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Abstract 16 

Ionizable lipid nanoparticles (LNPs) have seen widespread use in mRNA delivery for clinical 17 
applications, notably in SARS-CoV-2 mRNA vaccines. Despite their successful use, expansion of 18 
mRNA therapies beyond COVID-19 is impeded by the absence of LNPs tailored to different target 19 
cell types. The traditional process of LNP development remains labor-intensive and cost-20 
inefficient, relying heavily on trial and error. In this study, we present the AI-Guided Ionizable 21 
Lipid Engineering (AGILE) platform, a synergistic combination of deep learning and 22 
combinatorial chemistry. AGILE streamlines the iterative development of ionizable lipids, crucial 23 
components for LNP-mediated mRNA delivery. This approach brings forth three significant 24 
features: efficient design and synthesis of combinatorial lipid libraries, comprehensive in silico 25 
lipid screening employing deep neural networks, and adaptability to diverse cell lines. Using 26 
AGILE, we were able to rapidly design, synthesize, and evaluate new ionizable lipids for mRNA 27 
delivery in muscle and immune cells, selecting from a library of over 10,000 candidates. 28 
Importantly, AGILE has revealed cell-specific preferences for ionizable lipids, indicating the need 29 
for different tail lengths and head groups for optimal delivery to varying cell types. These results 30 
underscore the potential of AGILE in expediting the development of customized LNPs. This could 31 
significantly contribute to addressing the complex needs of mRNA delivery in clinical practice, 32 
thereby broadening the scope and efficacy of mRNA therapies. 33 

One Sentence Summary 34 

AI and combinatorial chemistry expedite ionizable lipid creation for mRNA delivery. 35 

 36 

. 37 

 38 

39 
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Introduction 40 

Messenger RNA (mRNA) has emerged as a versatile tool with wide-ranging biomedical 41 
applications, ranging from vaccines and protein replacement therapy to cell engineering and gene 42 
editing 1, 2. This versatility has fueled widespread interest in exploiting mRNA to tackle an array 43 
of diseases 3, 4. However, the inherently unstable nature of mRNA and its susceptibility to nuclease 44 
degradation necessitates an effective delivery system, a role typically fulfilled by ionizable lipid 45 
nanoparticles (LNPs) 5. Both Comirnaty and Spikevax, two SARS-CoV-2 vaccines approved 46 
amidst the COVID-19 pandemic, are grounded on LNP-based mRNA delivery 6, 7. Moreover, LNP 47 
technology helped the first siRNA drug (Onpattro) obtain U.S. FDA approval in 2018 8-10. The 48 
classical LNP formulation comprises four compositions: ionizable lipids, cholesterol, helper lipids, 49 
and PEGylated lipids. Notably, each of the three FDA-approved RNA LNPs has a distinct 50 
ionizable lipid design, highlighting the pivotal role of ionizable lipids in LNP technology. Their 51 
primary functions include packaging mRNA into LNPs and facilitating its entry into the cytoplasm 52 
of target cells for ribosomal binding and subsequent protein expression 11-14. An ionizable lipid 53 
generally consists of an ionizable amine head group and two lipid tails. This structure enables 54 
protonation at acidic pH, thereby adopting a cationic character during the LNP formulation process, 55 
facilitating the encapsulation of anionic RNA molecules. At physiological pH, the ionizable lipid 56 
remains neutrally charged, thereby circumventing potential toxicity associated with non-ionizable 57 
cationic lipids. Once the LNP encapsulating mRNA is endocytosed, ionizable lipids undergo 58 
protonation again in the acidic endosomal environment, disrupting the inner phospholipid 59 
membrane of endosomes and promoting the release of mRNA into the cytoplasm of target cells. 60 
As the COVID-19 pandemic recedes, the spectrum of mRNA applications continues to broaden 61 
beyond vaccination, thus emphasizing the necessity for a diverse array of ionizable lipids 62 
proficient in mRNA delivery to a variety of target cells and tissues. 63 

Although previous research has provided some insight into the rational design of ionizable lipids 64 
to improve the mRNA delivery performance of LNPs, the approach often covers limited structural 65 
space, potentially overlooking some promising lipid designs. Combinatorial chemistry, employing 66 
multi-component reactions, has recently been used to enable high-throughput synthesis (HTS) of 67 
extensive and chemically diverse lipid libraries. For example, a Ugi-based three-component 68 
reaction (3-CR) could enable the swift synthesis of a combinatorial library, comprising 1,080 69 
ionizable lipids, ultimately leading to the identification of a STING-activating ionizable lipid 70 
conducive to mRNA vaccine delivery 15. More recently, another 3-CR system based on the 71 
Michael addition was used to generate a library of over 700 ionizable lipids, resulting in the 72 
discovery of a potent lipid uniquely suited for efficient mRNA delivery to the lung epithelium 16. 73 
While the 3-CR combinatorial chemistry has been showcased to facilitate the synthesis of new 74 
ionizable lipids, constructing and testing a more extensive lipid library, running into hundreds of 75 
thousands of compounds, for mRNA transfection in different cell targets remains a formidable, 76 
time-consuming, and costly task 17. This challenge consequently restricts efforts to design and test 77 
more diverse and innovative structures. New strategies are essential to hasten the discovery and 78 
optimization of ionizable lipids for achieving desirable mRNA transfection in specific target cells. 79 

Deep learning, a subset of artificial intelligence (AI), poses a promising resolution to the challenge 80 
of exploring molecular search spaces 18-20. With ample high-quality training data, these techniques 81 
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can effectively extract insights from observed molecules, capitalizing on underlying chemical 82 
structures and properties, and extrapolating to a broader array of unobserved molecules. Indeed, 83 
the rise of deep learning is reshaping chemical compound discovery, transforming this process 84 
from a trial-and-error practice to an intelligent, data-driven strategy 21-27.  In this study, we 85 
pioneered utilizing cutting-edge deep learning methodologies to accelerate the development of 86 
ionizable lipids for mRNA delivery, culminating in the AI-Guided Ionizable Lipid Engineering 87 
(AGILE) platform. This platform not only dramatically expands the molecular space of lipid 88 
structures by several magnitudes, but also significantly truncates the timeline for new ionizable 89 
lipid development, reducing it from potential months or even years to weeks. Essentially, AGILE 90 
employs a pre-trained deep-learning neural network that assimilates structural knowledge from 91 
millions of small-molecule components. The model utilizes vast amounts of unlabeled data from 92 
a combinatorial lipid library, employing a self-supervised approach to learn differentiable lipid 93 
representations. Following the fine-tuning on wet-lab data collected after HTS, AGILE can 94 
identify promising lipids for high mRNA transfection potency in specific cells from a significantly 95 
larger combinatorial library with enhanced accuracy. Leveraging this workflow, we fine-tuned the 96 
deep learning model using transfection data from Hela cells, which subsequently led to the 97 
prediction of 15 top lipid structures from a pool of 12,000 lipid candidates. This process facilitates 98 
the identification of an ionizable lipid H9 that shows superior mRNA transfection potency 99 
compared to LNPs containing (D-Lin-MC3-DMA) 2, an FDA-approved ionizable lipid for RNA 100 
delivery, following intramuscular injection. Notably, the transfection effect of H9 LNPs is 101 
localized to the muscle, with significantly less off-target transfection in other tissues, such as the 102 
liver. Moreover, we showed that AGILE could be quickly repurposed to discover LNPs for other 103 
target cells, as demonstrated by identifying a new lipid, R6, optimized for mRNA delivery to 104 
macrophages. Experimental observations, such as the significance of non-biodegradable tail 105 
structures in macrophage transfection and the correlation between the carbon chain length and 106 
transfection potency, underscore AGILE's potential to provide meaningful biological insights and 107 
tailor LNPs for individual cell types. AGILE's ability to customize for different cell types suggests 108 
its potential to steer the formulation of new mRNA-LNPs, finely tailored to various clinical 109 
scenarios.110 
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Results 111 

