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Abstract 

Purpose: 

Though computational epitope prediction methods have been widely used, there have been 

only limited studies conducted in the context of allergies. Our research aims to benchmark 

publicly available epitope prediction tools, focusing on Fel d 1, whose allergenic IgE- and T-

cell epitopes have been extensively studied. 

 

Methods: 

Our study utilized an array of epitope prediction tools publicly accessible via the Immune 

Epitope Database (IEDB) and other resources. The tools were evaluated based on their ability 

to identify known linear IgE- and T-cell epitopes of Fel d 1. 

 

Results: 

In general, B-cell epitope prediction methods demonstrated limited effectiveness. Most 

methods perform marginally better than random selection. ElliPro, a structure-based method, 

slightly outperformed the rest, suggesting that incorporating 3D structure information could 

enhance prediction accuracy. In terms of T-cell epitope prediction, ProPred was successful in 

identifying all known T-cell epitopes, whereas the IEDB approach missed two known epitopes 

and showed a high rate of over-prediction. 

 

Conclusions: 

Our results show that current computational epitope prediction methods possess limitations in 

accurately identifying allergenic Fel d 1 epitopes. The study highlights the scope for future 

advancements in computational epitope prediction methodologies and the development of 

extensive epitope databases to optimize allergenic epitope prediction tools. Despite the evident 

limitations, these tools can still provide valuable preliminary insights into potential allergenic 

regions within proteins. 

 

 

Keywords: Allergenic Epitope, Computational Epitope Prediction, Cat Allergy, Fel d 1  
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Introduction 

The cat allergy is one of the most common pet allergies, affecting approximately 20% of the 

global population (1). The severity of cat allergy can vary, ranging from mild symptoms like 

coughing, pruritus, and skin eruption to potentially life-threatening reactions such as 

anaphylaxis. The primary cause of cat allergy is an allergenic protein called Fel d 1, which is 

found in the fur and dander of domestic cats. It is estimated that approximately 90% of cat 

allergies are caused by Fel d 1 (2). 

Fel d 1 is primarily secreted by epithelial cells and the salivary glands of cats, and it remains 

on their haircoats during grooming. One notable characteristic of Fel d 1 is its high thermal 

stability, allowing it to persist on cat hair and become airborne. It can associate with small 

airborne particles, spreading throughout the surroundings and leading to allergic reactions in 

susceptible individuals. In fact, a study reported that Fel d 1 was detected in 99.9% of 

households in the United States, highlighting its ubiquity and potential for exposure (3). 

Although the function of Fel d 1 remains largely unknown, its allergenicity of Fel d 1 has been 

extensively studied. When Fel d 1 is presented by antigen-presenting cells, such as dendritic 

cells, it triggers the production of IgE antibodies during sensitization. These IgE antibodies 

specifically target and bind to epitopes on Fel d 1, leading to the activation of immune cells 

and the subsequent release of inflammatory mediators. This immune response causes the 

clinical manifestation of allergic symptoms (4). In addition, T cell epitopes recognized by 

helper T cells can indirectly induce IgE production through T cell-mediated reactions, further 

amplifying the allergic response (5). Thus, the recognition of IgE bound to effector cells, such 

as basophils and mast cells, plays a crucial role in the allergic cascade (4). 

Previous studies have revealed that the total IgE reactivity against the natural heterodimer of 

Fel d 1 is higher compared to its monomeric forms, suggesting that the epitopes of Fel d 1 are 

partially conformational in nature (6, 7). It has been reported that there are three essential IgE 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.01.543222doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.543222
http://creativecommons.org/licenses/by-nc/4.0/


epitopes in Fel d 1, which are recognized by IgE antibodies produced in allergic individuals 

(8). 

Accurate identification and understanding of epitopes related to allergies are essential for 

comprehending allergic responses and developing diagnostic tools. Experimental identification 

of B-cell epitopes has traditionally been the "gold standard" for epitope mapping (9). However, 

this approach is often costly, time-consuming, and requires specialized laboratory techniques. 

