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Abstract 34 

Label-free, two-photon imaging captures morphological and functional metabolic tissue 35 

changes and enables enhanced understanding of numerous diseases. However, this 36 

modality suffers from low signal arising from limitations imposed by the maximum 37 

permissible dose of illumination and the need for rapid image acquisition to avoid 38 

motion artifacts. Recently, deep learning methods have been developed to facilitate the 39 

extraction of quantitative information from such images. Here, we employ deep neural 40 

architectures in the synthesis of a multiscale denoising algorithm optimized for restoring 41 

metrics of metabolic activity from low-SNR, two-photon images. Two-photon excited 42 

fluorescence (TPEF) images of reduced nicotinamide adenine dinucleotide (phosphate) 43 

(NAD(P)H) and flavoproteins (FAD) from freshly excised human cervical tissues are 44 

used. We assess the impact of the specific denoising model, loss function, data 45 

transformation, and training dataset on established metrics of image restoration when 46 

comparing denoised single frame images with corresponding six frame averages, 47 

considered as the ground truth. We further assess the restoration accuracy of six 48 

metrics of metabolic function from the denoised images relative to ground truth images. 49 

Using a novel algorithm based on deep denoising in the wavelet transform domain, we 50 

demonstrate optimal recovery of metabolic function metrics. Our results highlight the 51 

promise of denoising algorithms to recover diagnostically useful information from low 52 

SNR label-free two-photon images and their potential importance in the clinical 53 

translation of such imaging.  54 

 55 

 56 
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Introduction 57 

Metabolism refers to the set of chemical reactions that occur within a cell to produce 58 

energy and to build the necessary macromolecules to sustain life1. The energetic and 59 

macromolecular demands of a cell often change with aging and the onset of several 60 

diseases, including cancer, diabetes, neurodegenerative disorders, and cardiovascular 61 

diseases2. Therefore, it is clear that understanding the nature of such metabolic 62 

changes at the cellular level to characterize heterogeneity and dynamic interactions 63 

among different cell populations is critical for the development of improved diagnostic 64 

and treatment methods3. However, established methods to assess metabolic function in 65 

the clinic and the laboratory either lack resolution4 or are destructive5.  66 

One approach that is capable of probing tissue metabolic state with high three-67 

dimensional resolution in a non-destructive manner is two-photon excited fluorescence 68 

(TPEF) microscopy6. TPEF is a non-linear imaging technique that benefits from intrinsic 69 

optical sectioning and the ability to penetrate hundreds of micrometers into bulk tissue7. 70 

TPEF is also uniquely suited to capture images from endogenous fluorophores such as 71 

NAD(P)H and FAD8. NADH and FAD are coenzymes that facilitate energy generation 72 

and biomolecular synthesis via a number of pathways9. Several of these pathways, 73 

including the tricarboxylic acid cycle, glutaminolysis, fatty acid oxidation, and oxidative 74 

phosphorylation occur in the mitochondria10. NADPH plays an important role in anti-75 

oxidant pathways and has similar fluorescence characteristics to those of NADH11. 76 

Thus, the term NAD(P)H is used throughout this paper to refer to the fluorescence of 77 

both NADH and NADPH. A large fraction of the flavin-associated cellular fluorescence is 78 

attributed to FAD bound to lipoamide dehydrogenase (LipDH), even though 79 
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contributions from free FAD and FAD bound to Complex II (electron transfer 80 

flavoprotein) may also be significant. Here, we use the term FAD to refer to all flavin-81 

associated fluorescence detected from cells.  82 

Despite the lack of specificity in the origins of the fluorescence signals, the ratio of 83 

FAD/NAD(P)H or its normalized definition of FAD/(NAD(P)H+FAD) have been shown to 84 

correlate to the oxido-reductive state of the cells in many studies12–15.  Mitochondria are 85 

also characterized by the ability to fuse and fission to enhance energy production and 86 

delivery in response to stress or to facilitate removal of damaged mitochondria16. Such 87 

differences in mitochondrial organization have also been quantified based on analysis of 88 

NAD(P)H TPEF images17,18. NAD(P)H fluoresces more efficiently when bound to 89 

enzymes typically in the mitochondria; therefore variations in NAD(P)H TPEF intensity 90 

fluctuations can be exploited for label-free quantitative assessments of mitochondrial 91 

organization (clustering) in cells, tissues, and living humans17,19. Changes in 92 

mitochondrial organization have in turn been attributed to metabolic function changes20–93 

22. The heterogeneity of parameters such as the redox ratio and mitochondrial clustering 94 

within a tissue have also been identified as important indicators of metabolic state23–25. 95 

A number of studies have already highlighted the diagnostic potential of such 96 

assessments in living humans and there is growing interest in performing such 97 

measurements at the bedside or via endoscopes to expand the range of diagnostic 98 

applications to several organs beyond the skin26–29. Fast image acquisition in these 99 

settings is critical; however, endoscope designs typically include relatively low numerical 100 

aperture (NA) (0.5-0.7) objectives and are not as efficient in the generation and 101 

collection of TPEF30. As a result, low resolution, noise, and other degradations may 102 
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mask the diagnostically useful functional features. Thus, approaches to enhance label-103 

free, TPEF images could play a transformative role in the successful translation of this 104 

technique to improve tissue metabolic function assessments in the context of diagnosis 105 

or treatment.  106 

Traditionally, both standard image processing methods as well as inverse techniques 107 

have been used to enhancing the interpretability of TPEF data31.  These methods are 108 

most appropriate when one can easily model the physics associated with the sensing 109 

modality and the stochasticity of the data is captured in a computationally convenient 110 

distribution.  Neither is the case for TPEF sensing where the interaction of light with 111 

tissue leads to a highly complex forward model and the data are a mix of Poisson 112 

statistics and additive Gaussian noise32.  Motivated by these challenges as well as the 113 

recent success of machine learning methods for addressing a range of image analysis 114 

and interpretation problems, we consider the use of deep-learning methods for 115 

enhancing TPEF images to improve the extraction of metabolically-relevant information.   116 