Overview of the AGILE platform.  112 

By synergistically integrating deep learning methodologies with combinatorial lipid synthesis 113 
chemistry, AGILE is dedicated to streamlining the discovery process for new ionizable lipids, 114 
which are crucial to LNP-based mRNA delivery. Central to this platform is a suite of deep learning 115 
algorithms, collectively referred to as the AGILE model. This model, encompassing a graph 116 
encoder and a molecular descriptor encoder, adeptly captures the intrinsic characteristics of 117 
ionizable lipid molecular structures and their corresponding chemical attributes. The 118 
implementation of AGILE in this study unfolds over three key stages, as illustrated in Figure 1a: 119 
(1) the constitution of a virtual library and initial self-supervised model training, (2) the acquisition 120 
of empirical data from an experimental library, enhancing the precision of the pre-trained model 121 
through supervised fine-tuning, and (3) the execution of in silico analysis on ionizable lipids in a 122 
candidate library, leveraging the refined deep learning algorithms (Methods 1.1 for additional 123 
details). As a multifaceted tool, AGILE generates predictions on the mRNA transfection capacity 124 
of ionizable lipids in LNP formulations and significantly facilitates the design of LNP for specific 125 
target cells. 126 

Stage 1 aims to develop a graph encoder proficient in differentiating and depicting distinct lipids 127 
through pre-training on a vast collection of unlabeled lipid molecules (Methods 1.3 and 1.4). This 128 
process begins with the construction of a graph encoder utilizing Graph Neural Networks (GNN), 129 
primed with parameters from the MolCLR model , which has undergone pre-training on a 130 
repertoire of over 10 million small molecules. This “warm-starting” strategy, embedding general 131 
knowledge of small molecular structures into our algorithm, fortifies the accuracy of AGILE in 132 
subsequent stages (Supplementary Fig. S1). The graph encoder subsequently underwent 133 
continuous pre-training on a virtual library of 60,000 chemically diverse lipids through contrastive 134 
learning 28, enabling the differentiation of atoms and bonds in each molecule, and thus capturing 135 
the disparities amongst various lipid structures (see Methods 1.4). This virtual library, composed 136 
of lipids with diverse amine head groups and two unique alkyl chains (Fig. 1b), is designed based 137 
on 3-CR chemistry principles, thus amenable to high-throughput combinatorial synthesis 29. 138 
Overall, the pre-training in Stage 1 equips the graph encoder with a comprehensive understanding 139 
of lipid structures, thereby enhancing subsequent steps (Supplementary Fig. S1). Stage 2 seeks to 140 
further train the AGILE model with mRNA transfection potency data from a pool of ionizable 141 
lipids. To this end, we synthesized 1200 ionizable lipids by 3-CR and assessed their transfection 142 
potency in a target cell line, from which the data was leveraged to fine-tune the AGILE model in 143 
a supervised manner (Methods 1.5). To enhance the generalizability and precision, we added a 144 
molecular descriptor encoder that takes molecular descriptors computed by Mordred as the input 145 
30 (Methods 1.3). The output of the molecular descriptor encoder was utilized to update the 146 
representation of lipid structures by the pre-trained graph encoder. As such, the AGILE model has 147 
been trained to minimize the difference between the predicted result and the ground truth from 148 
wet-lab experiments during the fine-tuning process. Prior to the in silico screening in Stage 3, we 149 
assembled a candidate library containing 12,000 lipid structures by rationally selecting structures 150 
from the virtual library in Stage 1 (Fig. 1c) following three rules (Methods 1.1): (1) Removal of 151 
non-ionizable cationic lipids due to the potential risk of toxicity 31; (2) Removal of lipids with too 152 
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short (<C10) or too long (> C18) alkyl chains based on empirical experience 15; and (3) Removal 153 
of lipids requiring unavailable reagents for synthesis. The fine-tuned AGILE model was then 154 
utilized to predict the mRNA transfection potency of lipids in the candidate library, followed by a 155 
head and tail-wise ranking methodology to increase the structural diversity of the top-ranked 156 
candidates (Fig. 1d, Methods 1.6). Based on the information afforded by AGILE, the top-ranked 157 
ionizable lipid structures were selectively synthesized in the wet lab and formulated into LNPs for 158 
validating their ability to efficiently deliver mRNA to a specific target cell.  159 

 160 

Combinatorial Lipid library synthesis and screening for fine-tuning.  161 

Upon completing the pre-training of the entire virtual library in Stage 1, we tailored the model for 162 
transfection potency prediction through supervised fine-tuning. This stage involved training the 163 
model based on in vitro screening results, enabling the model to capture the potential transfection 164 
ability of molecules. To rapidly generate ionizable lipid libraries with high chemical diversity, we 165 
developed an automated high-throughput synthesis (HTS) platform based on the one-pot Ugi 3CR 166 
(Fig. 2a and Supplementary Fig. S2), which enabled the synthesis of a large batch (1,200) of 167 
ionizable lipids within 24 hours. The synthesized lipid library comprises 20 diverse head groups, 168 
12 alkyl chains with biodegradable ester linkages, and 5 alkyl chains containing isocyanide 169 
function groups (Fig. 2b) 32. Using the HTS platform, we formulated LNPs via a liquid handling 170 
robot following a previously established classical four-composition formulation ratio 33. 171 

The LNPs were subsequently synthesized for testing lead candidates by four classic formulations 172 
with the ionizable lipids, helper lipid (DOPE), cholesterol, and polyethylene glycol (PEG)-173 
phospholipid conjugate (DMG-PEG2000) (Fig. 2c) 34.  To evaluate the mRNA transfection 174 
potency in Hela cells, we measured firefly luciferase (Fluc) protein expression activity by 175 
encapsulating Fluc mRNA in the LNPs (Fig. 2d). Most of these 1200 lipids showed improved 176 
mRNA transfection potency in Hela cells compared to untreated cells (Fig. 2e). Hela cells are 177 
commonly utilized as an in vitro screening model for evaluating transfection potency through 178 
intramuscular injection. This is due to their reliable expression of the low-density lipoprotein 179 
receptor (LDLR), which plays a crucial role in the cellular uptake of lipid nanoparticles (LNPs) 180 
associated with lipoproteins in the bloodstream 35. The presence of LDLR in Hela cells allows for 181 
enhanced cellular uptake of LNPs, making them a valuable tool for assessing the effectiveness of 182 
intramuscular delivery methods. Previous studies emphasized the preference for muscle as the site 183 
of vaccination. This choice was based on the rich blood supply in muscle tissue, which enables the 184 
efficient processing of foreign antigens by immune cells, leading to a robust immune response 36, 185 
37. Therefore, the strong correlation between transfection potency in Hela cells and in muscle 186 
tissues further establishes their utility in evaluating the effectiveness of intramuscular delivery 187 
methods 39.  Meanwhile, the potencies vary significantly among test lipids, with relative luciferase 188 
units ranging from poor (Log2<5) to outstanding performance (Log2>10) (Supplementary Fig. S3). 189 
These variations can be readily used, in the fine-tuning stage, to supervise the model to learn the 190 
relation between molecule properties and its transfection potency (Methods 1.5). We used 80% of 191 
the data for the model training, 10% for selecting the best hyperparameters, and the last 10% for 192 
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internal verification. We observed a constant decrease of loss value on both training and validate 193 
data (Fig. 2f) and thus used the model with the lowest validation loss.  194 

To verify the quality of the predictions, we split the predicted and actual in vitro potency values 195 
into six equal percentiles. We visualize the precision matrix on all 1,200 lipids in Fig. 2g. Although 196 
the prediction task is extremely challenging, the model works particularly better for predicting the 197 
top and least performing lipids, which are arguably the most important and informative for 198 
selecting lipid candidates. For example, a predicted top-16% performing lipid will have a chance 199 
of 0.41 to be one of the actual top-16% performing lipids found in vitro (Fig. 2g) . We also 200 
examined our predictions using UMAP embedding (Fig. 2h) 38. The UMAP algorithm assigns 201 
close LNPs presentations to adjacent points in a two-dimensional space, which are then colored 202 
based on their predicted transfection potency. The lipids gathered into regional structures with 203 
similar potency values on the resulting UMAP plot, which verifies that the learned representations 204 
capture the potential transfection ability of lipids. 205 

