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24 Abstract

25 Knowing a patient's genetic ancestry is crucial in clinical settings, providing benefits such as tailored 

26 genetic testing, targeted health screening based on ancestral disease-predisposition rates, and 

27 personalized medication dosages. However, self-reported ancestry can be subjective, making it 

28 difficult to apply consistently. Moreover, existing approaches utilize genome sequencing data to infer 

29 ancestry at the continental level, creating the need for methods optimized for individual ancestry 

30 assignment. We present SNVstory, a method built upon three independent machine learning models 

31 for accurately inferring the sub-continental ancestry of individuals. SNVstory includes a feature-

32 importance scheme, unique among open-source ancestral tools, which allows the user to track the 

33 ancestral signal broadcast by a given gene or locus. We apply SNVstory to a clinical dataset, 

34 comparing self-reported ethnicity and race to our inferred genetic ancestry. SNVstory represents a 

35 significant advance in methods to assign genetic ancestry, predicting ancestry across 36 different 

36 populations with high accuracy.

37

38 Introduction

39 Ancestry derived from genomic data, referred to as genetic ancestry, is a measurable and biologically 

40 defined parameter. Although much of the human genome is identical across all populations, it is 

41 estimated that depending on an individual’s ancestry, 0.1% to 0.4% may differ from the human 

42 reference genome. While this genetic variation includes structural variants (SVs), copy number 

43 variants (CNVs), and small insertions or deletions (indels), by far the largest and easiest to detect 

44 category occurs in the form of single nucleotide variants (SNVs), many of which are unique to 

45 genetically distinct populations1.

46

47 Knowledge of a patient’s genetic ancestry has clinical implications, ranging from genetic testing to 

48 health screening based on ancestral disease-predisposition rates, and in some cases, may inform 
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49 what medicine dosage to prescribe a patient2–4. However, self-reported race is frequently used in the 

50 research and clinical setting and is often inconsistent with genetic ancestry, potentially driving health 

51 disparities5–8. Genome sequencing-based diagnostic testing in patients suspected of having a rare 

52 genetic disorder requires accurate data filtering to remove variants common to a given population. 

53 Precise identification of the patient’s ancestry improves the identification of rare disease-causal 

54 variants. Therefore, developing methods to report ancestry accurately and consistently is essential.

55

56 In addition to clinical importance, knowing the ancestral composition of an individual or a population 

57 is essential in the genetic research setting. For example, signals from genome-wide association 

58 studies (GWAS) or whole genome sequencing cohorts can be reassessed based on population 

59 stratification, whereby loci associated with disease may be more accurately identified by discarding 

60 rare variants associated with an individual’s ancestry rather than with the disease in question9,10. 

61

62 Given the importance of ancestry, several ancestry inference algorithms that operate on genomic 

63 data have been developed that can be divided into two broad types: parametric and non-parametric. 

64 Parametric learning algorithms estimate a finite set of parameters from the data to establish a 

65 relationship between the independent and dependent variables. Two widely-used parametric tools 

66 are STRUCTURE11 and ADMIXTURE12, which estimate the proportions of different ancestries (or 

67 ancestral populations) for each individual, known as admixture. Recently, Archetypal Analysis was 

68 shown to be more computationally efficient and provide more interpretable results than 

69 ADMIXTURE13. In contrast, non-parametric methods do not have a finite set of parameters and 

70 instead rely on the intrinsic structure of the data to determine which data points best resemble each 

71 other. 