Deep-learning-based methods have already been shown to enhance quality and 117 

resolution of a wide range of images, including label-free two-photon images33–37. 118 

Convolutional neural network-based content-aware image restoration (CARE), residual 119 

channel attention networks (RCAN), and super-resolution generative adversarial 120 

networks (SRGAN) have been developed for this purpose33–35. While these models 121 

have been applied to fluorescence microscopy data, their use has been limited to 122 

exogenously labeled samples which have enhanced contrast compared to label-free 123 

images. However, recently, Shen et al. (2022) demonstrated the application of a 124 

generative adversarial networks (GAN) for the restoration of label-free multimodal 125 
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nonlinear images36. We note that in these and related studies, standard metrics, such 126 

as peak SNR (PSNR) and structural similarity index measure (SSIM) are used widely as 127 

indicators of the quality of image restoration, even though they may not always match 128 

the human visual system’s assessment of image quality (MOS)33,34,36,37.  129 

Here, we report on the ability of deep-learning based denoising approaches to restore 130 

functional metabolic metrics extracted from label-free TPEF images. Specifically, we 131 

consider recovery of average and depth dependent variations in the redox ratio 132 

(FAD/(NAD(P)H+FAD)) and mitochondrial clustering extracted from analysis of TPEF 133 

images acquired from freshly excised human cervical epithelia, including healthy and 134 

precancerous lesions. In addition, we assess whether PSNR and SSIM improvements 135 

are correlated with the restoration of the functional metabolic metrics. We consider 136 

CARE (a U-net), GANs (SRGAN), and RCAN networks, and assess five loss functions, 137 

including mean average error (MAE), mean square error (MSE), SSIM, frequency focal 138 

loss (FFL), coefficient of variation (R2), and three combinations of these loss functions 139 

(see Supplementary Discussion S1 and Supplementary Fig. S2 online).  We also 140 

examine whether training on FAD or NAD(P)H images impacts the successful 141 

restoration of metabolic function metrics from the corresponding denoised images. 142 

We find that a novel combination of a one level wavelet transformation and CARE 143 

models trained to denoise each of the four wavelet domain sub-bands yields denoised 144 

images that enable optimized recovery of all metabolic function metrics. Interestingly, 145 

we observe that the architecture most successful in recovering metabolic metrics is not 146 

optimal in terms of more standard metrics such as PSNR and SSIM used to measure 147 

performance. Thus, our results indicate that deep-learning based denoising algorithms 148 
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may require distinct multiscale training and testing approaches for the recovery of 149 

functional metrics needed for improved diagnosis and for understanding the drivers of 150 

disease and development of novel therapeutics, instead of traditional morphological 151 

image quality metrics.   152 

Results 153 

Identification of the optimal deep-learning model architecture for denoising label-free, 154 

optical TPEF images to enable recovery of metabolic function metrics  155 

Human cervical tissue biopsies were collected from 54 patients and imaged immediately 156 

upon excision, as described in Methods: Optical Instrumentation and Image Acquisition 157 

(Figure 1). Several regions of interest (ROIs) were imaged from each biopsy. Multiple 158 

optical sections (OS) were imaged from each ROI at distinct depths. At each OS, we 159 

acquired TPEF images at a combination of two excitation wavelengths (775 and 860 160 

nm) and three or four emission bands. Images collected at 775 nm excitation 435-485 161 

nm emission were attributed primarily to NAD(P)H, while images at 860 nm excitation 162 

500-550 nm emission were considered to contain signal primarily from FAD and FAD 163 

bound to lipoamide dehydrogenase. Six frames were acquired at each wavelength 164 

setting. To reduce the contribution of noise, these six frames were averaged together. 165 

Metrics extracted from these averaged images were previously observed to enable 166 

highly sensitive and specific detection of cervical pre-cancer25. The averaged image 167 

was therefore considered the ground truth used for training and testing the denoising 168 

success of single frames. Single frames, the corresponding denoised, and ground truth 169 

images were analyzed using established procedures to extract the redox ratio (RR), 170 

defined as FAD/(NAD(P)H+FAD) in this study, and mitochondrial clustering (β) (Figure 171 
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1). All models (Figure 1) were trained and evaluated with identically generated image 172 

stacks. Various combinations of model architectures, loss functions, data 173 

transformations, and training data combinations, as outlined in Table 1, were evaluated 174 

on 3229 total OSs representing healthy/benign cervical tissues as well as precancerous 175 

(low-grade and high grade) squamous intra-epithelial lesions (LSIL and HSIL, 176 

respectively). 177 

Figure 1: Summary of deep learning pipeline. Human cervical tissue biopsies are 178 
collected and subsequently imaged within 4 hours post-excision. Collected biopsies are 179 
plated on glass bottom dishes and imaged using a Leica SP8 commercial microscope. 180 
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At a minimum, three ROIs are imaged per sample. At each ROI, multiple optical 181 
sections are imaged at distinct depths through the epithelium. Depth-resolved, two-182 
photon OSs are collected using 2 excitation wavelengths and several bandpass-filtered 183 
detectors. Six images are captured for each excitation/emission wavelength and every 184 
OS at a given depth, z. These six images are averaged together to generate the ground 185 
truth image set. A random image from the six per depth z is selected as the input (RAW) 186 
image. The paired image stacks are provided to the neural network for training and 187 
denoising. Four-leading denoising networks are used in this study to denoise input 188 
images: a previously described CARE model, an RCAN model, an SRGAN model, and 189 
a WU-net33–35,37. Denoised images and Input images are compared against 6x 190 
Averaged images to determine 3D PSNR and SSIM along with metabolic metrics. Scale 191 
bar = 25 μm. 192 

PSNR and SSIM improvements are standard metrics of image visual quality and have 193 

been used in other studies focused on denoising biomedical images as an indicator of 194 

model success33,34,36,37. We aimed to assess whether images restored by models that 195 

yield optimized PSNR and SSIM values result in accurate recovery of metabolic metrics 196 