 206 

AGILE predicts and identifies the efficient lipid for muscle injection.  207 

With the fine-tuned model, we perform model prediction on the candidate library to screen 208 
potential lipids for muscle injection. We visualize our predictions using UMAP (Fig. 3a), and the 209 
resulting plot shows a clear separation between high and low predicted values, indicating the 210 
robustness of the model in differentiating efficacious and less efficacious ionizable lipids in a 211 
larger screening library. A closer look at the stratified distribution plots reveals that predicted 212 
potencies are clearly sorted by head group and tail combinations (Fig. 3b and Supplementary Fig. 213 
S4). Even among the top 5 performing head groups, A8 and A21 had higher predicted potencies 214 
than the others. While the tail combinations displayed less pronounced stratification of predicted 215 
transfection potencies compared to the head groups (Fig. 3c and Supplementary Fig. S4), the top 216 
tail combinations were still essential for candidate selection compared to the bottom tail 217 
combinations. The model appeared to favor unsaturated alkyl chains, a finding that was consistent 218 
with much of the literature that had been reported (Supplementary Fig. S5) 39, 40. Using our ranking 219 
system, which prioritizes structural diversity among lipids by considering head groups and tail 220 
combinations (Fig. 1d), we finalized a set of 15 lipid candidates (Supplementary Fig. S5). 221 

We rapidly synthesized the 15 lead candidates ranked by the model in the HTS system and 222 
evaluated them in Hela cells and found that all 15 lead candidates resulted in luciferase protein 223 
expression compared with the untreated group (Fig. 3d). To investigate their potential in vivo, we 224 
administered mice with Fluc mRNA encapsulated in LNPs by intramuscular injection. Among 15 225 
different candidates, we observed a notably robust bioluminescence signal for H9 LNPs 226 
(Supplementary Fig. S6). After optimizing the LNPs formulation of H9 by using the design-of-227 
experiment (DoE) (Fig. 3e, Supplementary Table. S1 and Fig. S7). After conducting a comparison 228 
with MC3 LNPs, we discovered that H9 LNPs had 2.3 times more mRNA transfection potency 229 
than MC3, which is a benchmark ionizable lipid currently used in the clinic (Fig. 3f) 41. Based on 230 
the positive outcome, we proceeded to use the H9 LNPs to assess mRNA transfection potency in 231 
mice through intramuscular injection (Fig. 3g). Our findings revealed that the transfection potency 232 
of the H9 LNPs in muscle site was 7.8 times stronger than that of the MC3, with no significant 233 
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difference compared to the ALC-0315 (the ionizable lipid used in the SARS-CoV-2 vaccine, 234 
BNT162b2, from BioNTech and Pfizer) (Fig. 3h and i). It is worth noting that administering 235 
mRNA LNPs through intramuscular injection may cause an off-target effect, leading to the 236 
production of FLuc protein expression in the liver of mice 42. When compared to ALC-0315 LNPs, 237 
H9 LNPs were found to have lower off-target effects in the liver while maintaining similar 238 
transfection effectiveness in muscle tissue. (Fig. 3j and k). Inspired by these findings, we 239 
investigated the potential of H9 LNP for vaccination. To compare the delivering efficacy of H9 240 
and ALC0315 LNPs, we administered cre-recombinase mRNA LNPs to mTmG reporter mouse 241 
models 43. These mice harbored gene mutations in the Gt(ROSA)26Sor locus, and upon cre-mRNA 242 
expression, the mT cassette was excised in the cre-expressing tissue, enabling the expression of 243 
the downstream membrane-targeted green fluorescent protein (GFP, mG) cassette (Fig. 3l). We 244 
observed comparable levels of GFP protein expression at the intramuscular injection site for H9 245 
and ALC-0315 LNPs. However, ALC-0315 LNPs showed higher protein expression levels in liver 246 
tissue (Supplementary Fig. S8). Quantification of confocal images revealed that the H9 LNP 247 
exhibits 28% lower transfection potency in the liver compared to ALC-0315 LNPs (Fig. 3m). 248 
Notably, clinical studies have associated ALC-0315-based BNT162b2 mRNA vaccines with 249 
autoimmune hepatitis (AIH) following vaccination 44. Hence, it is anticipated that the H9 LNPs 250 
predicted by AGILE will alleviate the serious potential side effects of hepatitis with a lower off-251 
targeting effect. 252 

Using AGILE to identify ionizable lipids for Macrophage mRNA delivery.  253 

It is known that conventional adeno-associated virus (AAV) vectors struggle to transfer innate 254 
immune cells, which highlights the importance of a non-viral mRNA delivery system 45.  Although 255 
non-viral delivery vectors may avoid this disadvantage in immune cells, they still require effective 256 
mRNA transfection potency into the targeted immune cell type 46. In order to test AGILE's ability 257 
to identify ionizable lipids that can efficiently transfect immune cells, we examined 1,200 lipids 258 
in RAW 264.7 cells (a macrophage cell line). This allowed us to create a dataset specifically for 259 
macrophages and fine-tune the screening process. The results revealed considerable differences in 260 
transfection potency between these two cell lines, with even the same batch of lipids showing 261 
totally disparate outcomes in Hela cells and macrophage cells (Supplementary Fig. S9). The study 262 
discovered that immune cells were less easily transfected by LNPs than Hela cells, demonstrating 263 
that immune cells pose a greater challenge for transfection. (Supplementary Fig. S10) 47, 48. 264 
With the model fine-tuned on the macrophage-specific dataset, we once again performed model 265 
prediction and visualized the predicted transfection potencies for RAW 264.7 cells using UMAP 266 
(Fig. 4a). Contrasting with the UMAP of predicted potencies for Hela cells, the top-tier predicted 267 
LNPs are dispersed more widely throughout the space, potentially suggesting an increased 268 
complexity in predicting potencies for RAW 264.7 cells. Mirroring the pattern observed in Hela 269 
cells, the predicted potencies for RAW 264.7 cells exhibit evident stratification when categorized 270 
by head groups and tail combinations (Fig. 4b, c and Supplementary Fig. S4). The top 15 271 
candidates were synthesized in the wet lab and subjected to an initial screen in RAW 264.7 cells, 272 
where 11 out of 15 showed improved transfection potency compared to MC3 (Fig. 4d and 273 
Supplementary Fig. S11). R6 was chosen as the best-performing lipid among the 15 candidates 274 
and subjected to formulation optimization using the design of experiments (DoE) (Fig.4e and 275 
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Supplementary Fig. S12) 49. We then loaded LNPs with Fluc mRNA and evaluated luciferase 276 
protein expression in both RAW 264.7 and Hela cells to compare H9 and R6 LNPs performance 277 
in different cell lines. Interestingly, the results were quite different in RAW 264.7 cells, where R6 278 
exhibited significantly higher transfection potency than H9 and MC3 (Fig. 4f). However, H9 279 
demonstrated more than a 2-fold increase in transfection potency compared to R6 in Hela cells 280 
(Fig. 4g). These results demonstrated the necessity to develop LNPs specifically for individual cell 281 
types and tissues, rather than a one-size-fits-all approach for all targets. Based on the excellent 282 
performance of R6 LNPs in RAW 264.7, we tried to use R6 LNPs to deliver GFP mRNA to RAW 283 
264.7. When compared to H9 and MC3 LNPs, R6 LNPs exhibited a 5-fold increase in transfection 284 
potency in RAW 264.7 as determined by flow cytometry (Fig. 4h and 4i). These results validated 285 
the success of AGILE in identifying a new ionizable lipid for efficient macrophage transfection, 286 
highlighting its potential to be utilized for the development of non-viral mRNA delivery vectors 287 
for immune cells. 288 

