Abstract
SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR– and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). In donors exhibiting sustained anti-S antibody titers (designated as “sustainers”), S-reactive T cell clonotypes detected immediately after 2nd vaccination polarized to follicular helper T (Tfh) cells, which was less obvious in “decliners”. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic bacteria. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly-responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh cells upon vaccination contributes to the longevity of anti-S antibody titers.
Competing Interest Statement
Two authors belong to the Department of Health Development and Medicine at Osaka University Graduate School of Medicine, which is an endowed department supported by AnGes, Daicel, and FunPep.