(Figure 2). For evaluation of model architecture, loss function, and signal type, only 197 

results from models trained on NAD(P)H data from tissues of known benign status were 198 

included.  199 

Table 1: Summary of all parameters explored during training and optimization of the 200 
final model (highlighted in bold). Results shown below are focused on the optimized 201 
model, but all combinations were trained and evaluated. 202 

Model 
Architecture CARE RCAN SRGAN   

Loss Functions MAE / L1 MSE / L2 SSIM + L2 SSIM + 
FFL 

SSIM + 
R2 

Signal Pre-
processing 
Method 

Wavelet 
Transform None    

Training Data 
Format 

Healthy 
Data Only 

Healthy and 
Diseased (Mix)     

Training Data 
Type 

NAD(P)H 
Data FAD Data    

 203 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2023. ; https://doi.org/10.1101/2023.06.07.544033doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.07.544033
http://creativecommons.org/licenses/by-nd/4.0/


Leading denoising model architectures were selected for evaluation based on a 204 

comprehensive literature search. CARE, RCAN, and SRGAN (Figure 1) models were 205 

trained as described in Methods: Deep Learning Model Description and Deep Learning 206 

Performance Benchmark. A representative OS from a HSIL biopsy is shown in Figure 207 

3a. Results shown were generated by models trained using an SSIM + Mean Squared 208 

Error (MSE or L2) loss function. A summary of all parameters used to generate the 209 

figures and tables are listed in Table 2. 210 

 211 

Figure 2: β and RR metrics are extracted from each OS (See Materials and Methods: 212 
Morphological and Functional Metrics for greater detail). Depth-dependent trends 213 
across the multiple cell layers of the cervical squamous epithelium are assessed for 214 
input images (RAW 1X), denoised images (Restored), and six-frame averaged, ground 215 
truth images (GT 6X). Measurements of mean values and corresponding variability 216 
across all depths are shown as a dashed line and shaded region in the mitochondrial 217 
clustering, β, and RR (FAD/(NAD(P)H+FAD)) panels for the GT 6X image. The 218 
distribution of RR values for each OS is used to extract the interquartile range (IQR), 219 
representing the range of values within the 25% and 75% of the RR distributions and 220 
providing an assessment of intra-field RR heterogeneity. IQR variability is a metric of 221 
inter-field (depth-dependent) RR heterogeneity. 222 
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Prior to denoising, standard image quality metrics were calculated for input (RAW 1X) 223 

images by comparing the RAW 1X images to ground truth (GT 6X) images. PSNR and 224 

SSIM values were calculated using the GT 6X image as a reference and RAW 1X or 225 

denoised images as the distorted image38. Across all images, FAD image PSNR was 226 

greater than NAD(P)H image PSNR (Table 3), even though FAD images featured lower 227 

cytoplasmic signal compared to NAD(P)H images (Figure 3a). During PSNR calculation, 228 

the reduced signal intensity led to smaller differences between RAW 1X and GT 6X 229 

images and yielded a greater observed PSNR value. This observation was also 230 

consistent with results from other studies36.  SSIM values were consistent between 231 

NAD(P)H and FAD images (Table 3). Corruption of the GT 6X images for both channels 232 

by noise was expected to have similar effects on structural similarity and calculated 233 

SSIM values. 234 

Table 2: Summary of parameters used to generate Figures 3-6 and Table 3-6. 235 
Parameters are bolded when all combinations from Table 1 are used. 236 

 Model 
Architecture 

Loss 
Functions 

Pre-
Processing 

Method 

Training 
Data 

Format 

Training 
Data 
Type 

Figure 3 / Table 3 All SSIM + L2 
Loss None Healthy 

Only NAD(P)H 

Figure 4 / Table 4 CARE SSIM + R2 All Healthy 
Only NAD(P)H 

Figure 5 / Table 5 CARE SSIM +R2 Wavelet 
Transform All All 

Figure 6 / Table 6 CARE 
SSIM + R2 

MSE 
MAE 

All All All 

We used 777 and 109 RAW 1X NAD(P)H OSs for training and validation of the models, 237 

respectively. Each 512 x 512 OS was patched into four-256 x 256 image patches (OSP) 238 

prior to training and validation (3108 and 436 OSPs, respectively). All three models  239 
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Figure 3: (a) A 290 x 290 μm2 field of view from a low-grade squamous intraepithelial 241 
lesion (LSIL) cervical tissue biopsy. NAD(P)H and FAD images for the same region are 242 
shown along with the corresponding denoised image from each of the three trained 243 
models (CARE, RCAN, and SRGAN). Scale bar = 50 μm. (b) A 44.2 x 44.2 μm2 field of 244 
view (white square in a) of three cells. NAD(P)H and FAD images are shown for all 245 
models and the input and ground truth images. Scale bar = 10 μm. (c) Bar plots of the 246 
coefficient of determination of all downstream metrics for images denoised by all models 247 
and RAW 1X vs. the GT 6X image. Fisher r to z transformation was used to measure 248 
significance. *p<0.05 and **p<0.01. 249 

were trained before being evaluated on an independent set of 2343 OSs (9372 OSPs). 250 

Metrics of image quality and metabolic function were calculated as described in 251 

Methods: Deep Learning Metrics and Methods: Morphological and Functional Metrics 252 

sections.  253 

CARE-generated image stacks demonstrated higher PSNR for FAD images and higher 254 

SSIM for both NAD(P)H and FAD images compared to restored-image stacks 255 

generated by RCAN and SRGAN. Across all test set images, standard metrics of image 256 

quality (Table 3) and visual inspection (Figure 3b) suggested RCAN- and CARE- 257 

denoised images had similar image quality. Across the entire test set, we observed 258 

SRGAN failed to restore cellular features within the GT 6X images (Figure 3b) and 259 

underperformed even relative to RAW 1X images in standard image quality metrics 260 

(Table 3). Perceptual loss was believed to impact content restoration in the SRGAN 261 

architecture34. Inputs for perceptual loss calculations have been shown to impact 262 

significantly SRGAN performance and were likely the cause of SRGAN’s poor recovery 263 

of image quality34. 264 

To assess restoration of metabolic activity, depth-dependent optical RR and 265 

mitochondrial clustering (β) values were calculated for the restored images, input (RAW 266 