Interpretation of the AGILE deep learning model.  289 

AGILE elucidates its models through two mechanisms: (1) identification of influential molecular 290 
descriptors using a gradient-based model interpretation method, and (2) discernment of critical 291 
features within selected lipids. We applied the gradient-based interpretation method to the 813 292 
chosen molecular descriptors, assessing their contribution to the model's prediction. As illustrated 293 
in Figures 5a and 5b, we have visualized the top 20 salient descriptors for both the Hela cell line 294 
and RAW 264.7. For the Hela cell line, VSA_EState3 and SssNH emerged as the most influential 295 
molecular characteristics for potency prediction. VSA_EState3, a descriptor quantifying the 296 
electronic and steric properties of a molecule's surface area within a specific range50, along with 297 
SssNH, representing a tertiary amine, aligned with the expert understanding that head groups with 298 
tertiary amines are vital for lipid design. Subsequent analysis of essential features classified by 299 
head groups (Fig. 5k) pinpointed PEOE and Estate as the most critical descriptors for top-300 
performing head groups (A13, A21), while SsNH2 (Sum of sNH2 E-states) and NsNH2 (Number 301 
of atoms of type sNH2) dominated in the least-performing groups (A5, A17) (Supplementary Fig. 302 
S4). Notably, these descriptors have strong associations with the amide bond in the structure, a 303 
critical connection within the 3CR Ugi Markush structure. This connection allows for various 304 
functional group attachments, influencing the lipid-like substances' overall charge and their 305 
physicochemical properties within biological systems. Intriguingly, the model does not favor 306 
amide bond generation, potentially due to its impact on the overall physicochemical properties of 307 
lipids, such as pKa. In the context of RAW 264.7, SpDiam_Dzi and VR3_D are identified as the 308 
most influential descriptors (Fig. 5b). VSA_EState appears as the third most influential, implying 309 
its pivotal role in determining delivery potency to RAW 264.7, akin to Hela cells. Interestingly, 310 
head groups that underperformed in Hela (A5, A17) emerged as top performers in RAW 264.7, 311 
with SsNH2 and NsNH2 remaining the most critical features. In Hela cells, the cyclized head 312 
group outperformed the linear head group in transfection efficacy. However, the opposite trend 313 
was observed in RAW 264.7 cells. These observations underscore the necessity of designing LNPs 314 
with specific lipids tailored for distinct cellular targets. 315 

 316 
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Our subsequent analysis, as illustrated in Fig. 5e, explicates the relationships among lipid 317 
candidates targeting Hela cells, as identified by similarities in the AGILE model's lipid 318 
representations. We constructed a similarity network for the chosen 15 lipids, linking each lipid to 319 
its nearest equivalents. H9, the most potent LNP, demonstrated connections not only to LNPs with 320 
an identical head group (H7, H8) but also to other high-performing candidates, as identified by 321 
relative luciferase units (H12, H13). To gain further insights, we carried out molecular 322 
explanations on H9, illuminating the most salient regions in the molecule structure that heavily 323 
influenced the graph encoder's prediction within the AGILE model (Fig. 5c, Methods 1.8). 324 
Interestingly, head group structures emerged as the most salient for H9, which aligns with our 325 
previous findings emphasizing the importance of head groups. Similarly, we developed a similarity 326 
network for the 15 candidates selected for RAW 264.7 (Fig. 5f). R6 exhibited connections with 327 
other high-performing candidates, including R3, R8, and R11. These four lipids share identical tail 328 
structures: one being a C-12 alkyl chain and the other a C-18 alkyl chain. This shared characteristic 329 
suggests a strong correlation between these tail structures and the high transfection potency of R6, 330 
R3, R8, and R11. Interestingly, both tails are non-biodegradable, which hints at the potential 331 
necessity of lipid stability for successful macrophage transfection. Furthermore, these high-332 
performing lipids commonly feature asymmetrical alkyl chains, a trait shared with SM102, which 333 
facilitates the formation of an inverted cone geometry more readily 51. Similar to the findings for 334 
H9, head group structures were identified as an influential factor on the saliency map for R6. 335 
Additionally, the tail end was also highlighted as a salient region (Fig. 5d). 336 

Moreover, our results highlight the importance of the carbon chain length of R2 as a critical factor 337 
in predicting transfection potency, particularly concerning RAW 264.7. It presents the distribution 338 
of predicted potencies relative to varying carbon chain lengths of R2 for lipids hailing from the 339 
top-performing head group A5 (Fig. 5g). Two distinct aspects emerge from this distribution: (1) 340 
As the R2 carbon chain length increases from 10 to 12, a corresponding uptick in predicted potency 341 
becomes apparent. Interestingly, any further extension in the R2 length inversely impacts the 342 
predicted potency. (2) In addition, R2's shorter carbon chain lengths (C≤12) correlate with less 343 
variance in potency predictions compared to their longer counterparts (C >12). This trend is not 344 
restricted to the top-performing head groups but resonates across others, as well (Supplementary 345 
Fig. S14), a phenomenon further corroborated by a Pearson Correlation coefficient of -0.58. 346 
Examining the distribution plot for all lipids in the candidate set (Fig. 5h) reveals a similar pattern 347 
concerning R2 carbon chain length and predicted potency, albeit with a slightly attenuated Pearson 348 
Correlation of -0.39. Notably, we observe less variability amongst the shorter R2 chains (C≤12). 349 
Interestingly, the importance of carbon chain lengths varies asymmetrically between the two 350 
respective tails. As shown in Fig. 5i, the correlation between the predicted potencies and R3 carbon 351 
chain lengths is noticeably lower than that of the R2 carbon chain lengths (-0.15 vs. -0.39). These 352 
tail-length findings pertain specifically to transfection in RAW 264.7. As displayed in Fig. 5j, the 353 
pattern within the Hela cell line is less defined, resulting in a Pearson correlation of -0.22. 354 
Collectively, these insights hold significant implications for guiding the design of LNPs 355 
specifically tailored for RAW 264.7. 356 

 357 

 358 
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Discussion 359 

In this work, we presented the AGILE platform trained on comprehensive virtual and wet-lab 360 
libraries to enable predictions of LNP potency across different cell lines even in data-limited 361 
settings. Through exposure to an extensive array of molecular descriptors during the training 362 
process, the deep learning component in AGILE gained fundamental insights into the complex 363 
dynamics of LNP design, incorporating features like electronic and steric properties, and carbon 364 
chain lengths in a completely self-supervised manner. 365 

One of the important findings is the influence of the molecular descriptor VSA_EState3 and 366 
SssNH on the potency prediction for the Hela cell line. These descriptors, which quantify the 367 
electronic and steric properties of a molecule's surface area and represent a tertiary amine, 368 
respectively, align with current expert understanding in lipid design. The connection between these 369 
molecular characteristics and their influence on delivery potency exemplifies the power of deep 370 
learning in elucidating nuanced molecular features. This correlation between expert knowledge 371 
and model interpretation endorses the validity of AGILE's predictive capabilities and lays a 372 
groundwork for future studies on other cell lines. Contrastingly, for the RAW 264.7 cell line, 373 
SpDiam_Dzi and VR3_D were identified as the most influential descriptors, highlighting the 374 
different physicochemical properties favored by different cell types. This variance in influential 375 
descriptors underscores the need for cell-specific LNP design, emphasizing the limitations in 376 
applying a one-size-fits-all approach to LNP design across diverse cell lines.  377 

The molecular explanation applied to H9, the most potent LNP for the Hela cell line, further 378 
corroborated the importance of head groups, a knowledge already prevalent in LNP design. On the 379 
other hand, for RAW 264.7, the high-performing LNPs shared identical tail structures, hinting at 380 
the potential role of tail structures in macrophage transfection. The fact that these tail structures 381 
are non-biodegradable also implies the significance of lipid stability in LNP potency. Such 382 
findings, which would be otherwise elusive without AGILE, elucidate the inherent complexities 383 
involved in tailoring LNPs for individual cell types. 384 

Moreover, we found that the carbon chain length of R2 was a critical determinant of transfection 385 
potency, particularly in RAW 264.7. This result brings attention to the need for a delicate balance 386 
in the chain lengths to achieve optimal transfection, further complicating the LNP design process. 387 
The variance in the correlation between predicted potencies and carbon chain lengths for different 388 
tails - R2 and R3, as well as the asymmetric importance between the two respective tails, reinforces 389 
the idea that LNP design is a delicate process involving numerous factors and dependencies. 390 