72
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73 The emergence of population-scale genome sequencing datasets with a form of self-reported 

74 ancestry allows models to be built with prior knowledge of represented ancestries. In place of 

75 individualized genetic data, large databases house genomic summary results, such as aggregate 

76 variant allele frequencies stratified by population. For example, the Single Nucleotide Polymorphism 

77 database (dbSNP) is the largest genomic aggregate database with 11 different populations from over 

78 one million samples14. However, the 11 distinct populations contain a high degree of overlap and 

79 primarily represent continental groupings15. The Genome Aggregation Database (gnomAD) is 

80 another aggregate database with allele frequencies from 140,000 subjects from 26 populations16. In 

81 addition to these large-scale repositories of aggregate allele frequencies, there exist a few datasets at 

82 the level of the individual, such as the 1000 Genomes Project (1kGP)1 and the Simons Genome 

83 Diversity Project (SGDP)17, which are much smaller in sample size, with 2,504 and 279 samples, 

84 respectively. Nevertheless, the 1kGP and SGDP have been critical in characterizing ancestry and 

85 human history as they contain the most granular population labels.

86

87 Taken together, these curated variant datasets enable an alternative class of models to be used to 

88 predict ancestry based upon samples labeled with known ancestry18–28. However, many methods 

89 suffer shortcomings, including not having discrete ancestry labels beyond the main continental 

90 groups or, for those methods using the 1kGP, not considering that many subjects are within the same 

91 families and, therefore, fail to satisfy the principle of independent and identically distributed data. As 

92 such, there is a critical need for methods to accurately predict an individual's genetic ancestry from 

93 genome sequencing data by implementing supervised models.

94

95 Here, we address some limitations surrounding supervised learning of ancestry by developing three 

96 independent models from gnomAD, 1kGP, and SGDP. Our models estimate ancestry from 36 different 

97 populations with high accuracy. Furthermore, we provide software that enables users to run our 
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98 models on their data, taking the widely accepted variant call format (VCF) files as input and 

99 outputting predictions and a graphical representation of the likelihood of a given genetic ancestry. 

100 As a form of validation, we apply these models to our in-house clinical research dataset and correlate 

101 the estimates with those of self-reported ancestry.

102

103 Materials and Methods

104 Training Datasets

105 Genomic datasets from gnomAD, 1kGP, and SGDP were processed separately (Figure 1), as described 

106 below.  The gnomAD variants are provided on reference genome GRCh37, and the 1kGP and SGDP 

107 were called on reference genome GRCh38.

108

109 The Genome Aggregation Database (gnomAD)

110 The gnomAD v2.1 exome and genome sequencing variant dataset provides aggregated data from 17 

111 populations, meaning allele frequencies of each population for 17 million exome variants. We 

112 reduced the number of input features for machine learning by following a similar protocol to the one 

113 described by the MacArthur lab by filtering for high call rates, biallelic-only sites, and a frequency 

114 greater than 0.1% (https://macarthurlab.org/2018/10/17/gnomad-v2-1/). After this filtering, 

115 81,398 SNVs remained, formatted as a matrix of ancestries and corresponding SNV frequencies.

116

117 To obtain SNV calls for individuals, as is provided in standard VCF format, we simulated individuals 

118 from each ancestry by effectively flipping a weighted coin for each individual and their respective 

119 variant (Figure 1). This resulted in a synthetic-based matrix of samples spanning the ancestry 

120 classifications in gnomAD v2.1 and SNVs, coded as reference, heterozygous, or homozygous for each 

121 SNV position. Although this approach does not capture haplotypes, the simulated samples are 

122 genetically typical examples of the chosen ancestry to a first approximation. 
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123

124 The 1000 Genomes Project (1kGP)

125 The New York Genome Center performed genome sequencing (GS) on 3,202 samples, including 602 

126 trios, from the 1kGP cohort at 30x coverage, released in 202029. The data were aligned to GRCh38 

127 using BWA-MEM30, and variants were called by GATK HaplotypeCaller (GATK version 3.5.0) using 

128 default settings. The dataset contains 126,659,422 SNVs from 26 populations spanning East and 

129 South Asia, North and South America, Africa, and Europe. Sample sizes were not uniformly 

130 represented across the different populations, i.e., the dataset was imbalanced. Due to the high genetic 

131 similarity between individuals from Utah and the United Kingdom, the Utah population was removed 

132 from the analysis.

