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SUMMARY: The BrainBeats toolbox is an open-source EEGLAB plugin designed to jointly 
analyze EEG and cardiovascular (ECG/PPG) signals. It offers three main protocols: heartbeat-
evoked potentials assessment, feature-based analysis, and heart artifact extraction from EEG. 
This will aid researchers and clinicians in studying brain-heart interactions with enhanced 
reproducibility and accessibility. 
 
 
 
ABSTRACT: The link between the cortical and cardiovascular systems is garnering increased 
attention due to its potential to offer valuable insights into brain and heart function coupling. 
Current joint analysis methodologies largely involve invasive or high-cost neuroimaging 
methods. EEG and ECG/PPG, however, provide non-invasive, cost-effective, and portable 
alternatives enabling broader data collection in both laboratory and clinical settings. However, 
the analysis of these biosignals is challenging for scalable applications due to their complex 
nature. Existing research and tools often lack consensus in processing and statistical 
methodologies, easy-to-use user interface, or batch processing capacity of large datasets, 
impeding reproducibility. A further void exists in standardized methods for EEG and heart-rate 
variability (HRV) feature extraction, undermining clinical diagnostics or the robustness of 
machine learning models. We introduce the BrainBeats toolbox in response to these challenges, 
an open-source EEGLAB plugin providing an suite of signal processing and feature-extraction 
functions adhering to current guidelines and recommendations. The toolbox integrates three 
main protocols: 1) Heartbeat-evoked potentials (HEP) and oscillations (HEO); 2) EEG and HRV 
feature extraction; 3) Automated removal of heart artifacts from EEG signals. Accompanied by 
sample data and guidance, BrainBeats aims to facilitate brain-heart interplay research and 
reproducibility. This open-source toolbox offers a valuable resource for clinicians and 
researchers studying brain-heart interactions and can be tailored to unique research needs. 
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INTRODUCTION:  
 
The purpose of this method is to ease the investigation of relationships between the brain and 
the heart by facilitating the joint analysis of electroencephalography (EEG) and cardiovascular 
signals, namely electrocardiography (ECG) and photoplethysmography (PPG) while implanting 
the latest guidelines from experts in this field. This tool addresses limitations from existing 
methods and is made open source to facilitate accessibility and reproducibility in the area. The 
proposed toolbox should serve as a valuable resource for researchers and clinicians interested 
in removing cardiac artifacts from EEG signals, extracting features from EEG and ECG/PPG 
signals, or studying the relationship between brain and cardiovascular activity. Ultimately, this 
toolbox aims to pave the way for more in-depth investigations into the complex interplay 
between the brain and heart systems. 

For a long time, the reductionist approach has dominated scientific inquiry in human physiology 
and cognition. This approach involved dissecting complex bodily and mental processes into 
smaller, more manageable components, allowing researchers to focus on individual systems in 
isolation. This strategy arose due to the immense challenge of studying the intricate and 
interconnected nature of the human body and mind1. Reductionism has been instrumental in 
understanding individual subsystems in isolation, such as elucidating the role of ion channels 
and action potentials for neural2 and cardiac3 communication. However, a significant gap 
remains in understanding how these isolated systems interact on a larger spatial and temporal 
scale. The multimodal (also termed integrative or ecological) approach considers the human 
body as a collective, a living being which uses the brain to mediate interactions (within the body 
and between the body and its environment)4. “Within this framework, the mind is seen not as a 
product of the brain but as an activity of the living being; an activity which integrates the brain 
within the everyday functions of the human body.”4 The multimodal and reductionist 
approaches are not exclusive, jus tlike we cannot study one neuron without the whole brain, or 
the wole brain without understanding individual neuron properties. Together, they pave the 
way for a more comprehensive understanding of human health, pathology, cognition, and 
consciousness, offering novel insights into the synergistic and nonlinear mechanisms between 
the human body and mind4–6. 

Heart-brain research: which measures? 