Furthermore, we found that AGILE's predictive power consistently improved with training on 391 
larger and more diverse datasets, mirroring observations in fields like natural language 392 
understanding, computer vision, and mathematical problem-solving. The exposure to extensive 393 
datasets during training also seemed to enhance AGILE's robustness to various factors and 394 
dependencies involved in LNP design. These findings suggest that as we continue to expand our 395 
dataset, future models pretrained on even larger scales may yield more precise predictions in 396 
elusive tasks with increasingly limited task-specific data. For example, beyond using AGILE to 397 
discover LNPs for mRNA delivery to previously unexplored tissues and cell types, there's an 398 
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opportunity to expand the wet-lab mRNA transfection data from cell cultures to in vivo data from 399 
animal studies and ex vivo data in human tissues. This could potentially boost the efficiency and 400 
reliability of LNPs discovered by AGILE for in vivo mRNA delivery in human patients, thereby 401 
supporting the clinical development of mRNA LNP products. Additionally, incorporating more 402 
diverse combinatorial chemistry methods, along with comprehensive wet-lab data, could further 403 
enhance the chemical diversity for AGILE model training52. This could allow AGILE to identify 404 
ionizable lipids with specific functionalities, such as immunostimulatory properties, essential for 405 
mRNA vaccine delivery and cancer immunotherapy. Furthermore, AGILE could adopt recent 406 
generative models, like diffusion networks53, 54,, to generate de novo lipid molecules for specific 407 
applications.  408 

Overall, AGILE synergizes the strength of combinatorial chemistry and deep learning, elucidating 409 
the intricate dynamics of LNP design and making this insight accessible for a multitude of 410 
downstream applications. AGILE's ability to identify and interpret influential molecular 411 
descriptors represents a significant leap forward in the field of nanomedicine, particularly in lipid 412 
design. Its capacity in predicting the transfection efficacy of LNPs in diverse cell lines, including 413 
challenging ones like macrophages, holds promise for not only improving mRNA delivery but also 414 
for guiding CAR cell therapy and other immunotherapeutic strategies. It can potentially accelerate 415 
the discovery of potent LNPs and facilitate the design of tailored ionizable lipids for mRNA 416 
delivery, thereby contributing significantly to the continuous development of mRNA-based 417 
therapeutics and their deployment in clinical settings. 418 

Materials and methods 419 

Extended materials and methods are available in the supplementary information (SI). 420 

1.1 Data Preparation 421 

Virtual Library 422 

We utilized Ugi combinatorial chemistry method to design diverse head groups, connecting groups, 423 
and two distinct alkyl chains. To be specific, we used the Markush Editor in the ChemAxon Marvin 424 
Suite (Marvin 23.4.0, ChemAxon, https://www.chemaxon.com). The resulting virtual library 425 
contained approximately 60,000 lipid structures which were then exported into SMILES strings. 426 
This virtual library compromises multiple carbon chains, from C6 to C26. In addition, the presence 427 
or absence of ester bonds and their position in the carbon chain are used to improve the chemical 428 
diversity of the virtual library. The surface charge of LNP is usually determined by the lipids’ head 429 
groups. In addition, the head group is critical for mRNA binding. Amine groups are commonly 430 
used as lipids' head groups to form hydrogen bonds with mRNA, especially those containing 431 
tertiary amine. 432 

Experimental library 433 

Our experimental library contains 20 head groups, 12 carbon chains with ester bonds, and 5 carbon 434 
chains with isocyanide head groups. We selected 1200 lipids for chemical synthesis and in vitro 435 
transfection potency experiments in Hela and RAW 264.7 cell lines. We label the corresponding 436 
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mRNA transfection potency in cells to each compound for the 1,200 lipids library. And these data 437 
are generated by ChemAxon Marvin Suite into SMILE files (SMILE files in SI). 438 

Candidate library 439 

The final library used for model prediction is a filtered subset of the virtual library. The filtering 440 
contains three steps based on availability and rationality. First, we retained the lipids containing 441 
tertiary amine structures. Second, we removed tail chains that were too long (>C18) or too short 442 
(<C10) based on expert knowledge of plausible ionizable lipid design 36. Last, we select only those 443 
reagents commercially available for further validation of the model. Upon completion of the 444 
filtering process, the final candidate library comprises approximately 12,000 lipids (SMILE files 445 
in SI), with 22 unique head groups (Supplementary Fig. S17), and a distinct arrangement of 9 R2 446 
tail types alongside 2 R3 tail types (Supplementary Fig. S18). In the prediction step of the platform, 447 
the model proposed the most promising lipids by predicting and ranking on the candidate library. 448 

1.2 Molecular graph construction 449 

Molecular structures can be naturally represented as graphs where atoms are nodes and bonds are 450 
edges. For each molecule, the SMILES representation is converted into a molecular graph using 451 
RDKit 55, and later input to the neural network model in the platform. This representation captures 452 
the topological structure and properties of a molecule effectively. An LNP molecule graph 𝐺 is 453 
defined as 𝐺 = (𝑉, 𝐸), where nodes 𝑉 represent the atoms and edges 𝐸 represent chemical bonds. 454 
The atom node features include the atom type (as on the periodic table) and a flag indicating 455 
whether the whole molecule it belongs to is chiral. For a node 𝑣, the features are constructed in a 456 
two-dimensional vector, ℎ! ∈ 	𝛮". Edge features are constructed based on respective chemical 457 
bond types (i.e., single, double, triple, or aromatic bonds) and the stereochemical directionality 458 
(i.e., the rdchem.BondDir in RDKit. Similarly, the edge features form another two-dimensional 459 
vector for each bond between atom 𝑣 and 𝑢, 𝜖!,$ ∈ 	𝛮". 460 

1.3 The Model Architecture 461 

The deep learning model in AGILE comprises three major components: (1) The embedding layers 462 
to project node and edge features into learnable vectors, (2) the graph encoder for modeling 463 
molecular structures, and (3) the descriptor encoder for modeling molecular properties. 464 

Embedding Layers 465 

The embeddings layers project the integer features in ℎ!  and 𝜖!,$  to learnable feature vectors 466 

ℎ!
(&)	𝑎𝑛𝑑	𝜖!,$

(&) , which can be optimized later during the training of the whole neural network. Here, 467 

both ℎ!
(&)	𝑎𝑛𝑑	𝜖!,$

(&) are 𝑅(  vectors, and 𝑑 is a predefined size of embedding dimensions. To be 468 
specific, we first obtained the embedding vectors for both atom type and charity features in ℎ!, 469 

and added the two vectors elementwise to output the ℎ!
(&): 470 

 ℎ!
(&) = 𝐸𝑚𝑏),&

(&)(ℎ![0]) 	+	𝐸𝑚𝑏),*
(&)(ℎ![1]),	 Eq. 1 
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here [i] denotes the i-th element in the vector. 𝐸𝑚𝑏 is the embedding layer projection. In this work, 471 
we use the PyTorch Embedding layers (https://pytorch.org/docs/stable/generated/ 472 

torch.nn.Embedding.html). Similarly, the 𝜖!,$
(&) is computed as: 473 

 𝜖!,$
(&) = 𝐸𝑚𝑏+,&

(&)(𝜖!,$[0]) 	+	𝐸𝑚𝑏+,*
(&)(𝜖!,$[1]). Eq. 2 

 474 

Graph Encoder  475 

We used Graph Isomorphism Network (GIN)56, a type of graph neural network (GNN), to operate 476 
on the input molecule graphs and to learn a representation vector for each LNP molecule. GIN can 477 
directly propagate messages among nodes and edges on a graph structure and thus is suitable for 478 
processing molecular graphs. Additionally, the advantage of GIN over other GNNs is its ability to 479 
distinguish between different graph structures, including isomorphic graphs. This makes GIN more 480 
expressive than many other GNNs and a suitable tool for tasks involving molecular graph data. It 481 
is worth noting that the implemented GIN model follows the similar structures used in MolCLR57, 482 
so that we can benefit from the general pretrained molecular model of MolCLR as a warm start 483 
for the platform (Methods 1.4). The update rule of GIN for a node representation on the 𝑘,) layer 484 
is given as: 485 

 ℎ!
(-) = 𝑀𝐿𝑃(-) ?@1 + 𝜀(-)B ∙ 	ℎ!