133

134 The Simons Genome Diversity Project (SGDP)

135 The SGDP consists of GS of 300 individuals from seven major population groups, 75 countries, and 

136 142 diverse populations. GS FASTQ files from 279 samples were downloaded from the European 

137 Nucleotide Archive (PRJEB9586). Sequencing reads were aligned to genome assembly GRCh38 using 

138 BWA-MEM. SNV and INDEL calling was performed with GATK version 4.1.9, described below. GATK 

139 HaplotypeCaller was run on each sample using the GVCF workflow to generate a per-sample 

140 intermediate GVCF. The GATK GenotypeGVCFs function was used to perform base calling across all 

141 samples jointly to obtain genotypes for each sample in VCF format. We then performed variant 

142 recalibration and filtering in the two-stage process using the GATK functions VariantRecalibration 

143 and ApplyVQSR. The final combined data set contained a total of 48,815,712 SNVs.

144

145 Quality Control

146 Quality control of the gnomAD (https://macarthurlab.org/2018/10/17/gnomad-v2-1/) and 1kGP29 

147 were as previously described. For the SGDP dataset, we ran several quality-control tools to detect 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.02.543369doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.02.543369
http://creativecommons.org/licenses/by/4.0/


7

148 any issues with sequencing quality and sample contamination. We ran Picard CollectMultipleMetrics 

149 on the aligned bam files to collect alignment summary, quality score, and GC bias metrics (Table S1). 

150 Sequencing read allocation was calculated using samtools. Coverage information was collected using 

151 mosdepth31. The average coverage for all realigned samples was 40X (ranging from 31X to 77X). 

152 Sample contamination level was determined by the number of reads inconsistent with the genotype 

153 in dbSNP14 sites. One sample was flagged for possible sample contamination (Supplemental 

154 Materials and Methods). 

155

156 Removal of Related Samples

157 Related samples of the third degree (e.g., first cousins, great grandparents, or great-grandchildren) 

158 or closer were identified by the relationship inference tool, KING32. Data from the 1kGP and SDGP 

159 were preprocessed using PLINK2 with the following parameters: “--new-id-max-allele-len 10000 --

160 max-alleles 2”33. KING recommends performing as little filtering as possible. However, an additional 

161 filtering step was performed to prevent the computation from running out of memory. Therefore, the 

162 analysis was restricted to variants shared by at least two individuals: “--maf 0.0007” in the case of the 

163 1kGP and “--maf 0.007” for SDGP. After removing the variants present in only one sample, KING was 

164 executed on the resulting bed file, with the “--kinship” option set to report pairwise relatedness 

165 inference. Samples from the analysis were flagged that had a third-degree kinship coefficient cutoff 

166 >= 0.0442, a value previously established by the authors of KING32. Four samples were removed from 

167 further analysis in the SGDP dataset based on the KING relatedness results (Supplemental Materials 

168 and Methods).

169

170 Because some samples from the 1kGP are related to more than one other individual in the cohort, the 

171 following procedure was implemented to remove the fewest number of samples. Considering only 

172 the relationships with coefficients exceeding the third-degree cutoff, a graph-based method was 
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173 implemented to recursively identify nodes (samples) with the largest number of edges 

174 (relationships) and remove those nodes until all subgraphs had, at most, a single connection. For 

175 subgraphs with a single connection, one sample was randomly selected from the pair, while all 

176 singletons were included in the list of samples to keep. From 167 samples with at least one close 

177 relationship, 117 were flagged for inclusion in downstream analysis. The remaining samples were 

178 removed with PLINK2.