1X) images, and ground truth (GT 6X) images (Figure 2). Pearson correlation coefficient 267 
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values were calculated between the metabolic function metrics from the GT 6X and 268 

either the RAW 1X or restored images. Statistical significance was derived from Fisher-269 

r-to-z transformation for all metrics of interest. Interestingly, analysis of the RAW 1X 270 

images led to very high correlations with metrics of RR intra- and inter-field variability 271 

compared to GT 6X images. We hypothesized that similar sources of noise in both FAD 272 

and NAD(P)H images led to this outcome since RR metrics were calculated using a 273 

ratio of FAD and NAD(P)H intensity measurements. It was for this reason that in this 274 

initial comparison, we trained models on NAD(P)H images and applied the same 275 

weights to NAD(P)H and FAD images. RCAN-generated images demonstrated 276 

statistically significant recovery of β variability (𝜎!(𝛽)) (Figure 3c). However, recovery of 277 

mean RR variability by this model was poor (Figure 3c). CARE-denoised images, 278 

overall, featured higher (albeit not statistically significant) correlations with RR metrics 279 

compared to all other models (Figure 3c). Thus, the U-net architecture of CARE was 280 

utilized for all further optimization steps.  281 

Table 3: Summary of standard metrics of image quality for RAW 1X images and 282 
denoised images generated from various model architectures. Values are reported for 283 
mean performance (± standard deviation) across all test set ROIs. 284 

 NAD(P)H Images FAD Images 

Model Name PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑ 

RAW 1X 19.2 ± 2.8 0.48 ± 0.09 23.1 ± 5.5 0.49 ± 0.13 

CARE 22.7 ± 2.9 0.63 ± 0.08 26.8 ± 3.1 0.60 ± 0.07 

RCAN 23.1 ± 1.7 0.62 ± 0.08 24.3 ± 2.0 0.51 ± 0.12 

SRGAN 19.6 ± 1.1 0.31 ± 0.08 20.2 ± 1.5 0.25 ± 0.07 

 285 

A Multiscale Image Transformation Enhances Quantification of Mitochondrial Clustering: 286 
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Although denoising improved the restoration of 𝜎!(𝛽), the mean β (𝛽̅) values of the 287 

denoised images were not well correlated with the values from the GT 6X images. We 288 

considered discrete wavelet transformation (DWT) to enhance high spatial frequency 289 

restoration necessary for β metric calculations. A single level DWT, transformed each 290 

image into four sub-band images: a coarser scale approximation and three  detail 291 

images; one horizontal, one vertical, and one diagonal39. To generate the three subband 292 

images, a basis function, called a mother wavelet, was convolved along both 293 

dimensions of the original image while an associated scaling function was used to 294 

generate the coarser approximation. During standard wavelet-based denoising, 295 

thresholds are used to remove noise from wavelet-transformed detail images, before 296 

implementing an inverse-transform to recover the restored image40,41.  The DWT has 297 

been shown to be advantageous compared to traditional low-pass filtering as the pixel-298 

by-pixel convolution with the mother wavelet preserves correlations of high frequency 299 

features. In this study, we used deep learning models trained on each of the 300 

transformed images to adaptively learn the best threshold for denoising of low 301 

frequencies (approximation) and high frequencies (details) rather than relying on 302 

arbitrary thresholding for denoising (see Supplementary Discussion S2 online)42. As 303 

with any DWT-denoising model, the selection of the correct mother wavelet played a 304 

significant role in model performance. For all models, mother wavelets from the 305 

biorthogonal, coiflets, and Daubechies families were evaluated. These mother wavelets 306 

families were selected due to their frequent use in denoising tasks43. Multiple models 307 

were trained and evaluated, with biorthogonal 1.1 yielding the highest recovery of  308 
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Figure 4: (a) A 290 x 290 μm2 field of view from a LSIL cervical tissue biopsy. NAD(P)H 310 
and FAD images for the same region are shown along with the corresponding denoised 311 
image from each signal pre-processing method utilized (Single frame image and 312 
Wavelet transformation). Scale bar = 50 μm. (b) A 44.2 x 44.2 μm2 field of view (white 313 
square in a) of three cells. NAD(P)H and FAD images are shown for all models based 314 
on the corresponding signal pre-processing method used during training and the input 315 
and ground truth images. Scale bar = 10 μm. (c) Bar plots of the coefficient of 316 
determination of all downstream metrics for images denoised by all models trained 317 
based on the corresponding signal pre-processing method used during training and 318 
RAW 1X vs. the GT 6X image. Fisher r to z transformation was used to measure 319 
significance. *p<0.05 and **p<0.01. 320 

metabolic metrics (data not shown). As such, biorthogonal 1.1 was used for all 321 

subsequent model optimization.  322 

Application of DWT before training four CARE models and inverse DWT (iDWT) after 323 

evaluation yielded images with improved FAD and NAD(P)H PSNR with slight 324 

decreases in SSIM (Figure 4a). Across the entire test set, NAD(P)H PSNR improved 325 

using WU-net while FAD PSNR and SSIM both decreased compared to CARE (Table 326 

4). All loss functions were evaluated for WU-net, with SSIM + R2 loss (results shown in  327 

Figure 4) and SSIM + FFL loss (see Supplementary Table S3 online) yielding the best 328 

overall performance. WU-net denoised NAD(P)H images extracted similar cellular 329 

structures as the CARE derived images but featured lower background signal and small 330 

fluctuations in cytoplasmic signal leading to the observed higher PSNR values (Figure 331 

5b). WU-net led to statistically significant improvements in the correlation of extracted 332 

𝜎!(𝛽) with GT 6X images relative to analysis of the RAW 1X images. Extracted 𝛽̅ 333 

values were also better correlated to GT 6X images, albeit improvements were not 334 

significant.  335 
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Comparing WU-net to an identical CARE model, we observed that WU-net achieved 336 

improved performance on β metrics while maintaining recovery of RR metrics (Figure 337 