Alternatively, computational epitope prediction methods have emerged as practical tools for 

epitope identification (10, 11). These methods utilize algorithms and machine learning 

techniques to analyze the physicochemical properties of proteins and predict potential epitopes. 

Early computational tools for B-cell epitope prediction relied on amino acid propensity scales, 

which characterized the physicochemical properties of B-cell epitopes such as hydropathy (12, 

13), flexibility (14), and surface accessibility (15). These scales provided a foundation for 

initial predictions but had limitations in accuracy and specificity. However, recent 

advancements in machine learning techniques have leveraged computational B-cell epitope 

prediction methods, leading to improved outcomes. Machine learning algorithms, including 

Support Vector Machine (SVM) (16-18), Random Forest (RF) (19, 20), K-nearest neighbors 

(KNN) (21), and Manifold Adaptive Experimental Design (MAED) (22), have been developed 

and trained to differentiate known B-cell epitopes from non-B-cell epitopes (17-20, 23-29). 

These machine learning-based approaches utilize large datasets of experimentally validated 

epitopes to identify patterns and features that distinguish epitopes from non-epitopes. By 

learning from this training data, the algorithms can make predictions on new protein sequences 

and provide insights into potential epitope regions. 

While there have been many computational methods for B-cell epitope prediction, their 

application in predicting IgE epitopes, specifically in the context of allergenic proteins like Fel 

d 1, has been largely limited. IgE epitopes are of particular interest due to their direct 
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involvement in allergic reactions. Therefore, in this study, we aimed to evaluate the 

effectiveness of currently available computational T- and B-cell epitope prediction tools 

applied to Fel d 1 and their capacity to accurately identify allergenic epitopes. 

To accomplish this, we employed an assortment of epitope prediction tools accessible through 

the Immune Epitope Database (IEDB) (30) and other sources. Our objective was to perform a 

detailed assessment of these methods, focusing on their ability to identify Fel d 1 allergenic 

epitopes. 

 

Materials and Methods 

 

Defining Fel d 1 Epitopes 

While it is known that some Fel d 1 epitopes are partially conformational, our focus in this 

study was on the linear epitopes of Fel d 1. This choice was made due to the general low 

consistency and accuracy of computational prediction methods for conformational epitopes 

(31). 

Fel d 1 is a heterodimer composed of two polypeptide chains (Fig. 1A), known as Chain 1 and 

Chain 2 (also referred to as α and β chains, respectively). Chain 1 consists of 70 amino acids 

and has an approximate molecular mass of 8 kDa. Chain 2 exhibits variation in its C-terminal 

region, resulting in three known isoforms (32-34). The major linear IgE-binding epitopes of 

Fel d 1 are located in three regions: two in Chain 1 and one in Chain 2 (Chain 1: 26 

VAQYKALPVVLENA 38, 46 DAKMTEEDKRNALS 59, Chain 2: 12 

DVFFAVANGNELLL 25) (35). T-cell epitopes are present in a total of six regions, including 

overlapping segments (Table 1) (36). 

 

Epitope Prediction Tools 

To computationally predict Fel d 1 epitopes, we mainly used epitope prediction tools from the 
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Immune Epitope Database (IEDB). The IEDB hosts a comprehensive suite of seven sequence-

based B-cell epitope prediction tools, along with two structure-based prediction methods. For 

the structure-based methods, we utilized the dimeric structure of Fel d 1 (PDB ID: 1PUO). 

Among the structure-based tools, we specifically chose ElliPro (37), but excluded DiscoTope 

(26), as DiscoTope predicted all residues of Fel d 1 to be epitopes. In addition to the IEDB's B-

cell epitope prediction tools, we also used BepiPred-3.0 (38), a protein language model epitope 

predictor. We applied default cut-off values for each prediction method. The following are the 

methods we benchmarked in this study: 

1. BepiPred-1.0, 2.0, and 3.0 (19, 20, 38): Currently, the IEDB webserver offers BepiPred-

1.0 and 2.0. BepiPred-1.0 employs a combination of a hidden Markov model (HMM) 

and a high-performing propensity scale method. BepiPred-2.0 advances further by 

using a Random Forest (RF) algorithm trained on epitopes annotated from antibody-

antigen protein structures. The latest version, BepiPred-3.0, leverages protein language 

models (LMs) on extensive datasets of protein sequences and structures. 