Studying the intricate relationship between the brain and the heart can yield valuable insights 
into the underlying physiology and anatomy of the human body, ultimately leading to the 
development of novel diagnostic and therapeutic tools. The relationship between the heart and 
the brain has been studied via neuroimaging methods such as functional magnetic resonance 
imaging (fMRI) and positron emission tomography (PET). Using these tools, researchers 
highlighted some brain regions associated with cardiovascular control (e.g., manipulation of 
heart rate and blood pressure7,8), showed the influence of heart rate on the BOLD signal9,10, or 
identified potential brain-body pathways contributing to coronary heart disease (i.e., stress-
evoked blood pressure11).  
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While these studies have significantly advanced our understanding of the complex interplay 
between the central nervous system (CNS) and cardiovascular function, these neuroimaging 
techniques are expensive, have limited availability, and are confined to controlled laboratory 
settings, which restricts their practicality for real-world and large-scale applications. In contrast, 
EEG and ECG/PPG are more affordable and portable tools that offer the potential for studying 
brain-heart interactions in more diverse settings and populations or over longer periods, 
providing new opportunities for investigating the dynamic relationship between brain and heart 
function. ECG measures the electrical signals generated by the heart when it contracts and 
relaxes via electrodes placed on the skin (usually on the chest, arms, or legs). PPG measures 
blood volume changes in the microvascular tissues using a light source (e.g., LED) and a 
photodetector placed on the skin (commonly on a fingertip, earlobe, or forehead). Since blood 
absorbs more light than the surrounding tissue, the PPG signal can be used to estimate blood 
flow and pulse rate. Both methods provide valuable information about cardiovascular function 
but serve different purposes and offer distinct data types. As such, the use of EEG and ECG/PPG 
holds great promise for advancing our understanding of the physiological, cognitive, and 
emotional processes underlying brain-heart interactions and their implications for human 
health and well-being. Like ECG, EEG records the electrical fields generated by the synchronized 
activity of thousands of cortical neurons by placing electrodes on the scalp.  

The two approaches for jointly analyzing these signals 

There are two main approaches to studying interactions between EEG and cardiovascular 
signals: 

1) The heartbeat-evoked potentials (HEP) for the time domain (i.e., ERP) and heartbeat-
evoked oscillations (HEO) for the time-frequency domain (i.e., event-related spectral 
perturbations). This approach examines how the brain processes cardiovascular activity 
with millisecond accuracy and requires that both time series are time-locked, the 
heartbeats be marked with events in the EEG signals, and the heart signal removed. This 
approach is the most popular12–30.  

2) Feature-based: this approach extracts EEG and heart-rate variability (HRV) features from 
continuous signals and examines associations between them. This has been done with 
ECG31–33 and PPG to a lesser extent, to our knowledge34–36. This approach presents 
promising applications by capturing both the state-related and trait-related variables. 
Note that, for both EEG and cardiovascular signals, the longer the recording, the more 
dominant the trait variable37–39. Thus the applications depend on the recording 
parameters. Feature-based analyses (including qEEG or feature-based machine learning) 
are growing in interest for both clinicians and scholars, providing new objective metrics 
for making early predictions/forecasting of the development of mental and neurological 
disorders, of treatment-response, or of relapse40–48. This approach is especially 
compelling with large datasets and real-world settings (e.g., clinic, remote monitoring), 
which can be more easily obtained thanks to the recent innovations in wearable 
neurotechnology49.  
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The advantages over alternative methods  

While many tools exist to process cardiovascular and EEG, and HRV signals independently from 
one another, none is currently available for jointly analyzing them. Furthermore, the tools 
available to process cardiovascular signals require expensive license purchase, do not allow 
processing large datasets in batch via command line, have proprietary algorithms that limit 
reproducibility, or require advanced programming skills by not providing a graphical user 
interface (GUI). To our knowledge, three open-source MATLAB toolboxes exist to support HEP 
analysis with a GUI. The ecg-kit toolbox50, the HEPLAB EEGLAB plugin51, and the CARE-rCortex 
toolbox52. While HEPLAB and ecg-kit facilitate HEP analysis by detecting heartbeats and marking 
them in the EEG signals, they do not provide statistical tools for analysis and are limited to the 
time domain (i.e., ERP). The CARE-rCortex plugin addressed these issues by supporting ECG and 
respiratory signals, time-frequency domain analysis, statistics, and advanced baseline 
normalization and correction methods adapted to HEP analysis. However, it uses the Bonferroni 
method for multiple comparison correction, which is too conservative for the many 
comparisons in EEG analysis and the assumption about independence (across electrodes, time 
points or frequency bins), leading to an increase in type II53. Furthermore, the toolbox does not 
offer command-line access for processing and analyzing large datasets for advanced users. 
Finally, recent studies recommend against baseline correction methods, as they reduce the 
signal-to-noise ratio (SNR) and are "statistically unnecessary and undesirable"54–56.  
 
To address these limitations, we introduce the BrainBeats Matlab toolbox, implemented as an 
open-source EEGLAB plugin designed to process and analyze EEG and ECG/PPG signals jointly. It 
incorporates the following advantages over previous methods:  

I) An easy-to-use GUI (for non-programmers) and command line mode (for programmers 
aiming to perform automated processing and analysis on large datasets using more advanced 
parameters).  