179

180 Variant Selection and Preprocessing

181 Variants from 1kGP and SGDP underwent a final filtering step by taking the intersection of targeted 

182 exonic regions of the exome capture reagent used routinely in our clinical lab (IDT xGen Exome Hyb 

183 Panel v2 targets hg38 BED file) with the set of genetic variants from the unrelated individuals using 

184 BEDTools intersect (v2.30.0)34. The resulting VCF was converted into a numerical encoding 

185 homozygous alternative = 2, heterozygous = 1, reference or missing = 0. The vectors of genotypes 

186 were combined to form a matrix of variants by genotypes. For variant selection from gnomAD, see 

187 the following gnomAD section in Model training and cross-validation below.

188

189 Model Training and Cross-Validation

190 The models were trained on each dataset separately, as required by their differing labeling strategies 

191 (Figure 1). 

192

193 gnomAD: Because our gnomAD algorithm uses synthetic data, we must consider two parameters: a 

194 population size that balances the model's accuracy with training time and resources and a p-value 

195 from a Chi-Square test that removes uninformative SNVs. This was accomplished using a nested for 

196 loop to iterate over all combinations of population sizes and p-values for SNV removal (Figure S1). 

197 For each combination, we generated a set of 80/20 training/validation splits of the data. A Chi-Square 
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198 test was applied to each SNV (feature) in the training data to determine whether it was informative 

199 for distinguishing ancestry in the population. SNVs were removed that did not meet the p-value 

200 threshold. We used a gradient-boosted decision tree from XGBoost to train the model on the training 

201 set and then test on the validation set35. Fold generation and training were performed five times for 

202 each p-value, and the accuracy was averaged to represent the accuracy for each p-value. Once all the 

203 p-values were tested, the p-value with the highest accuracy was selected (Figure S2). Then, the 

204 model was retrained on all the data for that specific population size and tested on a synthetic hold-

205 out set. The accuracy for the hold-out set is representative of that population. A continental model 

206 (population size of 4,084 individuals; SNV p-value threshold of 7.5e-49) was built to predict six 

207 groups: Africa, South Asia, Europe, East Asia, America, and Ashkenazi Jewish. Two sub-continental 

208 classifiers were built to predict ancestry within the East Asian (Figure S2A.; population size of 

209 13,593 individuals; SNV p-value threshold of 1.78e-09) and European groups (Figure S2B.; 

210 population size of 45,243 individuals; SNV p-value threshold of 1.78e-24). 

211

212 1kGP: For the 1kGP dataset, the support vector machine (SVM) library from scikit-learn36 was used 

213 to train a classifier to predict the continental groups: Africa, Europe, South Asia, East Asia, and 

214 America. In addition, multiple classifiers were trained independently for each sub-continental group, 

215 i.e., Kenya or African Caribbean in Barbados. All SVMs were trained using the radial basis function 

216 (RBF) kernel and with the gamma parameter fixed as the default. Hyperparameter tuning of the C 

217 penalty term was accomplished by performing cross-validation using the scikit-learn stratified k-fold 

218 library. The default five splits were chosen, and the shuffle variable was set to true. The F1 macro 

219 average was selected to represent a model’s performance.

220

221 SGDP: The SVM library from scikit-learn was used to train the model for the SGDP dataset. Stratified 

222 k-fold cross-validation was performed using the standard scikit-learn library. Seven continental 
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223 groups were predicted from this cohort (Africa, West Eurasia, East Asia, South Asia, Oceania, Central 

224 Asia Siberia, and America), as the subcontinental groups needed more samples per group to train an 

225 accurate model. The F1 macro average was chosen as a representation of a model’s performance to 

226 account for the imbalanced data.

227

228 Results

229 Model Performance

230 We report the performance of the gnomAD, 1kGP, and SGDP continental models using external 

231 validation sets (Figure 2A-F), and cross-validation results on the subcontinental models (Figures S2 

232 and S3) were performed because additional datasets with the same subcontinental labels were not 

233 available. 