2. Chou and Fashman β-turn prediction (39, 40): A method developed to predict β-turns, 

based on the idea that it can also assist in predicting antibody epitopes. 

3. Emini surface accessibility scale (15): Based on a structural database, it predicts the 

probability of amino acid being present on the surface from 6mer peptide sequences.  

4. Karplus and Schulz flexibility prediction scale (14): It predicts the flexibility of a 

specific position of an amino acid from the crystal structure's B-factor, thus predicting 

the probability of being found on the surface. 

5. Kolaskar and Tongaonkar antigenicity scale (41): It calculates the tendency of antigenic 

portions by dividing the hydrophilicity, surface accessibility, and flexibility into 7mer 

amino acid peptide sequences and calculating the average. 

6. Parker hydrophilicity scale (42): An index indicating the degree of peptide 
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hydrophilicity, calculated by dividing 7mer peptide sequences to estimate amino acid 

hydrophilicity. The method is based on the idea that areas with high hydrophilicity are 

likely to be on the surface and therefore become epitopes. 

7. ElliPro (37): A structure-based epitope prediction tool. It assumes the protein's surface 

as an ellipsoid and predicts the protruding areas in relation to the ellipsoid. These areas 

are then clustered into a protrusion index (PI) to predict the epitopes. Although ElliPro 

can predict both linear and conformational epitopes, only the linear epitope prediction 

results were used in this study. 

 

For the prediction of T-cell epitopes, we employed two pMHC-II binding prediction tools: 

ProPred (43) and the IEDB MHC-II binding prediction tool (44). We set a 5% threshold for 

ProPred to characterize each nonamer as either a binder or a non-binder for 8 HLA types (45). 

As for the IEDB prediction method, the query sequence was fragmented into overlapping 15-

mer linear peptides, and binding prediction was performed for each peptide using the 27 HLA 

reference set (46) to ensure broad coverage across the human population. In this study, we used 

the IEDB recommended 2.22 method, using the percentile rank as a binding indicator. Peptides 

with a rank below 10 were classified as binders, while those with a higher rank were considered 

non-binders. The epitope scores for each method were calculated as a linear sum of the number 

of binding events. To evaluate the known T-cell epitopes shorter than 15 residues using the 

IEDB prediction tool, extra residues at each terminus were added to make the peptides within 

a 15mer window (Table 1). 

 

Results 

Structure Analysis of Fel d 1 Epitopes 

Fel d 1 primarily adopts the alpha-helical heterodimeric structure (Fig. 1A). The heterodimer 

is composed of two distinct chains (Chain 1 and 2) that are linked by three disulfide bonds. 
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These heterodimers naturally assemble into tetramers via non-covalent interactions between 

Chain 2s, as shown in Fig. 1B (47). 

Given the structure and formation of the tetramer, the IgE epitope located on Chain 2 might be 

less accessible for IgE binding when the protein is in its tetrameric structure. As the binding of 

IgE antibodies to their specific epitopes is a crucial step in the onset of allergic reactions, the 

non-covalent interactions between Chain 2s in the tetramer might render these epitopes less 

exposed, thereby decreasing the likelihood of IgE binding. 

 

Prediction of Fel d 1 IgE Epitopes 

To assess the IgE epitope prediction, we examined nine publicly available epitope prediction 

tools, which include web-based B-cell epitope prediction methods provided by the IEDB. 

Generally speaking, most epitope prediction methods seem to excel more at predicting non-

epitopes than epitopes (Table 2). However, considering the imbalance between the number of 

epitopes and non-epitopes, with 42 out of 162 total residues being epitopes (28 out of 70 in 

Chain 1, and 14 out of 92 in Chain 2), the likelihood of accurately predicting epitopes by mere 

chance is considerably lower (0.26) compared to that of correctly predicting non-epitopes 

(0.74). It is important to note that the performance of most methods approximates to random 

chance. Indeed, some methods like BepiPred-1.0, the Chou β-turn, Parker hydrophilicity, and 

Karplus flexibility scales even underperform compared to random selection. While the Emini 

accessibility and Kolaskar antigenicity scales perform marginally better than random chance, 

their slight improvement could arguably be within the margin of error, making them essentially 

equivalent to random predictions. 