II) Implementation of validated algorithms, parameters, and guidelines for processing 
cardiovascular signals, such as detecting R peaks, interpolating RR artifacts, and computing HRV 
metrics (e.g., implanting guidelines for windowing, resampling, normalization, etc.37,57,58). This is 
important because Vest et al. (2018) demonstrated how modest differences in these processing 
steps can lead to divergent results, contributing to the lack of reproducibility and clinical 
applicability of HRV metrics.  

III) Implementation of validated algorithms, parameters, and guidelines for processing EEG 
signals, including re-referencing to infinity when at least 30 channels are available 59–63, removal 
of abnormal channels and artifacts64–66, interpolation of removed channels67, optimized 
parameters for ICA decomposition and classification of independent components68–71, 
guidelines filtering windowing and parameters56,72–74. Note: users can also use the toolbox with 
processed data and turn off processing steps.  

IV) Heartbeat-evoked potentials (HEP, i.e., time domain) and oscillations (HEO; event-
related spectral perturbations with wavelet or FFT methods, and inter-trial coherence are 
available). Advanced statistics, including hierarchical linear modeling75, which accounts well for 
within and between-subjects variance, with weighted least square optimization to downweigh 
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remaining artifactual trials (WLS76). Nonparametric statistics include permutation statistics and 
spatiotemporal corrections for multiple comparisons77,78. Note: statistical analyses can also be 
performed in the independent component domain.  

V) Supports the joint extraction of EEG and HRV features for the first time. These features 
can be analyzed separately (direct differences between groups/conditions, or associations with 
third variables) and jointly (same but from correlation coefficients). See above for applications.  

VI) The toolbox provides various data visualizations to inspect signals at various necessary 
processing steps and outputs at the subject level (see Representative results for illustration).  
 

Information to help readers decide whether the method is appropriate for them 

This toolbox is appropriate for any researcher or clinician with EEG and ECG/PPG data. The 
plugin does not yet support importing EEG and ECG/PPG signals from separate files (although 
this feature will be available soon). The toolbox is appropriate for anyone aiming to perform 
HEP/HEO analysis, extract EEG and/or HRV features with standardized methods, or simply 
remove heart artifacts from EEG signals.   

 

PROTOCOL 
 
1. Method 1: Heartbeat-evoked potentials (HEP) 

1.1. Load data into EEGLAB: File > Load existing dataset > select "sample_data1.set". See Figure 
1.1. Note: this dataset was collected with a "wet" Biosemi system during a mind-wandering 
(shortened to 5 minutes to facilitate replication of the following steps) with 64 EEG 
channels and 2 ECG channels.  

 

 
Figure 1.1. Main EEGLAB menu to launch BrainBeats' general user interface (GUI) to select 

processing parameters. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.01.543272doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.543272
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Author’s copy  

Page 5 of 6   
 

 
1.2. Open the general user interface (GUI) to select parameters: Tools > BrainBeats > Process 

file (subject level).  
 
1.3. Select "Heartbeat-evoked potentials HEP" as analysis to run, "ECG" as heart data type, click 

on the button to display the list of channels to select the ECG channels labeled "ECG1" and 
"ECG2" (or type the channel labels directly in the text box next to the button. Select 
"Shape-preserving piecewise cubic interpolation" as the cleaning method of RR artifacts 
and clean EEG data. Select "Clean EEG" to process the EEG data, plot and save outputs, and 
click "Ok" to launch. See the overview in Figure 1.2. All steps are automated (see 
Representative Results).  

 
 

 
Figure 1.2. Using the GUI to select parameters for preparing data for heartbeat-evoked 

potentials (HEP) analysis. 
 
 
Advanced users can perform all the above steps with the following command lines: 
eeglab; close; 
mainDir = fileparts(which('eegplugin_BrainBeats.m')); cd(mainDir);  
EEG = pop_loadset('filename','sample_data1.set','filepath',fullfile(mainDir, 
'sample_data')); 
EEG = brainbeats_process(EEG,'analysis','hep','heart_signal','ECG', ... 
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    'heart_channels',{'ECG1' 'ECG2'},'clean_rr','pchip','clean_eeg',true, ... 
    'parpool',false,'gpu',false,'vis',true,'save',true);  

 
 
2. METHOD 2: Extract EEG and HRV features from continuous data 

 
2.1. Load the dataset and launch the BrainBeats GUI as for METHOD 1. Select "Extract EEG & 

HRV features from continuous data", the same parameters for ECG channels, RR 
interpolation method, and "clean EEG". Notice that the EEG and HRV feature fields are 
now unlocked. Check both to extract EEG and HRV features. All domains (time, frequency, 
nonlinear) are set by default. Check "Use parallel computing" to increase computation 
speed. "Plot and save outputs" are set by default. Click "Ok" to launch.  

