and focused on the effect
of induced tension within the lipid bilayer in regulating malaria invasion [4, 55].

Evans and Skalak initially proposed the empirical constitute elastic energy of the spectrin-actin network at the con-
tinuum level, treating the cytoskeleton as an isotropic hyperelastic material with constant shear and stretch moduli
[112]. This classical model was able to explain the RBC deformability in capillaries and echinocyte formation with
genetic defects [46, 58, 57, 59–62]. Subsequent extensions of this model include consideration of molecular details
of the spectrin network [84, 72, 116, 117]. For example, for small deformations, Dao et al. calculated shear and
area moduli of the cytoskeletal layer based on the virial stress at the spectrin level [118]. Additionally, Hendrickson
et al. extended the mechanics of lipid bilayer with a conforming cytoskeletal layer [75]. They modeled the lipid
bilayer as a nematic liquid crystal and assumed that the cytoskeleton is tethered to it by a so-called connector field
[75]. Recently, Feng et al. derived an analytical hyperelastic constitutive model for the RBC cytoskeleton using
the macroscopic behavior of spectrin filaments as a WLC [63]. Their proposed model accounts for the distribution
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of orientations and natural lengths of spectrin, representing the strain-hardening behavior of the RBC membrane
observed in experiments [63].

In this study, we present a mathematical framework for investigating the role of tension of the RBC membrane, con-
sisting of a lipid bilayer and a cytoskeleton layer, in governing the energy landscape of merozoite entry. Here, we
modeled the lipid bilayer as an incompressible elastic shell that can bend and the cytoskeleton as an incompressible
triangular elastic network (WLC model proposed by Feng el al. [63]) that can undergo shear deformation [34, 63].
Our results show that increasing the effective tension of the RBC membrane generates a wrapping energy barrier,
which can hinder the merozoite invasion (Fig. 8). The effective tension of the RBC membrane, as summarized in
Fig. 8 includes the RBC bilayer tension resulting from lipid incompressibility, the cytoskeleton shear tension due
to its resistance to deformation, the induced spontaneous tension arising from asymmetry in the lipid distribution,
and the induced interfacial tension at the lipid/protein phase separated boundaries (Fig. 8).

The presence of an energy barrier in the membrane wrapping process is in agreement with the concept of a mem-
brane tension threshold required for successful malaria invasion proposed in a recent study by Kariuki et al. [22].
Based on our results, the tension threshold needed for inhibiting malaria invasion (i) displays an almost linear rela-
tionship with the merozoite adhesion to the RBC surface (Fig. 3), (ii) exhibits a non-monotonic trend with respect
to spontaneous tensions, with a slight increase followed by a decrease as spontaneous tension increases (Fig. 4),
and (iii) undergoes a sharp transition from large to small values under high interfacial tensions (Fig. 5). These
results from our numerical calculations are supported by the analytical expression for membrane wrapping of a
spherical particle with no cytoskeleton layer (Eqs. S17, S18, and S19).
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Figure 8: High tension of the RBC membrane, including the bilayer tension, induced spontaneous tension, interfa-
cial tension, and the cytoskeleton-induced shear tension, acts as a protective mechanism by generating a wrapping
energy barrier and inhibiting malaria invasion.

Taking into account the energy associated with the cytoskeletal deformation in the membrane wrapping process,
we found a substantial reduction in the tension threshold for impeding malaria invasion (Figs. 3 and 4). Also, our
results show that the shear energy of the cytoskeleton diverges at the full wrapping state, suggesting that parasites
need to utilize a mechanism to disassemble the cytoskeleton locally in order to complete the invasion process.
(Figs. 3). Several experimental studies have investigated the role of the RBC cytoskeleton in mediating merozoite
invasion [119–121]. In particular, in support of the local disassembly of the cytoskeleton, it has been shown that the
success of malaria invasion depends on intracellular ATP hydrolysis and cytoskeleton reorganization [119–121].
We also show the correlation between the shear tension of the cytoskeleton and the three main characteristics of
the spectrin network– the natural length (L0), the maximum length (Lmax), and the persistence length of spectrin
(p)– in membrane wrapping progression (Fig. 6). Based on our results, increasing L0 inhibits the invasion, while
larger Lmax and p facilitate complete entry (Fig. 6). Future models should consider the molecular organization of
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the actin-spectrin cytoskeleton layer [49, 122, 123].