234

235 Confusion matrices are shown in Figures 2A-D, providing the ancestry prediction for each sample in 

236 the validation data. In the 1kGP and SGDP models, we see some discrepancies between the European 

237 and American groups. In the case of the 1kGP model (Figure 2A), some SGDP samples labeled as 

238 European are predicted to be American. Similarly, in the SGDP model, some 1kGP samples labeled as 

239 American are predicted as European. This may be due to a higher similarity of the feature space 

240 between European and American samples than other groups (Figure S3). The gnomAD model is 

241 validated with 1kGP (Figure 2C) and SGDP (Figure 2D) samples. Overall, all continental models have 

242 a high area under the curve in both ROC (Figure 2E) and Precision-Recall (Figure 2F) curves, 

243 described in the figure legend.

244

245 The gnomAD East Asian and European subcontinental models have accuracies of 99.90% and 

246 80.92%, respectively (Figure S2A, B). The results for the 1kGP subcontinental model are obtained 

247 by averaging the probabilities for each sample across cross-validation folds and then computing the 
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248 confusion matrix (Figure S4). The accuracies for the 1kGP subcontinental models are as follows: 

249 Africa, 90.26%; America, 93.06%; East Asia, 87.23%; Europe, 94.29%; South Asia, 85.86%.

250

251 Feature Interpretation

252 Feature importance for the gnomAD continental model was calculated using SHAP37 values to 

253 provide insight into which SNVs and their corresponding genes have the most impact on the model 

254 predictions. SHAP values for the 1kGP and SGDP models were not calculated because the memory 

255 requirement for the kernel explainer was too high due to the number of features in the models. 

256

257 Global feature importance for the gnomAD continental model is reported by aggregating SHAP values 

258 across each gene and taking the mean absolute value of each gene across 2,800 of the training 

259 samples (Figure S5). The ‘knownCanonical’ genes table was downloaded from the UCSC Table 

260 Browser using assembly GRCh37 to get the genomic interval for each gene. If a region contains 

261 multiple genes, we combine the genes to form a non-overlapping genomic interval (e.g., ANKRD45, 

262 TEX50). Of the 77,402 variants used to train the model, 3,231 were not located in gene regions and 

263 were removed from further analysis. The most significant gene impacting the model is Keratin 

264 Associated Protein 19-8. Samples with a variant in this gene are more likely to be predicted as 

265 American.

266

267 We also aggregated SHAP values across larger cytolocations to visualize which regions across the 

268 genome are most impactful in the model predictions (accessed using this file: 

269 (https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz). Figure S6 shows 

270 the feature importance for an individual from the training data labeled as African. Regions are 

271 colored by population label with the maximum absolute SHAP value. Regions that have the most 
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272 impact on predicting the sample African are ‘chromosome 1: 172,900,000-176,000,000’ and 

273 ‘chromosome 5: 63,200,000_66,700,000’.

274

275 Comparison of Genetic vs. Self-Reported Ancestry in Clinical Samples

276 SNVstory was implemented on an in-house dataset of clinical exome sequencing testing from 293 

277 individuals generated by the Institute for Genomic Medicine Clinical Laboratory to demonstrate the 

278 application of our models. We compare the model predictions to the self-reported ancestry of the 

279 proband (Table S2). Self-reported race is derived from the paternal/maternal ethnic background. 

280 Ethnicity is categorized into one of three groups: Non-Hispanic or Latino, Hispanic or Latino, and 

281 Unknown/Not Reported Ethnicity. Race is classified into one of five groups: White, Asian, Bi-

282 racial/Multi-racial, Black or African American, and Unknown/Unspecified. Due to the broadness of 

283 these categories, we report the comparison between predicted genetic ancestry for the continental 

284 models only (Table 1).