 
 

 
Figure 2.1. BrainBeats GUI to select parameters for extracting HRV and EEG features from 

continuous data.  
 

 
Advanced users can perform all steps above with the following command: 
eeglab; close; 
EEG = pop_loadset('filename','sample_data2.set','filepath',fullfile(dataDir, 
'sample_data')); 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.01.543272doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.543272
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Author’s copy  

Page 7 of 6   
 

mainDir = fileparts(which('eegplugin_BrainBeats.m')); cd(mainDir); 
[~, Features] = brainbeats_process(EEG,'analysis','features','heart_signal','ECG',    
'heart_channels',{'ECG1' 'ECG2'}, 'clean_rr','pchip','clean_eeg',true,'norm',true,... 
    'eeg_features', {'time' 'frequency' 'nonlinear'}, ... 
    'hrv_features', {'time' 'frequency' 'nonlinear'}, ... 
    'gpu',false,'parpool',true,'save',true,'vis',true); 

 
 
 
 
3. Method 3: Remove heart components from EEG signals. 

 
3.1. Load "sample_data2.set" containing 3 EEG channels and one ECG channel, collected 

with a "dry" Muse wearable headset.  
 
Open the same BrainBeats GUI (see Step 1.1. and Figure 1.1.) and set the analysis type as 
"Remove heart components from EEG signals", and select the ECG channel from the list of 
channels. Select "No (already processed)" in the "Clean EEG?" field since this sample file was 
already preprocessed. Set "Plot outputs" and "Save outputs" options (set by default). Click "Ok" 
to launch.  
 
These steps can be run automatically over many files using the following command lines: 
eeglab; close; mainDir = fileparts(which('pop_BrainBeats.m')); cd(mainDir); 
EEG = pop_loadset('filename','sample_data2.set','filepath',dataDir); 
EEG = brainbeats_process(EEG,'analysis','rm_heart','heart_signal','ECG', ... 
    'heart_channels',{'ECG'},'clean_eeg',false,'save',true,'vis',true); 

 
 
As for Method 1, users can perform statistical analyses using the EEGLAB STUDY mode. Users 
can perform basic statistical analyses in EEGLAB (e.g., permutation statistics, FDR-correction), or 
advanced hierarchical linear modeling with weighted-least square (WLS) optimization, to better 
account for within and between subject variance, using the LIMO-EEG plugin. Furthermore, the 
plugin provides advanced corrections for type 1 error (e.g., max likelihood or spatiotemporal 
cluster corrections).  
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REPRESENTATIVE RESULTS:  
 

METHOD 1 
 
BrainBeats first separates the ECG from EEG data to process them separately. EEG data are 
bandpass filtered using a zero-phase non-causal finite impulse response (FIR) filter to remove 
low-frequency drifts and high-frequency noise (highpass cutoff frequency = 1 Hz, low-pass 
cutoff = 45; transition bandwidth = 0.5 Hz). If the data have at least 30 channels and have not 
been referenced, BrainBeats re-references them to infinity. Then, BrainBeats uses the 
clean_rawdata plugin to automatically detect and remove abnormal EEG channels 
(flatlinecriterion = 5; ChannelCriterion = .8; LineNoiseCriterion = 5). Removed channels are 
plotted (Figure 1.3, in red) and interpolated using spherical splines (Perrin et al., 1989). 
CAUTION: These default parameters are implemented for the best performance for this sample 
dataset. In most cases, we recommend users clean their datasets before launching BrainBeats 
to tune parameters for their datasets. For example, abnormal channels may not be reliably 
detected on low-density EEG montages using this default method.  
 

 
Figure 1.3. Abnormal EEG channels are automatically detected and removed by BrainBeats (in 

red).  
 
 
Next, BrainBeats detects R-peaks (from QRS complexes) on non-overlapping windows 
disregarding initial signal artifacts. The signal undergoes bandpass filtering and Pan–Tompkins 
(P&T) method79, including differentiation, squaring, integration, and smoothing. The P&T 
energy threshold is estimated to avoid disruption from large bumps, and if the RR interval 
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variability exceeds 1.5 times the median, it conducts a "search back" for missed peaks. The R-
peak's mean sign over 30 seconds determines the QRS complex sign, ensuring consistent 
detection. QRS detection and search back are based on an energy threshold defined by the 
signal's sample rate and smoothed ECG values. Each segment's peak sign is ascertained, and 
peak points are refined through a refractory period check, also managing flatline conditions. 
The output consists of RR intervals, heart rate (HR), RR interval timestamps, filtered signal, R-
peak indices, peak sign, and the estimated P&T energy threshold.  
 