Another key aspect of malaria invasion is the role of parasite actomyosin motor forces in promoting complete
entry [14, 124]. One advantage of our mathematical framework is that it can be used to estimate the minimum
actomyosin motor forces required for a complete invasion while taking into account the contribution of membrane
wrapping energy during merozoite entry (Fig. 7). Based on our calculations, the resistance of the cytoskeleton
layer against deformation results in a significant increase (∼ three orders of magnitude) in the actomyosin force
needed for complete invasion. (Fig. 7). For instance, in a case of a tensionless bilayer, with no adhesion energy,
no spontaneous tension, and no interfacial tension, a minimum axial force of Fz ∼ 6 nN is required to deform the
RBC cytoskeleton and successfully enter the host cell (Fig. 7A). Assuming that each single motor domain of the
malaria parasite produces an average force of ∼ 6.5 pN [125], a minimum of ∼ 920 motor domains are required
to generate Fz ∼ 6 nN for a successful invasion. This can provide an opportunity for future studies to measure the
number of active parasite motors and their relationship with the RBC membrane during malaria invasion.

The study of protection against malaria invasion has been a long-standing area of research [11–15]. Scientists have
been exploring various immune responses and genetic factors to better understand and prevent this dangerous dis-
ease that kills nearly half a million people every year [126–128]. The role of RBC membrane tension in impeding
malaria invasion is a new and highly intriguing concept. We believe our theoretical framework can provide insight
into the mechanical aspects of the invasion, providing an opportunity for developing a novel and efficient mecha-
nism to protect against severe malaria infection. For example, the red blood cell (RBC) membrane is characterized
by a heterogeneous lipid composition, including lipid raft microdomains [129]. This heterogeneity in the lipid
composition can induce a distribution of spontaneous tension across the membrane, which based on our results,
could serve as a location preference for malaria invasion. Consistently, it has been shown that malarial vacuolar
invaginations are enriched with the integral raft protein flotillin-1 [130]. Additionally, we have demonstrated the
key contribution of the RBC cytoskeleton in inhibiting merozoite entry, which might explain the malaria protection
observed in cases with mutations causing cytoskeleton rearrangements, such as individuals with sickle cell ane-
mia and ovalocytosis[50–52, 131]. We believe these findings can be an important step toward developing efficient
antimalarial therapeutic or vaccine-based strategies.
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Specialization to axisymmetric coordinates

For computational ease, we specialize the membrane and merozoite to axisymmetric coordinates. We parameterize
a surface of revolution as r(s) = r(s)er+z(s)k, where s is the arclength along the curve, r(s) is the radial distance
from the axis of rotation, and z(s) is the elevation from the reference plane. Since (dr/ds)2 + (dz/ds)2 = 1, we
can define ψ (the angle made by the tangent with respect to the horizontal) such that the normal and tangent vectors
are given by n = − sinψer + cosψk and as = cosψer + sinψk. Following this we have r′(s) = cos(ψ),
and z′(s) = sin(ψ) where (.)′ = d(.)

ds . The mean curvature (H) can be written as H = 1
2(ψ

′
+ r−1 sinψ).

In axisymmetric coordinates, the integral over the adhered area and the integral over interfacial length in Eq. 6
simplify as

∫
Aad

da = 2π

∫ smax

0
rds and γ

∮
∂l
dl = 2πγr. (S1)

where smax is the maximum membrane arclength that adheres to the merozoite. Additionally, for axisymmetric
coordinates, the principal extension ratios can then be written as

λ1 =
ds

ds0
=

1

s′0
and λ2 =

r

s0
, (S2)

where s0 is the arclength along the undeformed shape of the axisymmetric skeleton mapping to an unknown position
s on the deformed shape.