285

286 Most of the individuals share agreement between genetic ancestry and ethnicity/race, e.g., for those 

287 predicted to be European, a match of White / Non-Hispanic or Latino for race /ethnicity occurs in 

288 92.5%, 96.7%, and 89.1% of individuals by the gnomAD (Table 1A), 1kGP (Table 1B), and SGDP 

289 (Table 1C) models, respectively. However, several cases exist where individuals are self-reported as 

290 White while having a different genetic ancestry across multiple models, and vice versa. Additionally, 

291 13 of our cases have either Unknown/Not Reported Ethnicity or Unknown/Unspecified Race. As 

292 discussed in the Introduction, the ability to refine or add genetic ancestry information in these cases 

293 is helpful for added diagnostic precision in variant filtering/prioritization.

294

295 Model Interpretation for Indeterminant Samples
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296 Most of our in-house dataset has agreement across all three continental models (81.9% of samples) 

297 and even more across at least two continental models (98.0%). A disproportionate number of 

298 individuals share disagreement across all three models between those that are self-reported as Bi-

299 racial or Multi-racial vs. those that are White, Asian, Black or African American (50% vs. 9% 

300 disagreement, respectively). Those individuals with Unknown/Unspecified Race are not included in 

301 this calculation. These results suggest our models have worse performance on admixed samples, 

302 where two or more populations may be present. In reporting results, we use the label with the highest 

303 probability. Some discrepancies between model results may be mitigated by adding a minimum 

304 threshold on the probability required to obtain a result.

305

306 Individualized Ancestry Report

307 Here, we illustrate the ability of SNVstory to provide ancestry predictions in an easily visualized 

308 format for individual samples (Figure 3). The probabilities for the gnomAD and the 1kGP continental 

309 models were 100% European, while the SGDP continental model was 95% West Eurasia. The 

310 gnomAD subcontinental model has the highest probability (48%) for North-Western European 

311 (nfe_nwe), and the 1kGP subcontinental model has the highest probability (100%) for British From 

312 England and Scotland (eur_gbr). The subcontinental model probabilities are weighted by the 

313 continental probabilities, which are returned as 0% probability for the remaining models. These 

314 predictions agree with the true sample ancestry taken from the 1kGP validation set. 

315

316 Discussion

317 We have described a method to predict ancestry from genomic data that provides multiple 

318 improvements over existing ancestry inference tools. Firstly, SNVstory incorporates 

319 samples/variants from three different curated datasets, expanding the number of labels and the 

320 granularity of the model classification beyond the main continental divisions. Secondly, drawing 
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321 upon the gnomAD database produces a much larger number of variants on which our models were 

322 trained, providing the opportunity to classify ancestry on a wider (or more diverse) range of features. 

323 Thirdly, SNVstory excludes consanguineous samples from training, ensuring that the 

324 overrepresentation of closely related individuals does not bias the model. Finally, our novel 

325 implementation is optimized for individualized results rather than clustering large cohorts of 

326 samples into shared ancestral groups. 

327

328 In our gnomAD model, we introduce a method to simulate individual samples from aggregate allele 

329 frequencies of a known population. This is potentially useful for any study requiring access to 

330 reference variants from a population where data from individual samples is obfuscated. One 

331 limitation in our approach is that we did not account for linkage disequilibrium between variants 

332 when simulating individual samples. This could result in some samples with patterns of variants that 

333 do not exist in actual samples. An improvement in future models would be to remove variants with 

334 high levels of linkage disequilibrium between them. If high recognizability to actual samples is 

335 required, established metrics of linkage disequilibrium, such as the correlation coefficient r2, could 

336 be used to measure the ‘realness’ of a simulated sample based on existing variant patterns, and 

337 simulated VCFs could be validated based on this quality. However, in practice, the larger pool of 

338 variants provided by gnomAD more than compensates for the lost dependence among proximal 

339 groups of variants. We have demonstrated that the performance of the gnomAD models with 

340 simulated individuals is comparable to that of models trained with actual samples.

341

342 With the growing number of reference datasets containing individuals from diverse ancestral 

343 backgrounds, it is possible to build ancestry prediction models that reflect these populations. 