Next, BrainBeats identifies abnormal RR intervals (e.g., too closely or broadly spaced, 
physiological and non-physiological artifacts), flag them, and interpolates them using the shape-
reserving piecewise cubic method (default) to obtain the normal-to-normal (NN) intervals. 
Spikes within RR intervals are detected using a forward-backward search. Users can choose 
another interpolation method or remove them if desired. When several ECG channels are 
present, these steps are performed on each of them, and the electrode with the least number 
of RR artifacts is selected for the following steps. The filtered ECG signal, identified R-peaks, NN 
intervals, and interpolated artifacts (from the best electrode) are plotted (see Figure 1.4.). Note 
that users can scroll through the R-peaks more closely using a scroll bar (30-s windows). This 
code is adapted from the validated algorithms developed for the Physionet Cardiovascular 
Signal toolbox58,80 (see reference for validation and performance comparison with other state-
of-the-art algorithms).  
 

 
Figure 1.4. Filtered and smoothed ECG signal with identified R-peaks (top panel). Normal-to-

normal (NN) intervals with the interpolated RR artifacts (bottom panel).  
 

 
Next BrainBeats adds R-peak markers to the EEG signals, calculates inter-beat-intervals (IBIs), 
and removes trials with IBIs less than 550 ms (following recommendations63,81). The run_HEP 
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function removes outlier trials (detected by MATLAB's isoutlier function, 'grubbs' method from 
custom RMS and SNR metrics) and generates a histogram of the resulting IBIs with fitted 
normal density (see Figure 1.5.). To determine the minimum epoch size cutoff following R-peak 
events, the 5th percentile of the IBI data is calculated (i.e., the value below which 5% of the IBI 
falls, displayed as a dashed red line in the histogram). This epoch size maximizes the number of 
epochs and limits overlapping epochs.  
 

 
Figure 1.5. Histogram of the interbeat intervals (IBI) with fitted normal density (red line) and the 
5% percentile (red dashed line) indicating the minimum cutoff value at which the EEG data are 

epoched.  
 
BrainBeats then epochs the EEG data from -200 ms to + 5% percentile of IBI and eliminates 
abnormal trials (by extracting RMS and signal-to-noise ratio features for each epoch and 
identifying outliers) and eye/muscle components with ICA and ICLabel (at least 90% 
classification confidence for ocular components and 95% confidence for muscular components; 
see Figure 1.6.). These flagged components are then automatically subtracted from the EEG 
signals while preserving relevant brain signals. Note: if the Picard plugin is already installed in 
EEGLAB, it is used by default for fast computation of ICA, otherwise, the Infomax algorithm is 
used. Effective data rank is calculated prior to running ICA, and PCA-dimension reduction is 
applied when the data are rank-deficient to avoid ghost IC artifacts70. The final output of 
processed HEP data is plotted for final inspection (see Figure 1.7.) and saved in the same 
directory as the original file loaded by the user (same name with "_HEP" at the end). Note: it is 
recommended to follow the BIDS for better organization, replication, and performing statistics 
at the group level (EEGLAB STUDY). Users can pause before processing the next file (next 
condition or participant).  
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Figure 1.6. Indpendent component automatically classified and removed from HEP data to 

extract ocular artifacts without removing relevant brain signals. 
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Figure 1.7. Final, cleaned EEG data, ready for HEP analysis. 
  

 
The HEP averaged across all epochs are plotted as a scalp topography allowing users to inspect 
each electrode more closely (see Figure 1.8.), superimposed with scalp topography in the 
region of interest (200-500 ms after heartbeat; Figure 1.9. top panel), and the HEP evolution 
over time (Figure 1.9. bottom panel).  
 

 
Figure 1.8. HEP averaged across trials for each electrode. Users can click on electrodes of 

interest for closer inspection. 
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Figure 1.9. Top: HEP averaged across trials, all electrodes superimposed in the time domain, 

with scalp topographies showing amplitude distribution in the period of interest (200-500 ms 
after heartbeat). Bottom: HEP evolution over time (each "trial" corresponds to a heartbeat).  