4c). The overall improved β restoration suggested that WU-net was better able to 338 

capture true signals from noise in the high spatial frequencies found in NAD(P)H 339 

images. WU-net further preserved the relationship between NAD(P)H and FAD channel 340 

images, enabling high correlations for RR metrics. Due to the observed performance of 341 

WU-net for β metric recovery, we explored further optimization of WU-net which could 342 

be achieved by varying training datasets.  343 

Table 4: Summary of standard metrics of image quality for RAW 1X images and 344 
denoised images generated after signal pre-processing. Values are reported for mean 345 
performance (± standard deviation) across all test set ROIs. 346 

 NAD(P)H Images FAD Images 

Data 
Transform PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑ 

RAW 1X 19.2 ± 2.8 0.48 ± 0.09 23.1 ± 5.5 0.49 ± 0.13 

CARE 22.8 ± 3.0 0.63 ± 0.08 27.2 ± 3.7 0.62 ± 0.07 

Wavelet 23.6 ± 2.3 0.63 ± 0.08 26.1 ± 2.3 0.57 ± 0.09 

Selection of Training Data:  347 

Initial model development focused on a limited training set of cervical tissues of known 348 

benign status (Healthy). Benign tissue samples comprised of cell layers with consistent 349 

changes in differentiation as a function of depth among image stacks. Training on such 350 

images was expected to enable the model to learn characteristics of noise without 351 

having to account for feature heterogeneity found in pre-cancerous cervical tissue 352 

samples. We further sought to assess whether training on a data set that was expanded 353 

to include image stacks from tissues with both benign and pre-cancerous lesions (Mix)  354 
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Figure 5: (a) A 290 x 290 μm2 field of view from a LSIL cervical tissue biopsy. NAD(P)H 356 
and FAD images for the same region are shown along with the corresponding denoised 357 
image from each data type used as training data for the WU-net model (NAD(P)H 358 
Healthy Only-, NAD(P)H Mixed Diagnosis-, and FAD Mixed Diagnosis- Wavelet 359 
transformed images). All models were equally constructed with only the data type and 360 
diagnosis type varied. Scale bar = 50 μm. (b) A 44.2 x 44.2 μm2 field of view (white 361 
square in a) of three cells. NAD(P)H and FAD images are shown for all data types used 362 
during training and the input and ground truth images. Scale bar = 10 μm. (c) Bar plots 363 
of the coefficient of determination of all downstream metrics for images denoised by 364 
models trained using varying data types and diagnosis types and RAW 1X versus the 365 
GT 6X image. Fisher r to z transformation was used to measure significance. *p<0.05 366 
and **p<0.01 367 

impacted performance. In this new training set, 1657 and 554 RAW 1X NAD(P)H OSs 368 

(6628 and 2216 OSPs) were used for training and validation of the models, respectively. 369 

An independent test set of 1018 OSs (4072 OSPs) was used to evaluate model 370 

performance after training.  371 

An additional consideration we explored was the impact of the source of image contrast, 372 

i.e., NAD(P)H or FAD, used for training. NAD(P)H images featured greater structural 373 

information compared to FAD images, and they were utilized in our analysis for 374 

extraction of mitochondrial clustering-focused metabolic function metrics (Figures 3-5). 375 

Thus, training was focused on NAD(P)H images, and optimized model weights from 376 

NAD(P)H image training were used to denoise FAD images for extraction of RR-based 377 

metrics. However, since similar noise characteristics were assumed to be present in 378 

both RAW 1X NAD(P)H and FAD images, we sought to confirm that training on 379 

NAD(P)H images was optimal. Thus, we used FAD images to train WU-net models 380 

using the same hyperparameters and settings as the ones used when NAD(P)H images 381 

were used. Post-training, NAD(P)H images were denoised using the weights of the FAD 382 

image trained model to extract RR and mitochondrial clustering-based metrics.  383 
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The use of training sets with mixed diagnosis images resulted in minimal differences in 384 

the denoised images when compared to training just on healthy sample images (Figure 385 

5a). PSNR and SSIM values for images were observed to be nearly identical because 386 

of these insignificant differences (Table 5). Both models led to denoised images with 387 

consistent cell boundary and intracellular structures given the same RAW 1X images 388 

(Figure 5b) and had similar levels of restoration of downstream metrics, with the mixed 389 

diagnosis data set leading to slightly improved correlations in most cases (Figure 5c). 390 

The increase in correlation could be attributed to the large training set available for a 391 

mixture of diagnoses compared to only training on healthy data.  392 

An identical model was trained using the FAD image data from the mixed diagnosis 393 

dataset. While the denoised images from the FAD-trained model looked like those from 394 

the corresponding NAD(P)H-trained model (Figure 5a and 5b), standard metrics of 395 

image quality were slightly lower. Images denoised by the FAD-trained model 396 

demonstrated higher background signal compared to images denoised by NAD(P)H-397 

trained models (Figure 5b). However, despite FAD images lacking much of the 398 

structural and morphological information of their NAD(P)H counterparts, their use in 399 

training led to further improvements in β metric recovery and mean RR restoration from 400 

the RAW 1X images (Figure 5c). We hypothesize high frequency information in the FAD 401 

images originated primarily from noise in comparison to NAD(P)H images. As a result of 402 

the high frequency information containing primarily noise, the model improved in its’ 403 

learning of noise characteristics in the images, enabling improved denoising and 404 

recovery of metrics of metabolic activity (Figure 5c). 405 
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Table 5: Summary of standard metrics of image quality for RAW 1X images and 406 
denoised images generated after training models on various data types. Values are 407 
reported for mean performance (± standard deviation) across all test set ROIs. 408 

 NAD(P)H Images FAD Images 

Training Data PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑ 

RAW 1X 19.2 ± 2.8 0.48 ± 0.09 23.1 ± 5.5 0.49 ± 0.13 

Healthy Only 23.6 ± 2.3 0.63 ± 0.08 26.1 ± 2.3 0.57 ± 0.09 

Mixed 
NAD(P)H 23.4 ± 2.5 0.63 ± 0.08 26.3 ± 3.1 0.57 ± 0.08 

Mixed FAD 23.5 ± 2.6 0.62 ± 0.09 24.8 ± 3.7 0.52 ± 0.08 

Summary of Final Model Performance:  409 

Across all models, image quality improved after denoising based on PSNR and SSIM 410 