344 However, there is room for improvement, as our most diverse dataset (SGDP) includes the fewest 

345 samples. We could not build subcontinental models as granular as the labels provided because there 
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346 were as few as two samples per label for many instances. Additionally, our model cannot accurately 

347 predict ancestry proportions in samples with admixed ancestry. Most admixture prediction software 

348 depends on a priori knowledge of the number of non-admixed populations and requires 

349 representation from such populations. There is limited availability of reference samples from 

350 admixed individuals, so our training data lacked representation from any admixed samples. Efforts 

351 to expand the number of reference sequences for diverse and admixed populations will provide 

352 opportunities to fill this gap. 

353

354 SNVstory’s feature-importance capacity is unique among ancestral tools and could have significant 

355 clinical utility. The clinical application of most ancestral prediction tools is limited to simply 

356 predicting the patient's ancestry. However, SNVstory’s unique capability to describe a given locus as 

357 characteristic, or atypical, of a given ancestry could lead to improved prioritization of variants. For 

358 example, SNVstory finds the most ancestrally informative gene on average to be KRTAP19-8, which 

359 is greatly enriched for SNVs predictive of Native American/Latino ancestry (Figure S5). This gene is 

360 a known driver of thyroid lymphoma38, a disorder that is the second-most-common type of cancer 

361 among Hispanic women39 but not even among the top five cancer types among women worldwide40. 

362 The inferred distinctiveness of Latino copies of KRTAP19-8 suggests that rare founder mutations in 

363 this gene may contribute to increased rates of thyroid cancer among women of Hispanic ancestry. 

364 The ability to target variants in genes inherited from specific populations adds a new tool to the 

365 diagnostician’s toolkit and could lead to improved patient outcomes.

366

367 Finally, our approach allows users to reliably execute our models given a single-sample or multi-

368 sample VCF, with results tailored toward ancestry assignment for an individual sample. This provides 

369 immediately useful ancestry information in the clinical setting, where ancestry can be used to inform 

370 diagnostic or therapeutic decisions. Specifically, a subject's ancestry can be used to help prioritize 
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371 variants that may be rare in one population but not another. In the clinical setting, it may be essential 

372 to recognize the difference between ethnicity, race, and genetic ancestry in determining the optimal 

373 therapy or drug dosage.

374

375 Given the widespread availability of genome sequencing data and models like SNVstory that can 

376 accurately predict ancestry, we advocate for genetic ancestry to become the standard classification 

377 reported for genetic studies and clinical applications, where appropriate. Genetic ancestry offers 

378 enormous advantages over other self-reported information, such as ethnicity or race, because it 

379 supplies biological characteristics of a population and is consistently measurable. This advantage will 

380 only increase as more populations are sequenced and ancestry prediction becomes more reliable, 

381 and we improve our ability to contextualize the impact of genetic ancestry on clinical decision-

382 making. 
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399 https://www.internationalgenome.org/data-portal/data-collection/30x-grch38. Simons Genome 

400 Diversity Project data is available from the European Nucleotide Archive under project PRJEB9586.

401 SNVstory is an open-source model and is available from https://github.com/nch-igm/snvstory.
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534 Figure Titles and Legends

535 Figure 1. Schematic of ancestry inference model strategy. The workflow visualizes each dataset 

536 separately with colored boxes and arrows: gnomAD (blue), 1kGP (yellow), and SGDP (red). For the 

537 gnomAD synthetic-based matrix, allele frequencies for each variant for each population given in 

538 gnomAD are used to create a distribution of reference, heterozygous and homozygous alleles for each 

539 population. A matrix format is created by converting the distributions into 0’s, 1’s, and 2’s for each 

540 locus for samples in each population. For 1kGP and SGDP, a matrix format is built directly from 

541 variants in the VCF. For the model architecture, continental model labels are shown in white boxes, 

542 and the number of labels in the corresponding subcontinental models is below in brackets.