The egg shape of an archetypal merozoite in an axisymmetric coordinate can be parametrized as [4]

(X2 + Y 2 + Z2) = RaX
3 + (Ra −Rb)X(Y 2 + Z2), with Ra = 1µm, Rb = 0.7µm, (S3)

where

X(ϕ, θ) =
((2Ra −Rb) sin(θ)

4
− Rb sin(2θ)

8

)
cos(ϕ),

Y (ϕ, θ) =
((2Ra −Rb) sin(θ)

4
− Rb sin(2θ)

8

)
sin(ϕ),

Z(ϕ, θ) = −
(2Ra −Rb cos(θ)

4

)
cos(θ),

(S4)
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where 0 < ϕ < 2π and 0 < θ < π. Using Eq. S4, the radius of merozoite (R) as a function of angle θ can be
written as

R(θ) =
√
X2 + Y 2 + Z2 =

√((2Ra −Rb) sin(θ)

4
− Rb sin(2θ)

8

)2
+
(2Ra +Rb cos(θ)

4

)2
cos2(θ). (S5)

Having the radius of merozoite, we can find the radial distance from the axis of rotation (r) and the elevation from
the reference plane (z) given by

r(θ) = R(θ) sin(θ)

z(θ) = −R(θ) cos(θ).
(S6)

Using Eq. S6 and the definition of axisymmetric coordinates, we have

k1 = −dz
dθ

1

r
√

(dr/dθ)2 + (dz/dθ)2

k2 =
dz/dθ × d2r/dθ2 − d2z/dθ2 × dr/dθ

[(dr/dθ)2 + (dz/dθ)2]3/2
,

(S7)

where k1 and k2 are the surface principal curvatures and ds
dθ =

√
(dr/dθ)2 + (dz/dθ)2. Eq. S7 allows us to find

the mean curvature H along the merozoite surface as a function of θ given as

2H(θ) = 0.5(k1 + k2), (S8)

where ˙(.) = d(.)
dθ . The integral over the adhered area (Eq. S1) and the extension ratios (Eq. S2) can also be

calculated as a function of θ ∫
Aad

da = 2π

∫ θmax

0
r
√
(dr/dθ)2 + (dz/dθ)2dθ, (S9a)

λ1 =

√
(dr/dθ)2 + (dz/dθ)2dθ

ds0
=

√
(dr/dθ)2 + (dz/dθ)2

ṡ0
and λ2 =

r(θ)

s0(θ)
, (S9b)

where θmax is the maximum wrapping angle. Assuming that actomyosin motors apply forces tangentially along the
membrane surface, in axisymmetric coordinates, the net radial force (fr = f cos(θ)) is zero. Thus, only the axial
component of actomyosin forces (fz = f sin(θ)) pushes the merozoite forward and the work on the membrane (Eq.
3) is simplified as

Ef =

∫ θmax

0

(
2πrf sin(θ)

√
(dr/dθ)2 + (dz/dθ)2

)
︸ ︷︷ ︸

Axial force in z direction (Fz)

(
R
(
1− cos(θ)

))︸ ︷︷ ︸
Axial displacement in z direction

dθ. (S10)

Using Eqs. S1, S9a, and S10, the change in the energy of bilayer/cytoskeleton due to the adhesion of merozoite
and deformation bilayer/cytoskeleton (Eq. 6) can be written as a function θ
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∆E(θ) = 2π

∫ θmax

0

[
r
(
2κ(H(θ)−H0)

2 + σ − ω − f sin(θ)R(θ)
(
1− cos(θ)

)
+Wc(θ)

) √
R(θ)2 + Ṙ(θ)2

]
dθ

+2πγr(θmax)− πσbilayer

(∫ θmax

0
2r
√

(dr/dθ)2 + (dz/dθ)2dθ − r(θmax)
2)

(S11)

Here, we assumed that the force density applied by the actomyosin motor (f ) is constant all along the area of
adhered merozoite.

Incompressible bilayer and cytoskeleton

Let us assume that a flat circular patch of a lipid bilayer and relaxed cytoskeleton with radius (s0) deformed to fit the
merozoite contour in the adhesive region. Thus, for an incompressible bilayer/cytoskeleton, the area conservation
can be written as

πs20 = 2π

∫ θmax

0
r
√
(dr/dθ)2 + (dz/dθ)2dθ. (S12)

Eq. S12 allows us to find s0 and calculate the extension ratios using Eq. S9b, which simplifies as

λ1 =

√
(dr/dθ)2 + (dz/dθ)2

ṡ0
=
s0(θ)

r(θ)
and λ2 =

r(θ)

s0(θ)
=

1

λ1
, (S13)

which is consistent with zero local area strain (α = λ1λ2 − 1 = 0) for an incompressible bilayer/cytoskeleton
[112]. Additionally, for an incompressible cytoskeleton, the shear modulus µ is simplified as [63]

µ =
4cβ

3x0(λ21 − λ22)

(
c0 + c1(λ1 − 1) +

λ1
4(1− λ1x0)2

)
, (S14)

where c0 = −1
4(1−x0)2

and c1 =
48x4

0−153x3
0+171x2

0−71x0+1
4(x0−1)3

.