 
  
The heartbeat evoked oscillations (HEO, or event-related spectral perturbations; ERSP; Figure 
1.10. top panels) and intertrial coherence (ITC; Figure 1.10. bottom panels) are computed for 
the frontal electrode Fpz using wavelet ([3 0.8] cycles; pre-event baseline removal; pad ratio of 
2) for frequencies 7-30 Hz. The same plot is generated after applying permutation statistics and 
FDR correction to control for multiple comparisons (type 1 error or family-wise error). After 
correction (Figure 1.10. Right), a significant HEO effect is observed on the sample dataset in the 
beta band during the QRS complex (within 100 ms after R-peak) and in the alpha band during 
the period of interest (i.e., 200-500 ms, consistent with previous findings81,82). No effect is 
observed in the ITC data after correction. Note: these plots and results are for replication and 
illustration only. Low frequency cannot be estimated due to the short epoch size between the 
heartbeats. 
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Figure 1.10. Heartbeat evoked oscillations (HEO) using event-related spectral perturbations 
(ERSP; i.e. wavelet; top panels) and inter-trial coherence (ITC) on the sample dataset (one 
subject). Left: uncorrected results; Right: results after permutation correction for type 1 error, 
showing an effect for ERSP but not ITC. Note: this is for illustration purpose only.  
 
 
When all files are processed, users may import them into an EEGLAB STUDY to compute HEP 
(i.e., ERP) and HEO (i.e., ERSP and ITC) data on the whole group and run statistics at the group 
level. We recommend performing hierarchical linear modeling using the LIMO plugin75. A full 
tutorial is available at https://github.com/LIMO-EEG-Toolbox/limo_tools/wiki 
  
 
 
METHOD 2 
 
RR and NN series obtained as in METHOD 1 (The same Figures 1.3. and 1.4. pop-up). However, 
EEG data are cleaned differently since EEG and ECG signals do not need to be time-locked with 
ms accuracy to extract features (unlike for HEP/HEO analysis). Here, instead of removing 
abnormal epochs, BrainBeats first removes segments with large EEG artifacts using artifact 
subspace reconstruction (ASR; SD criterion = 30; Figure 2.1.). Then, Infomax ICA (or the Picard 
algorithm if installed) is performed with PCA-dimension reduction to account for effective data 
rank, and ocular and muscular components are classified and subtracted from the signal using 
ICLabel (as in Method 1, but on continuous data). One ocular component is removed with 
98.6% accuracy.  
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Figure 2.1. EEG artifacts are removed automatically from the continuous EEG data using artifact 

subspace reconstruction (ASR).  
 

 
Then, HRV and EEG features are extracted in the time (NN), frequency, and nonlinear domains. 
See Table 1 for a list of the features currently available. The Lombscargle-periodogram is the 
default method to compute frequency HRV as it does not require interpolation or resampling 
unlike the Welch or FFT methods, better preserving original information. The normalized 
periodogram is used by default to scale total power to the time series' variance, better dealing 
with non-uniformly sampled data (common in NN data), and facilitating comparison of results 
across different participants. When normalization is set in the GUI (default), each band power is 
divided by the total power to provide a more intuitive measure of the relative contribution of 
each band on overall power37. Note: the Welch and FFT methods, and the required resampling 
step are also available through command line. EEG spectral power is also normalized to decibels 
(dB) and to total power (same reasons as for HRV power). Additionally, an algorithm is used to 
detect individualized frequency bounds and compute band power on the individualized bands 
83.  
 
Table 1. HRV & EEG features estimated with the BrainBeats plugin 

 HRV EEG 

Time NN statistics (mean, mode, variance, 
skewness, kurtosis, interquartile 
range), SDNN, RMSSD, pNN50.  

Amplitude statistics (RMS, variance, 
skewness, kurtosis, interquartile range) 

Frequency Spectral power in the ultra-low 
frequency (ULF), very-low frequency 
(VLF), low-frequency (LF), and high-
frequency (HF) bands, and total power.  

Power spectra (all frequencies), mean 
band power (delta, theta, alpha, beta, 
low-gamma), individual alpha 
frequency (IAF), alpha asymmetry (all 
pairs), EEG coherence (between all 
non-neighbor pairs) 

Nonlinear Poincaré (SD1, SD2, SD1/SD2 ratio), 
fuzzy entropy, multiscale fuzzy 

Fuzzy entropy, multiscale fuzzy 
entropy (all scale factors, mean, SD, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.01.543272doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.543272
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Author’s copy  

Page 16 of 6   
 

entropy, phase-rectified signal 
averaging (PRSA) 

peak scale factor, and area under the 
curve) 

 
 