543

544 Figure 2. Continental ancestry inference model performance. A-D. Confusion matrices of the 

545 1kGP model using SGDP as validation (A), SGDP model using 1kGP as validation (B), gnomAD model 

546 using 1kGP as validation (C), and gnomAD model using SGDP as validation (D). E. Macro-averaged 

547 ROC curves. F. Macro-averaged precision-recall curves.

548

549 Figure 3. SNVstory ancestry report. The representative output of model results from SNVstory for 

550 a European sample taken from the 1kGP dataset.
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551 Tables

552 Table 1. Genetic ancestry versus self-reported ethnicity and race. Value counts of genetic 

553 ancestry model predictions trained using gnomad (A), 1kGP (B), and SGDP (C) compared to self-

554 reported ethnicity and race.

555 A. gnomAD

Model Labels Ethnicity Race Counts
Black or African American 20Non-Hispanic or Latino Bi-racial/Multi-racial 10

Unknown/Not Reported Ethnicity Bi-racial/Multi-racial 3
Bi-racial/Multi-racial 2Hispanic or Latino White 1

afr

Non-Hispanic or Latino White 1
White 8

Unknown/Unspecified 5Hispanic or Latino
Black or African American 2

Non-Hispanic or Latino White 1
amr

Hispanic or Latino Bi-racial/Multi-racial 1
asj Non-Hispanic or Latino White 1

Asian 3Non-Hispanic or Latino White 2eas

Hispanic or Latino Bi-racial/Multi-racial 1
White 210Non-Hispanic or Latino Bi-racial/Multi-racial 5

Bi-racial/Multi-racial 5Hispanic or Latino White 3
White 3Unknown/Not Reported Ethnicity Bi-racial/Multi-racial 1

eur

Hispanic or Latino Unknown/Unspecified 1
Asian 3sas Non-Hispanic or Latino White 1

556
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557 B. 1kGP

Model Labels Ethnicity Race Counts
Black or African American 19Non-Hispanic or Latino Bi-racial/Multi-racial 2

Hispanic or Latino Bi-racial/Multi-racial 1afr

Unknown/Not Reported Ethnicity Bi-racial/Multi-racial 1
Hispanic or Latino White 12

Non-Hispanic or Latino Bi-racial/Multi-racial 10
Hispanic or Latino Bi-racial/Multi-racial 8

Non-Hispanic or Latino White 8
Hispanic or Latino Unknown/Unspecified 6
Hispanic or Latino Black or African American 2

Unknown/Not Reported Ethnicity Bi-racial/Multi-racial 2

amr

Non-Hispanic or Latino Black or African American 1
eas Non-Hispanic or Latino Asian 3

Non-Hispanic or Latino White 207
Unknown/Not Reported Ethnicity White 3

Non-Hispanic or Latino Bi-racial/Multi-racial 3eur

Unknown/Not Reported Ethnicity Bi-racial/Multi-racial 1
Asian 3sas Non-Hispanic or Latino White 1

558
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559 C. SGDP

Model Labels Ethnicity Race Counts
Black or African American 20Non-Hispanic or Latino Bi-racial/Multi-racial 9

Hispanic or Latino Bi-racial/Multi-racial 3
Unknown/Not Reported Ethnicity Bi-racial/Multi-racial 3

Hispanic or Latino Black or African American 2

Africa

Non-Hispanic or Latino White 1
Unknown/Unspecified 3CentralAsiaSiberia Hispanic or Latino White 1

EastAsia Non-Hispanic or Latino Asian 3
Hispanic or Latino White 4

Asian 3SouthAsia Non-Hispanic or Latino White 3
Non-Hispanic or Latino White 212

Hispanic or Latino White 7
Non-Hispanic or Latino Bi-racial/Multi-racial 6

Bi-racial/Multi-racial 6Hispanic or Latino Unknown/Unspecified 3
White 3

WestEurasia

Unknown/Not Reported Ethnicity Bi-racial/Multi-racial 1
560
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