(Table 6). Based on standard image quality metrics of all models discussed in this 411 

study, it could be assumed that models trained using NAD(P)H images and the CARE 412 

architecture with standard loss functions of MAE and MSE would perform best at the 413 

restoration of downstream metrics (Figure 6a). CARE models trained with MAE and 414 

MSE loss functions both demonstrated statistically significant improvement in denoised 415 

FAD and NAD(P)H image PSNR and SSIM (p<0.001). Comparatively, Wavelet-416 

transformed- FAD images denoised using WU-net with SSIM + R2 loss had poorer 417 

standard metric performance (Table 6). Images restored with this model did not achieve 418 

statistically significant improvement of FAD image PSNR and SSIM (Figure 6a). As 419 

PSNR and SSIM are commonly used as indicators of model performance, it was 420 

expected that improvements in these metrics would correspond to better recovery of 421 

downstream metabolic metrics. However, the WU-net model trained on mixed 422 

diagnosis, FAD images led to denoised images whose extracted metabolic metrics were  423 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2023. ; https://doi.org/10.1101/2023.06.07.544033doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.07.544033
http://creativecommons.org/licenses/by-nd/4.0/


Table 6: Summary of standard metrics of image quality (PSNR and SSIM) for RAW 1X 424 
images, standard implementation of CARE, and the best performing model from this 425 
study. Values are reported for mean performance (± standard deviation). 426 

 NAD(P)H Images FAD Images 

Final Model PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑ 

RAW 1X 19.2 ± 2.8 0.48 ± 0.09 23.1 ± 5.5 0.49 ± 0.13 

Healthy NAD(P)H 
CARE MAE 23.6 ± 2.8 0.63 ± 0.08 26.9 ± 2.7 0.59 ± 0.08 

Healthy NAD(P)H 
CARE MSE 23.7 ± 2.6 0.64 ± 0.08 26.8 ± 2.7 0.59 ± 0.08 

Mixed FAD CARE 
SSIM + R2 

Wavelet Transform 
23.5 ± 2.6 0.62 ± 0.09 24.8 ± 3.7 0.52 ± 0.08 

consistently correlated with the metrics extracted from GT 6X images (Figure 6b). The 427 

final correlations of the models shown in Figure 6 are reported in Table 7.  428 

Discussion 429 

Tissue morphological and functional metrics extracted from label-free, 2PM images 430 

could provide significant clinical utility for disease diagnosis25. Neural networks will likely 431 

play a critical role in enabling accurate extraction of such metrics from images that are 432 

likely to be acquired in an in vivo imaging setting. Previous studies by multiple groups 433 

have demonstrated deep learning-based denoising models can be used to improve the 434 

PSNR and SSIM of fluorescence images acquired using 2PM33,35,36. Here, we 435 

demonstrated PSNR and SSIM, while relevant in the assessment of image quality, were 436 

not representative of functional metric recovery needed for clinical utility (Figure 6).  437 

Different algorithms have been reported for denoising of fluorescence images, however, 438 

only Shen et al. (2022) have reported a network used for denoising of label-free  439 
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 440 

Figure 6: (a) Box and whisker plots of PSNR and SSIM of 40 test set ROIs. Denoised 441 
images demonstrated an improvement in standard metrics of image quality. (b) Bar 442 
plots of the coefficient of determination of all downstream metrics for images denoised 443 
by models trained using various data types, loss functions, and diagnosis types versus 444 
the GT 6X image. A one-way ANOVA with Tukey Kramer post-hoc test was used to 445 
measure significance of PSNR and SSIM. Fisher r to z transformation was used to 446 
measure significance of improvement in metabolic metric correlations *p<0.05, 447 
**p<0.01, and ***p<0.001. 448 
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autofluorescence images36. In this study, a modified enhanced SRGAN model was used 449 

to denoise ex-vivo, multi-modal label-free images of human ovarian cancer tissue 450 

sections36. The trained GAN demonstrated an ~4.5 dB improvement in PSNR and 79% 451 

improvement in SSIM after denoising36. In comparison, we demonstrated ~4.3 dB and 452 

~2.7 dB improvement in PSNR and ~30% and 6% improvement in SSIM for NAD(P)H 453 

and FAD images, respectively (Figure 6a). While improvement in image PSNR and 454 

SSIM were lower, RAW 1X and Denoised images in this study have higher PSNR and 455 

SSIM for all images suggesting differences in enhancement are due to limits in image 456 

improvement and not a lack of network performance (Table 6). 457 

Table 7: Correlation values of models in Figure 6. Fisher r to z transformation was used 458 
to measure significance. **p<0.01 459 

 Downstream Metrics 

Final Model Mean 
RR ↑ 

Mean 
β ↑ 

Mean 
RR IQR 

↑ 
σ2(Mean 

RR) ↑ 
σ2(Mean β) 

↑ 
σ2(Mean 
RR IQR) 

↑ 

RAW 1X 0.71 0.40 0.87 0.84 0.33 0.57 

Healthy NAD(P)H 
CARE MAE 0.82 0.57 0.85 0.89 0.78** 0.70 

Healthy NAD(P)H 
CARE MSE 0.87 0.53 0.84 0.84 0.81** 0.66 

Mixed FAD CARE 
SSIM + R2 

Wavelet Transform 
0.96** 0.68 0.87 0.84 0.90** 0.70 

We further observed that GAN models did not perform well on our dataset. GANs aim to 460 

emulate characteristics of high SNR images in low SNR images through an adversarial 461 

training process34. To improve image quality, GANs learn the manifold of high SNR data 462 

which is assumed to be composed of images that have similar image quality metrics44. 463 