(-.*) +	∑ 𝑚$
(-.*)

$∈0(!) E, Eq. 3 

where ℎ!
(-) is the representation of node 𝑣 at the 𝑘,) layer and 𝑁(𝑣)	denotes the set of neighbors 486 

of node 𝑣, and 𝜀 is a learnable parameter. MLP denotes the stacked fully connected neural network 487 
layers. The 𝑚$

(-.*)  is the message propagated between a neighbor 𝑢 to the current node. It is 488 
computed as the sum of node and edge contributions: 489 

 
𝑚$
(-.*) = ℎ$

(-.*) +	𝜖!,$
(-.*), 

𝜖!,$
(-.*) =	𝐸𝑚𝑏+,&

(-.*)(𝜖!,$[0]) 	+	𝐸𝑚𝑏+,*
(-.*)(𝜖!,$[1]). 

Eq. 4 

Notably, we use ℎ!
(&)	𝑎𝑛𝑑	𝜖!,$

(&) from Eq. 1 and Eq. 2 for the first GIN layer. 490 
We stack a total of K GIN layers for the entire Graph Encoder. To extract the feature of the whole 491 
molecular graph ℎ1 , we implemented the mean pooling operation on the final layer to integrate all 492 
the node features: 493 

 ℎ1 = 𝑀𝑒𝑎𝑛(Hℎ!
(2): 𝑣	 ∈ 𝐺J). Eq. 5 

Another fully connected layer is used to transform ℎ1  to the final lipid representation 𝑧1: 494 

 𝑧1 = 𝑀𝐿𝑃(ℎ1). Eq. 6 

 495 

Molecular Descriptor Encoder 496 

In addition to the structure features encoded by the GIN, the platform utilizes another descriptor 497 
encoder to explicitly model molecular properties. In our experiment, we found this contributes a 498 
more stabilized training optimization. We hypothesize that this benefit come from the straight-499 
forward utilization of computed properties during the optimization, which relieves the model from 500 
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learning all information from the structure alone. In the implementation of the platform, the 501 
molecular descriptors derived from Mordred30 calculations were used, which contain over 1,000 502 
common descriptors for each molecule, including the num of atoms, num of bonds, et. al. These 503 
features are encoded by gully connected layers into a representation for these properties, 𝑧3 ∈ 𝑅(!: 504 

 𝑧3 = 𝑀𝐿𝑃(𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑜𝑟𝑠). Eq. 7 

The final representation of the molecule is the concatenation of the structure and property 505 
representations: 506 

 𝑧 = [𝑧1 , 𝑧3], Eq. 8 

where [ , ] denotes the concatenation of two vectors. 507 

1.4 Model Pre-training 508 

The model pre-training aims to learn generalizable lipid representation that can benefit the 509 
downstream transfection potency prediction task. Before our lipid-oriented pre-training, we first 510 
initialized the model parameters by the general pre-trained model from MolCLR57, which has been 511 
trained on over 10 million distinct small molecules. The rationale for this initialization is to provide 512 
a warm start of a model that already has been trained to capture molecular structures. Next, we 513 
perform continuous pre-training on the 60,000 lipids in the virtual library (Methods 1.1) using 514 
contrastive learning to optimize the model's performance within the LNP domain. 515 

Contrastive learning objective 516 

Our pre-training objective is to learn LNP representation through contrasting positive data pairs 517 
against negative pairs. The model is trained to minimize the following loss: 518 

 

𝐿4,5	 =	−𝑙𝑜𝑔
ex p X

𝑠𝑖𝑚@𝑧4 , 𝑧5B
𝜏 Z

∑ 𝕝{𝑘 ≠ 𝑖}ex p _𝑠𝑖𝑚(𝑧4 , 𝑧-)𝜏 `"0
-7*

, 

𝑠𝑖𝑚@𝑧4 , 𝑧5B = 	
𝑧4𝑧5

∥ 𝑧4 ∥"∥ 𝑧5 ∥"
, 

 

Eq. 9 

where 𝑧4 and 𝑧5 are the learned lipid representation vectors extracted from a positive data pair, 𝑁 519 
is the batch size, and 𝜏 is the temperature parameter set manually. In this pre-training step, we 520 
omitted the descriptor encoder, so the lipid representation only contains the graph structure 521 
representation 𝑧1  as in Eq. 6. To construct the positive data pair, each input lipid molecule graph 522 
is transformed into two different but correlated molecule graphs using graph augmentation. The 523 
molecule graphs augmented from the same molecule are denoted as a positive pair, and those from 524 
different molecules are denoted as negative pairs within each batch. During training, the model 525 
learns to maximize the agreement of positive pairs while minimizing the agreement of negative 526 
ones. 527 

Data Augmentation 528 
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We used two augmentation strategies inherited from the MolCLR57 pre-training workflow at the 529 
atom and bond levels. In the continuous pre-training of LNP molecules, three molecular graph data 530 
augmentation strategies are consistently employed. 1) Atom masking: Within the lipid molecular 531 
graph, atoms are randomly masked according to a specified ratio. This process compels the model 532 
to assimilate chemical information, such as atom types and corresponding chemical bond varieties 533 
within lipid molecules. 2) Bond deletion: Chemical bonds interconnecting atoms are randomly 534 
removed in accordance with a designated ratio. As the formation and dissociation of chemical 535 
bonds dictate the properties of LNP molecules during chemical reactions, bond deletion facilitates 536 
the model's learning of correlations between LNP molecule involvement in various reactions. 537 

1.5 Model Fine-tuning 538 

The lipid-oriented pretrained model (Methods 1.4) serves as the starting point of the fine-tuning 539 
stage. During the fine-tuning, we included the Molecular Descriptor Encoder and used the 540 
combined output 𝑧 in Eq. 8 as the molecule representation. For the property descriptor input, a 541 
series of preprocessing procedures are executed, aiming to isolate pertinent features. Initially, 542 
descriptors with a standard deviation of zero are eliminated, followed by the selection of 543 
descriptors exhibiting correlation with the experimentally determined transfection potency in both 544 
Hela and Raw 264.7 cells (R2 score > 0.006), resulting in the identification of 813 salient 545 
descriptors (Supplementary Fig. S19). Subsequently, log transformation is applied to descriptors 546 
possessing extensive data ranges, with normalization conducted accordingly. The preprocessing 547 
steps enacted on the fine-tuning dataset are documented and replicated for the 12,000 lipids in the 548 
candidate library in anticipation of the model prediction phase (Methods 1.6). 549 

The model is fine-tuned utilizing the 1,200 lipids of the experiment library to perform regression 550 
on LNP transfection potency. The mean squared loss between the predicted and ground-truth 551 
potency is used to optimize the model parameters: 552 

 𝐿89: =
1
𝑛b(𝑃𝑟𝑒𝑑(𝑧4) − 𝑦4)",

;

47*

 Eq. 10 

where 𝑃𝑟𝑒𝑑(∙) denotes the fully connected layers that perform the potency prediction, and 𝑦4 is 553 
the actual transfection potency recorded in vitro. 554 

A scaffold-based 80%-10%-10% train-valid-test split is performed on the experimental library. 555 
We fine-tune the model on the training set only and evaluate the performance on the validation set 556 
using root mean squared error (RMSE) and Pearson correlation with the ground truth transfection 557 
potency. 558 

1.6 Model ensemble prediction and candidate ranking 559 
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To enhance the model's robustness and generalizability, the fine-tuning process is carried out ten 560 
times, from which the top five models are selected based on RMSE and Pearson correlation 561 
performance on the testing set. These five models are subsequently employed for ensemble 562 
prediction on the 12,000-member candidate set. We first get the potency predictions from each 563 
model and calculate the average and standard deviation of the five predicted values for each 564 
candidate molecule. The mean predicted values are then subtracted from the standard deviation, 565 
and the resulting predicted score is used to rank the candidates.  566 
We observed that the predicted potencies exhibit distinct stratification by head groups and tail 567 
combinations, and the structural differences among molecules with the same head groups and tail 568 
combinations are relatively minor (Supplementary Fig. S20). To increase the diversity of selected 569 
candidates, we implement a ranking scheme that sorts candidate LNPs by head groups and tail 570 
combinations (Supplementary Fig. S21). Given the predicted values, candidates are first organized 571 
by head groups and subsequently ranked in descending order. Candidates within each head group 572 
are then ranked by tail combinations following the same schema. Ultimately, we select the top five 573 
head groups and the top three tail combinations from each head group, resulting in a final candidate 574 
set of 15 LNPs. 575 