Examining the performance of BepiPred-3.0 more closely, we find that while it achieves the 

highest precision in non-epitope prediction, its recall rate is extremely low. This suggests that 

the default cut-off value might be set too low, leading to a high rate of misprediction for non-
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epitopes. In a side-by-side comparison of BepiPred-2.0 and ElliPro, a closer inspection of the 

epitope prediction results by chain suggests that ElliPro outperforms BepiPred-2.0 (Fig. 2). 

This relative superior performance by ElliPro is likely due to its unique approach of using a 

protein's structure as an input, allowing it to predict epitopes from surface residues, thus giving 

it a significant edge over other methods. 

 

Prediction of Fel d 1 T-cell Epitopes 

T-cell immunity plays a pivotal role in managing allergic responses by dictating the magnitude 

and nature of the immune response to allergens. In particular, T-cell responses against allergens 

can have profound influence on the production of specific types of antibodies, such as IgE, 

which plays a direct role in allergic reactions. 

In our initial investigations, we subjected the known Fel d 1 T-cell epitopes to ProPred and the 

IEDB prediction methods. Among these epitopes, the sequence 55 ENALSLLDKIYTS 67 in 

Chain 1, known for its binding to HLA-DRB1*14:01, was unable to be evaluated since the 

specific allele is not included in either of the methods. Notably, we found that the IEDB method 

was not able to correctly predict two of the known T-cell epitopes as binders for their respective 

alleles. Contrarily, ProPred correctly identified all the epitopes as binders for their associated 

alleles (Table 1). 

It is important to note that high epitope binding scores do not necessarily indicate 

immunogenicity. Though antigen presentation takes place, actual immune responses are 

initiated and regulated by T-cell recognition. This leads to the conclusion that the lack of pMHC 

binding almost certainly results in the absence of immune responses, whereas pMHC binding 

does not invariably trigger immune responses. As a result, predicting non-epitope regions is 

viewed as a more straightforward task. 
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This trend is also observed when predicting T-cell epitopes on complete Fel d 1 sequences. We 

also performed both prediction methods on the full sequences of Chain 1 and 2. Broadly 

speaking, the IEDB prediction method tends to over-predict peptides, and no direct correlation 

could be found between the epitope score and T-cell epitopes. Conversely, the pMHC binding 

prediction results from ProPred largely align with the known Fel d 1 T-cell epitopes (Fig. 3). 

 

Discussion 

In this study, we benchmarked various computational methods for prediction in Fel d 1 epitopes, 

highlighting the feasibility and potential of these tools in identifying allergenic epitopes. Even 

though our analysis focused on Fel d 1, these computational tools can be applied to other 

allergens. A comprehensive understanding of the epitope landscape of various allergens could 

contribute to the development of effective allergen-specific therapies and diagnostic tools. 

While computational methods show promise, they have limitations in their ability to accurately 

identify epitopes. Our results demonstrate that these methods are in general more effective at 

predicting non-epitopes than epitopes. Specifically, most B-cell epitope methods we tested 

were only marginally better than random selection. This outcome may be due to these methods 

not being specifically designed to identify IgE epitopes. ElliPro, a structure-based B-cell 

epitope prediction tool, outperformed most of the other methods, suggesting the benefit of 

considering the 3D structure of allergenic proteins when predicting IgE epitopes. 

In terms of T-cell epitope prediction, ProPred successfully identified all known T-cell epitopes 

for their associated alleles in our analysis. However, the IEDB prediction method failed to 

predict two known T-cell epitopes. The high rate of over-prediction observed with the IEDB 

method further emphasizes the challenges associated with predicting T-cell epitopes. 