 
When features are computed, a plot displays the power spectral density (PSD) and multiscale 
fuzzy entropy (MFE) estimated on the NN series (Figure 2.2., left), and on the EEG data (the 
average across all electrodes is used for illustration; Figure 2.2., Right). For EEG MFE, each scale 
factor is bandpass filtered by default, following guidelines to reduce spectral bias in fine time 
scales (presumed to indicate fast dynamics) by broadband spectral power (dominated by low-
frequency contributions84,85). As a result, the frequency bounds of each scale factors are 
provided. Note: EEG entropy measures are promising measures for capturing nonlinear 
dynamics between various body systems37,86–92, but they can be computation-heavy. Thus, 20 
scale factors are set by default, and when EEG signals are longer than 5,000 samples, they are 
resampled (or decimated when the factor is not an integer) to 90 Hz (i.e., corresponding to a 
Nyquist frequency of 45 Hz, to match our default low-pass filter). Furthermore, parallel and/or 
GPU computing to further accelerate the process. The code is adapted from 88. The EEG scalp 
topographies are displayed for each frequency band (Figure 2.3. top and middle rows), as well 
as for the individual alpha frequency (IAF; Figure 2.3. bottom left) and fuzzy entropy (Figure 
2.3. bottom right). 
 

 
Figure 2.2. Power spectral density (PSD; top panel) and multiscale fuzzy entropy (MFE' bottom 

panels) features estimated from NN intervals (left panel) and EEG data (right panel). Note: 
calculated on the sample_data1.set, corresponding to 5 min of mindwandering eyes closed. 
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Figure 2.3. EEG scalp topographies showing the distribution of mean power spectral density 

(PSD)  for the delta (top left), theta (top right), alpha (middle left), and beta (middle right) 
frequency bands. The individual alpha frequency (IAF) is plotted in the bottom left corner, and 

the fuzzy entropy distribution in the bottom right corner. Note: from sample_data1.set, 
corresponding of 5 min of mindwandering eyes closed.  

 
 
METHOD 3 
 
BrainBeats runs Infomax ICA (or Picard algorithm if installed) using PCA dimension-reduction to 
account for effective data rank (see above). Next, the heart component is automatically 
classified and removed with 95.3% confidence, using the ICLabel plugin. The ECG channel(s) is 
included in this process to increase ICA's source separation performance and chances to 
separate heart components from the EEG signals. Users can click on the component to inspect 
its properties in more detail (see Figure 3.1. left). The final output is displayed, showing the 
heart components removed from the EEG signals in red (Figure 3.1. right). Notes: The ECG 
signal is included here only for visualization purposes, but is otherwise removed from the 
output dataset. When no heart components are detected, users are informed in MATLAB's 
command window, and the program ends. 
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Figure 3.1. Left: Heart independent component classified by ICLabel and its properties. Right: 

EEG signals after removing the heart artifacts (in red). The ECG signal is included here for 
visualization purposes, but is otherwise removed from the final output dataset.  

 
 
DISCUSSION: 
 
Critical steps in the protocol 
 
Critical steps prior to launching Brainbeats include: having MATLAB and EELAB installed, 
installing the BrainBeats plugin, installing a few EEGLAB plugins (for Methods 1 and 3), 
possessing a dataset that includes both EEG and cardiovascular (ECG or PPG) signals and 
importing with appropriate EEGLAB plugin, knowing the name of the cardiovascular channel(s) 
to select from the list, selecting initial parameters in the main GUI. Note that, data importation 
cannot be automated as various plugins are required to be installed to account for the many 
different EEG data formats that exist (e.g., .edf, .bdf, .vhdr, etc.).  

Warnings and error messages are implemented at various places in the toolbox to help users 
understand why they may encounter issues (e.g., file length being too short for calculating a 
reliable measure of ultra-low frequency HRV, signal quality being too low for any reliable 
analysis, missing electrode locations etc.).  

Note that for advanced users, each function contains a brief description of what it does and 
what the parameters are (and default, recommended parameters), which can be displayed in 
the command window by calling "help function_name". 

Limitations of the method 
Entropy features are particularly promising for capturing complex, bidirectional interactions 
between cardiovascular, subcortical, and cortical systems that may be hidden in nonlinear 
feedback loop dynamics37,86–92. However, they are very computationally heavy and can take a 
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very long time to compute on EEG signals. While improvements were made (parallel 
computing, GPU computing, signal downsampling/decimation), further accelerations are 
required, if possible. While statistics are provided for the Method 1 and 3 (at the subject and 
group levels using the EEGLAB STUDY mode), no statistical analysis is currently provided for 
Method 2, to assess interactions between HRV and EEG features. This is because a lot of 
flexibility must be implemented to account for the various analyses users may want to perform 
(e.g., statistics, machine learning). However, users may use the Method 2 to extract features 
and easily perform statistics with any standard statistical software.  