Thus, it is important for image quality to be consistent across all high SNR images. 464 
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High-SNR images from a single depth in a thin OS, like those used to train the 465 

enhanced SRGAN model in Shen et al. (2022), have similar image quality for all ground 466 

truth images leading to improved GAN performance36. In our study, bulk tissues were 467 

imaged at multiple depths leading to inconsistent image quality in our ground truth 468 

images as SNR is known to change as a function of depth. As such, we hypothesized 469 

the GAN model implemented in this study failed to learn the manifold of high SNR 470 

images and improve our images whereas the enhanced SRGAN model implemented by 471 

Shen et al. (2022) succeeded.  472 

While multiple studies demonstrate models capable of improving PSNR and SSIM, 473 

assessment of morphofunctional metrics of metabolic activity after denoising has not 474 

been examined previously33–37. Here, we calculate restored image PSNR and SSIM 475 

along with metabolic metric recovery and observe that higher PSNR and SSIM values 476 

did not ensure the greatest restoration of RR and β metrics (Figure 6). While PSNR and 477 

SSIM values between models are observed to be within <5% of each other (Table 3-5), 478 

many studies indicate maximum improvement of PSNR and SSIM values as indicators 479 

of model performance33–37. In this study, we observe that models with optimal PSNR 480 

and SSIM values did not yield the greatest recovery of metabolic metrics. Altogether, 481 

PSNR and SSIM are not well suited for assessment of model performance on label-free 482 

2PM images, necessitating further validation using metrics of metabolic activity. 483 

Application of denoising algorithms on label-free 2PM datasets to date have been 484 

limited by the lack of available large clinical datasets36,45. Deep learning models have 485 

shown promise with small datasets (Shen et al. (2022) used only 24 paired images) in 486 

image restoration; however, larger datasets are needed for consistent reconstruction of 487 
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high-SNR images36,44. Here we presented a denoising network trained on a larger 488 

training set of 1657 OSs (6628 OSPs) and evaluated on an independent test set of 489 

1018 OSs (4072 OSPs).  490 

Using CARE, we observed improvements in image quality based on standard metrics 491 

(Table 3). However, the pre-packaged, standard models showed poor recovery of β 492 

metrics. Custom-loss functions improved metabolic metric recovery by penalizing 493 

models for both failing to generate similar images and reducing pixel correlation (see 494 

Supplementary Table S2 online). More interestingly, we observed the use of DWT to 495 

separate the frequency information in an image before training independent models 496 

(WU-net) produces images that had high metabolic metric correlations with GT 6X 497 

metrics (Figure 4c). By training on independent frequency-band images, the models 498 

were forced to learn the noise characteristics of different frequency bands without 499 

convolving the bands42.  500 

A key advantage of WU-net, in comparison to identically trained (non-wavelet) U-nets, 501 

was the denoising of higher frequencies where noise was expected to be dominant. 502 

Denoising of high frequency noise led to enhanced recovery of β metrics as WU-net 503 

was more consistent in reducing noise in these frequencies (See Supplementary 504 

Discussion S3 and Supplementary Fig. S3 online). WU-net led to a statistically 505 

significant decrease in high frequencies compared to a comparable CARE model (See 506 

Supplementary Fig. S3 online). Further, the incorporation of SSIM + R2 as a loss 507 

function promoted the models to restore similar frequencies from the GT 6X image in 508 

the denoised image while minimizing the loss of correlation between pixels.  509 
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Further, we observed that models trained on FAD images outperform their NAD(P)H 510 

counterparts (Figure 5c). To explain this phenomenon, we examined the correlation of 511 

optical RR metrics between RAW 1X images and GT 6X images. RR metrics from RAW 512 

1X images correlated well with RR metrics from GT 6X images, suggesting that the 513 

noise characteristics in FAD and NAD(P)H images are similar. However, as the FAD 514 

images contain less signal compared to their NAD(P)H paired images, high-frequency 515 

contributions are mostly noise in the RAW 1X FAD images.  Thus, training on FAD 516 

images likely improved the model’s learning of noise characteristics. This led to 517 

improvement in downstream metric recovery and translation of model weights to 518 

NAD(P)H images. 519 

WU-net with a custom loss (SSIM + R2) function and training on FAD data 520 

demonstrates improved restoration of most metrics of metabolic activity from label-free, 521 

2PM images (Table 7); however, further improvements in the restoration of 	𝛽̅ are 522 

desired. One potential method of improving 𝛽̅ restoration would be to design a loss 523 

function that minimizes the differences in the power spectral density maps of paired 524 

images that are used for β calculation. A challenge of such a method would be the 525 

computational time required for generating these maps22,24,25. Future studies may 526 

examine simpler predictors of mitochondrial clustering using a modified GAN network, 527 

where the discriminator network will estimate β from the input images and optimize the 528 

generator to achieve accurate β metric recovery.  529 

In this study, we specifically focused on restoration of morphological and functional 530 

metrics from label-free, 2PM images of human cervical tissue, relying on a single 531 

denoising algorithm. Future studies will examine the application of the trained denoising 532 
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model and model architecture on datasets acquired from different microscope systems, 533 

objective lenses, and tissue types. Validation of the model on these datasets would 534 

support the broad use of WU-net for denoising label-free 2PM images. Further, 535 

successful implementation of pre-trained models on other datasets would reduce the 536 

need for large clinical datasets36,45. As the model advances, improvements in ground 537 

truth data collection are needed. Ground truth data used in this study contain noise and 538 

therefore are not truly representative of mitochondrial signal. Alternative techniques for 539 

image acquisition such as slower line scan speed could be utilized to improve ground 540 

truth image quality. 541 

In summary, we demonstrated that maximizing standard metrics of image quality 542 

(PSNR and SSIM) did not necessarily lead to improved recovery of functional tissue 543 

metrics, especially ones associated with mitochondrial organization (Table 7). Using 544 

WU-net with a custom loss function, we demonstrated improved recovery of functional 545 

metrics of metabolic activity, even though PSNR and SSIM metrics were not optimal. 546 