Numerical implementation

For an egg shape merozoite parametrized by Eq. S3, we numerically calculate the change in the energy of the
bilayer/cytoskeleton as a function of wrapping angle θ (Eq. S11). Then, for any given set of constant parameters,
we find an angle θ∗ at which the invasion state becomes an energy minimum.

Analytical approximations

In this section, we explore the analytical solution for the minimum energy state, ignoring the effects of membrane
cytoskeleton energy and modeling the merozoite as a spherical particle with radius a. In this condition, the change
in the energy of the system (Eq. S11) can be written as

∆E(θ) = 4πκa2(1/a−H0)
2y + πσa2y2 − 2πωa2y + 2πγ

√
y(2− y)− 2πκH2

0a
2(2y − y2)

−πfa
3

3

(
3 cos−1(1− y) +

√
y(2− y)(2y2 − y − 3)

)
,

(S15)
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where y = 1− cos(θ). By taking ∂∆E
∂y = 0, we have

2κ(1− 2H0a)− ωa2 + (σa2 + 2κH2
0a

2)y + γa
1− y√
y(2− y)

−fa3y
√
y(2− y) = 0.

(S16)

Considering our definition for a completely wrapped state (θ∗ > π/2), we can find the transition condition to the
completely wrapped state by setting y = 1 in Eq. S16. Below, we simplified Eq. S16 for different conditions.

• Case 1: Relationship between lipid bilayer tension and adhesion strength
Considering the condition that γ = 0, f = 0, and H0 = 0, Eq. S16 simplifies as

σ = ω − 2κ/a2. (S17)

Eq. S17 suggests that the particle can get fully wrapped with increasing adhesion strength.

• Case 2: Relationship between lipid bilayer tension and spontaneous curvature
Considering the condition that γ = 0 and f = 0, Eq. S16 gives

σ = ω − 2κ(1/a−H0)
2. (S18)

Based on Eq. S18, when the induced spontaneous curvature is smaller than the curvature of the particle
(H0 < 1/a), the induced spontaneous curvature assists the progress of complete particle wrapping. However,
larger spontaneous curvatures (H0 > 1/a) impede the complete wrapping transition.

• Case 3: Relationship between lipid bilayer tension and interfacial forces
As can be seen, Eq. S16 has a symmetric barrier at θ = π/2 (the line tension term vanishes for y = 1). Thus,
to find the analytical approximation, we set y = 1± ϵ, where ϵ is a small number, and expanded the Eq. S16
until the first order for the case that f = 0 and H0 = 0

θ < π/2 → y = 1− ϵ→ σ = (ω − 2κ/a2)(1 + ϵ)− γϵ/a, (S19a)

θ > π/2 → y = 1 + ϵ→ σ = (ω − 2κ/a2)(1− ϵ) + γϵ/a. (S19b)

Based on Eqs. S19, in the first half of wrapping (θ < π/2), a line tension prevents the complete membrane
wrapping process. However, once the equator is passed (θ > π/2), a line tension accommodates the particle
encapsulation. It should be mentioned that with no line tension (γ = 0), a non-wrapped state (θ∗ = 0) is
always a local minimum of ∆E(θ). However, the line tension and actomyosin force energy terms scale as√
y and their derivatives diverge at θ = 0. This means that a line tension can create an energy barrier with no

minimum energy state between 0 ⩽ θ ⩽ π in which the particle even does not adhere to the membrane.