Users cannot import EEG and ECG/PPG data from separate files yet (although this feature will 
be available soon).  

 
Significance of the method with respect to existing methods 
 
Overall, BrainBeats provides state-of-the-art signal processing techniques and statistical 
methods for both EEG and cardiovascular signals, that are superior to currently available tools. 
Method 1 can be performed using advanced hierarchical linear modeling and statistical testing, 
as well as analyzing brain-evoked response by heartbeats using both ERP, ERSP, and ITC 
measures, as well as channel (scalp signals from each electrode) and independent component 
(signals that are source-separated with ICA) domains. Method 2 does not have a pre-existing 
alternative currently. Method 3 allows quick and easy removal of heart components from the 
EEG signals, in a fully automated manner. While this already possible in EEGLAB, it requires 
users to perform a series of steps and choice of parameters (e.g., highpass filtering the signals, 
running ICA, running ICLabel, tuning parameters, subtracting the heart components from the 
EEG signals, and removing the ECG channels) that can easily lead to errors (e.g., ghost ICs70).  
 
Additionally, the toolbox implements computing performance improvements to accelerate the 
estimation of EEG features (mainly multiscale entropy measures), including both GPU and 
parallel computing. Note that these options are only as beneficial as the users' hardware (i.e., 
graphic card and number of processors and threads).  
 
Future directions 
 
The toolbox will continue to be modified and improved by the authors in the long term, to 
implement the latest guidelines and recommendations by experts in the field, and fixing any 
errors that may arise.  
 
Currently, users can extract features of interest and perform statistical analyses using their own 
methods (correlations, regressions, machine learning). However, BrainBeats will provide the 
following statistical methods for feature analysis soon: 

1) Feature selection for HRV and EEG features using random forest (separately), to remove 
redundant and correlated features and reduce multiple comparisons.  

2) Skipped correlations (Pearson or Spearman depending on data distribution and 
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variance) will be performed across HRV and EEG features93,94, with FDR-correction for 
multiple comparisons to control for type 1 error 95.  

3) Next, since correlation coefficients are non-normally distributed, they will be 
transformed using the Fisher r-to-z method to meet the normal distribution assumption 
of t-tests. Nonparametric tests (e.g., Wilcoxon signed-rank test and Wilcoxon rank-sum 
test) test for differences in central tendency and are not well-suited for differences in 
correlation coefficients, unlike t-tests. However, they will be used if N < 30. 

4) If distributions are still significantly skewed, Yuen t-tests will be applied (using 20% 
trimmed means) to address the issue. If conditions/groups have different variance, a 
Welch t-test will be used.  

5) If users do not wish to compare conditions or groups, but investigate associations 
between features and a third variable, or predict a response variable (e.g., age, sex, 
diagnosis, etc.), they will be able to do so using correlation matrices, simple/multiple 
linear regressions. Corrections for multiple comparisons will be implemented. 

 
For HEP/HEO analysis, the short interbeat intervals (IBI) that occur naturally (~600-1000 ms) 
lead to short EEG epochs. While this is not an issue for HEP analysis in the time domain, it 
presents limitations for HEO analysis. Time-frequency decomposition requires data to extend 
up to 3 cycles in the lowest frequency of interest beyond the window of interest. For HEO, the 
window of interest being 200-500 ms, one would require for example an additional 600 ms 
before and after thw window (i.e., -400 to 900 ms) for examining frequencies as low as 5 Hz. 
This is strongly recommended for obtaining correct time and frequency resolution, and for 
avoiding edge effects. Thus, one would end up rejecting most trials since they would not have 
the required length (especially if one wanted to examine frequencies as low as 1 Hz an 
additional 3 s before and after window of interest). Hence, future developments will implement 
the ”reflection” method, which mirrors the signal from the window of interest (i.e. backward 
version of the signal) before and after to expand the available window. This provides smooth 
transitions and moves the edge effects further away. The mirrored sections are then removed.  
 
Finally, other features and methods will be added to assess interactions between EEG and 
cardiovascular signals. New methods will include for example EEG-ECG coherence, the "time-
resolved directional brain/heart interplay measurement"96, or classification of HEP or feature 
data using machine learning (e.g., decision trees, random forest, naïve bayes, SVM, KNN, long 
short-term memory networks, etc.)20.  
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