1.7 Implementation details 576 

The Graph Encoder in the model consists of a five-layer GIN with ReLU activation. To extract a 577 
512-dimensional LNP representation, an average pooling layer is applied to each lipid molecular 578 
graph. A single hidden layer MLP is then employed to map the representation into a 256-579 
dimensional latent space. During model pre-training, the contrastive loss is optimized using the 580 
Adam optimizer58, with a weight decay of 10.<, and the temperature is set to 0.1. The pre-training 581 
process involves a batch size of 512 for 100 epochs.  582 

For model fine-tuning, an additional MLP with one hidden layer is introduced to map the molecular 583 
descriptors into 100-dimensional latent vectors. These vectors are concatenated with the 256-584 
dimensional LNP representation obtained from the GNN encoder. Subsequently, a two-layer MLP 585 
is utilized to derive the final prediction value from the concatenated vector. The fine-tuning process 586 
employs the Adam optimizer with a weight decay of 10.=	to optimize the loss (Eq. 10). Each fine-587 
tuned model is trained using a batch size of 128 for 30 epochs. 588 

1.8 Model interpretation 589 

Salient molecular descriptors calculation 590 

In our study, we employed the Integrated Gradients59 methodology featured in the Captum60 591 
Python package to interpret the significance of molecular descriptors. The process involves 592 
approximating the integral of molecular descriptor gradients in relation to their respective 593 
predicted potencies for each LNP within the candidate library. A molecular descriptor's 594 
prominence is proportionate to the absolute value of its integrated gradient. We implemented 595 
computations across all five ensemble models for each target cell line. To calculate an overall 596 
significance for each feature, we initially averaged the computed gradients across all input samples 597 
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on each model, subsequently normalizing these importance scores. The final step involved 598 
computing the mean of these importance scores across all five models. The top 20 critical features 599 
were selected and visualized based on the calculated importance scores. When assessing feature 600 
significance in the context of head groups, we averaged the integrated gradients for each head 601 
group and then proceeded to normalization. Following this, we averaged the results across the five 602 
models for each respective head group. The top two significant features for each head group were 603 
then selected, and their scores were visualized across all head groups. 604 

Construction of the similarity network on the selected candidates 605 

We constructed a similarity network for the 15 selected candidates respective to each target cell 606 
line, with the aim of elucidating the similarities among the candidates. Utilizing the LNP vector 607 
representations provided by the corresponding fine-tuned model, we computed the cosine 608 
similarities for each candidate pair and chose the four most similar neighbors for each. This 609 
generated similarity network was then visualized, with the node sizes representing the relative 610 
luciferase units. 611 

Molecular structure interpretation 612 

To ascertain the critical areas within the LNP structure that contribute significantly to the model's 613 
predictions, we engaged the Model Agnostic Counterfactual Compounds Generation feature 614 
present in the ExMol Python package61. This is accomplished by generating molecular 615 
counterfactuals and investigating the alterations required in the LNP molecule to modify its 616 
predicted transfection potency (Supplementary Fig. S22). The molecular counterfactuals produced 617 
are designed to retain as much similarity to the input LNP molecule as feasible. If modifications 618 
in particular regions result in either an increase or decrease in the predicted potency, such areas 619 
are deemed as essential regions. The critical areas identified through this process were visualized 620 
for both H9 and R6. 621 

1.9 Materials and lipid library synthesis 622 

To prepare our materials, we got amines and starting compounds from Sigma-Aldrich and TCI 623 
America. We then put 10 µL of a 350 µM stock solution containing amines and tails into each well 624 
of a 96-well plate with glass inserts. This stock solution was made by mixing the compounds in a 625 
2:1 ratio of methanol with 0.2 eqv. catalyst phenyl hypophosphoric acid (H3PO4). The plates were 626 
covered and placed on a shaker to stir overnight, with conversions yield typically over 70%. We 627 
also formulated lipids into LNP in the same reaction plates. These lipids were purified through 628 
flash column chromatography, and their final structures were confirmed using 1H 400 MHz NMR 629 
spectrometry with CDCl3 and tetramethylsilane (TMS) as a standard at UHN Nuclear Magnetic 630 
Resonance Core Facility. To further analyze our materials, we obtained high-resolution mass 631 
spectra using an LC-Mass spectrophotometer at the Centre for Pharmaceutical Oncology of the 632 
University of Toronto. 633 

1.10 LNP synthesis and formulation for high throughput screening 634 
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To conduct high-throughput screening, we created an organic phase by dissolving a mixture of 635 
cationic lipid, DOPE (Avanti), cholesterol (Chol, Sigma-Aldrich), and C14-PEG 2000 (Avanti) in 636 
ethanol at a predetermined molar ratio. We prepared the aqueous phase using firefly luciferase 637 
mRNA (mLuc, Translate), Cre recombinase mRNA (TriLink BioTechnologies) or EGFP-mRNA 638 
(TriLink BioTechnologies) in 10 mM sodium citrate buffer (pH 4.0, Fisher). All mRNAs were 639 
stored at -80 °C and were allowed to thaw on ice before use. During the high-throughput screening 640 
phase, LNPs were synthesized by mixing an aqueous phase containing the mRNA with an ethanol 641 
phase containing the lipids by the OT-2 pipetting robot. The aqueous phase was prepared in a 10 642 
mM citrate buffer with the corresponding mRNA. The ethanol phase was prepared by solubilizing 643 
a mixture of ionizable lipid, helper phospholipid (DOTAP, DOPE, cholesterol, and C14-PEG 2000 644 
at pre-determined molar ratios with an ionizable lipid/mRNA weight ratio of 10 to 1.  645 

1.11 LNP synthesis and formulation for in vitro and vivo tests 646 

For other in vitro and in vivo tests, all materials were prepared and processed without nucleases 647 
throughout the synthesis and formulation steps.DLin-MC3-DMA and ALC0315 were purchased 648 
from Echelon Biosciences. MC3-LNP was prepared at the molar ratio of 50:10:38.5:1.5 (DLin-649 
MC3-DMA:DSPC: cholesterol: DMG-PEG2000) and ALC0315-LNP was prepared at the molar 650 
ratio of 46.3:9.4:42.7:1.6 (ALC0315:DSPC: cholesterol: ALC0159 [Echelon Biosciences]). The 651 
optimal formulations of H278 and R080 LNPs for the subsequent experiments were determined 652 
by the LNP formulation optimization method. Except for the high-throughput screening, the 653 
aqueous and ethanol phases were rapidly mixed by pipette at a 3:1 volumetric ratio. Post incubation 654 
for 15 min in a 4 °C fridge. 655 

1.12 LNP formulation optimization. 656 

The statistical software JMP 16 (SAS Institute) analyzed the experimental data. In this Design of 657 
experiments (DoE) approach, the four-factor Box-Behnken design was suitable for second-order 658 
models comprising 17 preparation runs. The design was cited as a common experimental design 659 
for screening crucial factors. In this design, all factors (lipid/mRNA weight ratio, ionizable lipid 660 
molar ratio, helper lipid molar ratio, and PEG molar ratio) have low, center, and high levels.  661 

1.13 In vitro high throughput screening. 662 

The lipid library, which was not purified, was directly combined with ethanol and the aqueous 663 
solution of mLuc. For in vitro transfection, the lipid-mRNA mixture, containing 0.1 μg of mRNA, 664 
was added to pre-seeded Hela and Raw264.7 cells in 96-well plates. Following overnight 665 
incubation, the transfection potency of mLuc was measured using the One-Glo Luciferase Assay 666 
System (Promega), following the manufacturer's instructions. The luminescence was quantified 667 
using the Cytation imaging reader (BioTek). Finally, the resulting bioluminescence values are 668 
assigned to each SMILE string. 669 

1.14 In vivo luciferase mRNA for bioluminescence. 670 
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At 6 h after the intramuscular administration of the mRNA LNPs, mice were injected 671 
intraperitoneally with 0.2 ml d-luciferin (10 mg/ml in PBS). The mice were anesthetized in a 672 
ventilated anesthesia chamber with 1.5% isofluorane in oxygen and imaged 10 min after the 673 
injection with an in vivo imaging system (IVIS, PerkinElmer). Luminescence was quantified using 674 
the Living Image software (PerkinElmer). C57BL/6 mice (4-8 weeks) were purchased from the 675 
Jackson Laboratories. 676 