• Case 4: Motor forces required for a complete wrapping as a function of membrane physical properties
To calculate the minimum motor forces that are required for a complete particle wrapping (based on our
definition θ∗ > π/2), we substitute y = 1 + ϵ in Eq. S16 and find the force density (f ) as
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fa3 = 2κ(1− 2H0a)(1− ϵ)− ωa2(1− ϵ) + (σa2 + 2κH2
0a

2)− γaϵ. (S20)

The total force in the z direction (Fz) is obtained as

Fz = 2π

∫ θmax

0
rf sin(θ)dθ = πa2f

(
cos−1(1− y)−

√
y(2− y)(1− y)

)
. (S21)

Substituting Eq. S20 into Eq. S21 for a complete wrapping condition (y = 1 + ϵ), we have

Fz = π
(
2κa(1/a−H0)

2 − ωa+ σa−
(
2κ(1/a−H0)− ωa+ γ

)
ϵ
)
(π/2 + 2ϵ). (S22)

Based on Eq. S22, for a tensionless membrane (σ = 0), with no adhesion energy (ω = 0), no line tension
(γ = 0), and no spontaneous curvature (H0 = 0), a minimum force of Fz = 3 pN is required for a complete
wrapping of a spherical particle. This is consistent with the calculated magnitude of actomyosin forces
required for a merozoite invasion by Dasgupta et al. [4]. It should be mentioned that Eq. S22 is derived
for the minimum axial force needed for a complete invasion. This means if the right hand side of Eq. S22
becomes negative, the physical forces are enough to push the merozoite into the RBC and thus Fz = 0.

Supplementary figures
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Figure S1: θ∗ as a function of interfacial tension for wrapping of an egg-shaped merozoite without the cytoskeleton
layer. (A) A discontinuous transition from θ∗ ∼ 5π/6 to a full wrapped state (θ∗ = π) with an increase in the
magnitude of interfacial tension, ω = 1 pN/nm and σbilayer = 0.6 pN/nm. (B) A discontinuous transition from
θ∗ ∼ 5π/9 to a non-adhered state with an increase in the magnitude of interfacial tension, ω = 0.4 pN/nm and
σbilayer = 0.6 pN/nm. (C) A discontinuous transition from a partially wrapped state to a non-adhered state with an
increase in the magnitude of interfacial tension, ω = 0.5 pN/nm and σbilayer = 1 pN/nm.
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Figure S2: The effects of physical properties of the cytoskeleton on the efficiency of malaria invasion, σbilayer
= 0.63 pN/nm. (A) A discontinuous transition from a completely to a partially wrapped state followed by a
continuous transition from a partially to a non-wrapped wrapped state with increasing L0 from 25 nm to 85 nm.
σ = 0.1 pN/nm, ω = 0.8 pN/nm, p = 25 nm, and Lmax = 200 nm. (B) A continuous transition from a partially to
a completely wrapped state followed by a discontinuous transition from a partially to a completely wrapped state
with increasing Lmax from 180 nm to 210 nm. σ = 0.1 pN/nm, ω = 0.8 pN/nm, p = 25 nm, and L0 = 35 nm. (C)
A discontinuous transition from a partially wrapped to a completely wrapped state with increasing the persistence
length of spectrin p. σ = 0.1 pN/nm, ω = 0.8 pN/nm, L0 = 35 nm, and Lmax = 200 nm.
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Figure S3: Minimum axial force (Fz) required for a complete merozoite entry as a function of (A) bilayer tension,
(B) spontaneous tension, (C) adhesion strength, and (D) interfacial tension. p = 25 nm, L0 = 35 nm, and Lmax =
200 nm. The gray circles show the results that we obtained from the energy minimization (Eq. S11). The dotted
line represents the fitted curves and the solid blue line indicates the analytical approximation for the motor-driven
force (Eq. S22). The green arrow demonstrates the increase in the magnitude of the axial force compared to the
analytical approximations because of the cytoskeleton resistance against deformation. (A) Fz increases as a linear
function of bilayer tension. The dashed line shows the linear dependence on the bilayer tension by fitting to a line
(Aσbilayer+B), where A = 2.48 and B = 4.73 with R2 = 0.99. (B) Fz varies as a linear function of spontaneous
tension. The dashed line shows a linear dependence on the spontaneous tension by fitting to a line (Aσspon+B),
where A = 5.7, B =-0.09 with R2 = 0.99. (C) Fz decreases as a linear function of adhesion strength. The dashed
line shows the linear dependence on the adhesion strength by fitting to the line (Aω+B), where A = -2.93 and B =
7.4 with R2 = 0.99 (D) Switch-like increases in axial force from Fz = 0.52 nN to Fz = 0.7 nN with increasing the
magnitude of interfacial tension.
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