Drawing from our results, we anticipate that the development of advanced artificial intelligence 
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techniques, coupled with 3D structure prediction methods, could notably enhance the precision 

and specificity of epitope prediction tools. Such techniques are currently underdeveloped for 

allergen epitope identification. Additionally, expansive and comprehensive databases of 

experimentally validated epitopes would facilitate these tools in refining their algorithms, 

leading to improved epitope prediction. 

In conclusion, our study illuminates both the potential and limitations of current computational 

methods in allergenic epitope prediction. Despite certain shortcomings, these computational 

tools still remain useful for generating preliminary insights into potential allergenic regions 

within proteins. 
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Figures and Tables 

Table 1. T-cell epitopes of Fel d 1 allergen. As the default sequence length for the IEDB 

prediction method is 15, we extended the input sequence when its length was shorter than 15 

residues. Neither of the prediction methods included HLA-DRB1*14:01 in their allele sets and 

thus no prediction was possible for the specific peptide (ENALSLLDKIYTS). 

Chain HLA type Range T-cell epitope IEDB input sequence ProPred IEDB 

1 

DRB5*01:01 19-31 
DEYVEQVAQY

KAL 

TPDEYVEQVAQYK

ALPV 
O O 

DRB1*01:01 25-44 
VAQYKALPVV

LENARILKNC 

VAQYKALPVVLEN

ARILKNC 
O O 

DRB1*13:01 31-43 
LPVVLENARIL

KN 

KALPVVLENARILK

NCV 
O X 

DRB1*14:01 55-67 
ENALSLLDKIY

TS 

DKENALSLLDKIYT

SPL 
NA NA 

DRB1*11:01 58-67 LSLLDKIYTS 
DKENALSLLDKIYT

SPLC 
O X 

2 DRB1*04:01 22-31 ELLLDLSLTK 
VANGNELLLDLSLT

KVNATE 
O O 
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Table 2. Prediction results of computational B-cell epitope prediction tools for Fel d 1 IgE 

epitopes. Overall, he majority of methods yield results that are only marginally better than, or 

indistinguishable from, random selection. See also Fig. 2 for other details. 

 Prediction of Epitopes Prediction of Non-epitopes 

 Precision Recall F1 Precision Recall F1 

ElliPro 0.34 0.48 0.40 0.79 0.68 0.73 

BepiPred-2.0 0.32 0.64 0.43 0.81 0.53 0.64 

BepiPred-3.0 0.28 0.95 0.43 0.90 0.15 0.26 

Emini 0.27 0.33 0.30 0.75 0.68 0.71 

Kolaskar 0.27 0.55 0.37 0.76 0.49 0.60 

BepiPred-1.0 0.22 0.21 0.22 0.73 0.73 0.73 

Parker 0.25 0.45 0.32 0.74 0.53 0.62 

Karplus 0.19 0.31 0.24 0.69 0.55 0.61 

Chou 0.22 0.38 0.28 0.70 0.52 0.60 
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Figure 1. The structures and epitopes of Fel d 1. Chain 1 is colored in red and Chain 2 is in 

skyblue. (A) The heterodimeric structure of Fel d 1 (PDB ID: 1PUO). The three disulfide bonds 

are highlighted in a small sphere representation. (B) The tetrameric structure of Fel d 1 (PDB 

ID: 2EJN). Two Fel d 1 heterodimers are non-covalently bonded between two Chain 2s. (C) 

Three IgE epitopes of Fel d 1. (D) The residues that are included in the six T-cell epitopes (see 

Table 1). Overall, there are three main T-cell epitope regions. 
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Figure 2. IgE epitope prediction using computational tools. Apart from BepiPred-2.0, 3.0, and 

ElliPro, all other methods are essentially no different from random selection. ElliPro, a 

structure-based prediction method, emerges as the best performer. See also Table 2 for other 

details. 

 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.01.543222doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.543222
http://creativecommons.org/licenses/by-nc/4.0/


Figure 3. Fel d 1 T-cell epitope maps and prediction results. (A) The binders predicted by 

ProPred largely align with the actual T-cell epitopes. (B) The IEDB prediction method tends to 

overpredict potential T-cell epitopes. 
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