1.15 ROSAmT/mG Cre reporter mice transfection analysis.  677 

All animal studies were approved and conducted in compliance with the University Health 678 
Network Animal Resources Centre guidelines. For gene recombinant Cre mRNA delivery, LNPs 679 
co-formulated with Cre mRNA (0.5 mg kg -1) were i.m. injected into ROSAmT/mG Cre reporter mice 680 
(The Jackson Laboratory). After 7 d, mice were killed, and major organs were collected and 681 
imaged using an IVIS imaging system (PerkinElmer). For direct fluorescence imaging, organs and 682 
muscle tissues were fixed in 4% buffered paraformaldehyde overnight at 4°C, then equilibrated in 683 
30% sucrose overnight at 4°C before freezing in OCT. Three nonconsecutive sections from each 684 
organ sample were mounted with DAPI to visualize nuclei and imaged for DAPI, tdTomato, and 685 
GFP. Sectioned into 10 μm depth, and further imaged using a Fluorescence microscope (Zeiss 686 
AXIO Observer 7 Inverted LED Fluorescence Motorized Microscope). 687 

1.16 Intracellular delivery of GFP mRNA to RAW 264.7 688 

For GFP mRNA delivery, GFP mRNA LNPs containing 500 ng GFP-mRNA were added to 24-689 
well plates for 48 h incubation at 37 °C. Finally, a fluorescence microscope (Zeiss AXIO Observer 690 
7 Inverted LED Fluorescence Motorized Microscope) was used to evaluate the transfection effect. 691 

1.17 Statistical analysis 692 

The data were subjected to statistical analyses using GraphPad Prism 9 (GraphPad Software). A 693 
two-tailed unpaired Student's t-test was conducted to assess the significance of the comparisons as 694 
indicated. Data are expressed as mean ± s.d. P values <0.05 (*), P < 0.01 (**), P < 0.001 (***) and 695 
P < 0.0001 (****) were statistically significant. 696 
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 715 

Figure 1. Overview of the platform design pipeline.  716 
(a) Illustration of the 3-stage workflow of the platform. Stage 1: Construction of a virtual library 717 
and self-supervised pre-training of the model. Stage 2: Synthesis of an experimental library for the 718 
fine-tuning of the model in a supervised manner. Stage 3: Deployment of the fine-tuned model for 719 
predictive analysis on a candidate library, followed by ranking for final candidate selection. (b) 720 
Depiction of virtual library design through the application of Ugi combinatorial chemistry. (c) 721 
Schematic representation of the rational selection process for lipid candidates, with 3 listed 722 
filtering criteria. (d) A comprehensive breakdown of the ranking procedure and the selection 723 
methodology for final candidates.   724 
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 725 

Figure 2. High throughput lipids synthesis and screening platform.  726 
(a) A schematic to illustrate the high-throughput synthesis method for lipids. (b) The combinatorial 727 
lipoids library consists of three components structure (amine head groups, aldehyde tails, and 728 
isocyanide tails). (c) A schematic diagram shows the LNPs components for mRNA encapsulating. 729 
(d) Lipid synthesis, LNPs formulation and luciferase assay based on liquid handling robot. (e) The 730 
data used for the fine-tuning are depicted in a balloon plot, which involved 1,200 LNPs for Fluc 731 
mRNA (mLuc) delivery and measuring the relative luciferase expression in Hela cells. (f) The loss 732 
value on the training set and validation set against fine-tuning steps. (g) The precision matrix 733 
computed on the experimental library of 1,200 lipids. The predicted and actual transfection 734 
potencies are divided into six equal percentiles. (h) UMAP plot of the experimental library, colored 735 
by the transfection potency. 736 
  737 
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Figure 3. Model prediction and the validation of the gene editing potential with top-739 
performing mRNA-LNPs. (a) The UMAP plot of the predicted molecule trans potencies. (b) 740 
Head group distribution and (c) tail combination distribution in Hela. (d) Validate 15 lipid 741 
candidates for Hela cell. (e) The top-performing formulation parameters used in the optimization 742 
of H9 LNPs in Hela.  (f) Transfection of mFFL LNPs in Hela cells (n = 4 biologically independent 743 
experiments per group). (g) A schematic to illustrate the Intramuscular (IM) injection of mFluc-744 
loaded LNPs into the mice and IVIS imaging. (h) LNPs formulated with FFL encoding mRNA 745 
were injected intramuscularly into mice (0.25mg mRNA/kg mouse). The top-performing lipids H9 746 
with optimized formulation compare with the MC3 and ALC-0315 LNPs (n = 3 biologically 747 
independent mice per group, 0.5 mg kg⁻¹ mLuc per mouse). (i) Transfection of mFFL LNPs at the 748 
i.m. injection site in mice (n = 3 biologically independent mice per group). (j) IVIS imaging for 749 
liver after IM injection of mFluc-loaded LNPs. (k) Transfection of mFFL LNPs of liver in mice 750 
after IM injection (n = 3 biologically independent mice per group). (l) A schematic illustrating the 751 
Cre recombinase deletes STOP cassettes and activates the GFP mice reporter. (M) Representative 752 
confocal microscopy images and quantification of tdTomato and GFP expression in histological 753 
muscle and liver sections of mTmG mice post-injection of Cre-mRNA loaded LNPs by IM 754 
injection. Scale bar: 50µm. n = 5 sections from 3 mice. Error bars are S.D. Statistical significance 755 
was analyzed by the two-tailed Student’s t-test. ✱=p-value <0.05, ✱✱=p-value<0.01, ✱✱✱=p-756 
value<0.005. Data are presented as mean±SD. 757 
  758 
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 759 

Figure 4. Accelerating screening of new lipids for EGFP-mRNA delivery in macrophage 760 
through the platform. (a) The UMAP plot of the predicted molecule trans potencies. (b) Top 5 761 
Head groups distribution and (c) top 3 and bottom 2 tail combinations distribution in RAW 264.7. 762 
(d) Validate 15 lipid candidates for RAW 264.7 (n=2). (e) The top-performing formulation 763 
parameters used in the optimization of R6 LNPs in RAW 264.7. (f) Comparison of the Fluc-mRNA 764 
transfection potency of different LNPs in RAW 264.7 cells (n=6). (H9 LNPs, MC3 LNPs, R6 765 
original screen formulation LNPs and optimized formulation LNPs). (g) Comparison of the 766 
efficacy of LNPs (H9 LNPs and R6 LNPs) in Hela cells (n=3). (h) Percentage of GFP positive 767 
cells on RAW 264.7 after treatment with MC3 LNPs, H9 LNPs and H6 LNPs. Quantitative 768 
analysis of flow cytometry data of RAW 264.7 cells (n=3). (i) Confocal images of RAW 264.7 769 
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cells transfected by GFP-mRNA LNPs. Green represents GFP, and blue represents the nucleus 770 
(DAPI). Statistical significance was analyzed by the two-tailed Student’s t-test. ✱=p-value <0.05, 771 
✱✱=p-value<0.01, ✱✱✱=p-value<0.005. Data are presented as mean ± SD. 772 

 773 
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Figure 5. Model feature explanation and finding. (a, b) Top 20 most important molecular 774 
descriptors identified by this model fine-tuned for Hela and RAW 264.7 cell lines, respectively. 775 
(c, d) 3D visualization of H9 and R6 structures, respectively, with salient region highlighted. (e, f) 776 
Similarity networks for the 15 top lipid candidates in Hela and RAW 264.7 cell lines respectively, 777 
with each candidate linked to its four closest neighbors. (g) Violin plot illustrating the distribution 778 
of predicted potencies across different R2 tail lengths, from LNPs of the top performing head group 779 
A5 for the RAW 264.7 cell line. (h) A similar violin plot as in (g), but focusing on LNPs of the 780 
entire candidate set. (i) A similar violin plot as in (h), but focusing on R3 tail lengths. (j) A similar 781 
violin plot as in (h), but focusing on LNPs of the entire candidate set for Hela cell line. (k, l) Top 782 
2 most important molecular descriptors identified by this model fine-tuned for Hela and RAW 783 
264.7 cell lines respectively, for each head group.  784 
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