Results from this study support the application of deep learning algorithms for the 547 

restoration of RR and β metrics from low-SNR 2PM images. As more data becomes 548 

available both from varying microscope systems, objective lenses, and tissue types, a 549 

more robust algorithm could be generated for rapid image collection and classification, 550 

eventually improving patient health during in vivo image collection. 551 

Materials and Methods 552 

Sample Acquisition 553 
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All activities pertaining to cervical tissue biopsy handling were done in accordance with 554 

approved Tufts Health Sciences IRB protocol #10283. Patients over the age of 18 with a 555 

recent LSIL or HSIL pap smear diagnosis undergoing colposcopy or loop electrosurgical 556 

excision procedure (LEEP) were recruited to the study. Informed consent was acquired 557 

from all study subjects before participation. During the routine procedure, a second 558 

biopsy from a colposcopically abnormal region of the cervix was taken and placed in a 559 

custom-built tissue carrier containing keratinocyte serum-free media (KSFM; Lonza). 560 

Biopsies were transported via personal vehicle to the Tufts Advanced Microscopy 561 

Imaging Center (TAMIC) for imaging. All imaging was conducted within 4 hours post-562 

biopsy. Immediately after imaging, biopsies were fixed in 10% neutral buffered formalin. 563 

Biopsies were returned within 5 business days to the Tufts Medical Center Department 564 

of Pathology for standard histopathological diagnosis. 565 

Patients over the age of 18 undergoing hysterectomies for benign gynecological 566 

disease were also recruited to the study as healthy controls. The only difference 567 

between healthy and precancerous biopsy acquisition was in the actual biopsy excision. 568 

Healthy biopsies were sampled from the resected cervix by a pathologist after 569 

macroscopic inspection to rule out abnormalities. 570 

Deep Learning Dataset Details  571 

A total of 151 ROIs (image stacks) were collected from 54 patients. The training and 572 

validation set was comprised of 100 ROIs featuring 5-50 OSs per ROI. 75% of the ROIs 573 

were randomly selected for training and the remaining 25% were set aside as a 574 

validation set (1657 training OSs and 554 validation OSs). The test set featured 51 575 

ROIs (with 10-50 OSs per ROI) and was excluded from all training (1018 OSs). For k-576 
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fold validation, training and validation sets were shuffled for up to five seeds to ensure 577 

robustness of denoising on a constant test set (see Supplementary Fig. S6 online). The 578 

dataset features images from tissues with three diagnoses: Benign, LSIL, and HSIL. 579 

The test set was composed of 25 Benign ROIs (49.02%), 14 LSIL ROIs (27.45%), and 580 

12 HSIL ROIs (23.53%). The training and validation sets were composed of 55 Benign 581 

ROIs (54.45%), 25 LSIL ROIs (24.75%), and 21 HSIL ROIs (20.79%). Based on 582 

training/validation splitting seed, these values could range from 52-57.3% Benign, 25.3-583 

26.7% LSIL, and 18.7-22.7% HSIL in the training set and 48-64% Benign, 20-24% LSIL, 584 

and 16-28% HSIL in the validation set. An alternative training scheme was initially 585 

attempted. In this scheme, only benign ROIs were used in training with 112 ROIs of 586 

mixed diagnosis being used in the test set and 39 benign ROIs being used for training. 587 

The training set was later modified as it became evident that training on a mixture of 588 

diagnoses resulted in superior restoration of downstream metrics (Figure 5). 589 

Optical Instrumentation and Image Acquisition 590 

Images were collected using a commercially available Leica SP8 inverted microscope 591 

system equipped with an Insight fs laser. Tissue biopsies were placed epithelial side 592 

down onto a glass bottom dish and light was delivered using an epi-illumination 593 

scheme. Tissue biopsies were excited with 755 nm and 860 nm light. Two hybrid 594 

photodetectors (HyDs) were set up to collect 460 ± 25 and 525 ± 25 nm light. Two 595 

photomultiplier tubes (PMTs) were set up to collect 430 ± 12 and 624 ± 20 nm light. 596 

Light was delivered and collected using a 40X/1.1 NA water-immersion objective lens 597 

(290 x 290-μm field-of-view). Images were collected through the full thickness of the 598 
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epithelium using a depth-sampling rate of 4-μm. Six individual frames were collected at 599 

each depth. On average, 3 – 5 ROIs were sampled from each biopsy. 600 

Morphological and Functional Metrics 601 

Images were calibrated and processed as described in detail previously to extract 602 

images that represented NAD(P)H and FAD TPEF intensity fluctuations23–25,46 . At each 603 

optical depth, NAD(P)H and FAD images were used to define a corresponding redox 604 

ratio for each pixel of the field, as: 605 

 𝑂𝑝𝑡𝑖𝑐𝑎𝑙	𝑅𝑒𝑑𝑜𝑥	𝑅𝑎𝑡𝑖𝑜	(𝑅𝑅) =
𝐹𝐴𝐷

𝐹𝐴𝐷 + 𝑁𝐴𝐷(𝑃)𝐻 (1) 

From the RR distributions for each OS, we calculated the mean RR and the interquartile 606 

range (IQR) as metrics of the overall oxidation-reduction tissue state and the 607 

corresponding heterogeneity, respectively. The mean and sample variance (variability) 608 

of the mean OS RR and the OS RR IQR for all images in an epithelial stack were 609 

calculated to assess the depth-dependence of these metrics.  610 

NAD(P)H images were analyzed as described previously 17,18,21,22 using a Fourier based 611 

approach to extract a value for the parameter β, as a metric of the level of mitochondrial 612 

fragmentation and networking, which also depends highly on the metabolic activity of 613 

the tissue. Briefly, an inverse power law was fit to the power spectral density (PSD) of 614 

the 2D Fourier transform of the cytoplasmic NAD(P)H intensity fluctuation images, as: 615 

 𝑅(𝑘) = 𝐴𝑘"# (2) 
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where R is the fit to the PSD, k is the magnitude of the spatial frequency, β is the power 616 

law exponent, and A is a constant. The mean and sample variance of β were assessed 617 

as a function of depth for each image stack. 618 

Deep Learning Model Description 619 

The basic structure of the CARE network has been described extensively (See 620 

Supplementary Fig. S4a online)33. The network was implemented through Keras and 621 

TensorFlow47,48. A copy of the CSBDeep repository 622 

(https://github.com/CSBDeep/CSBDeep) was locally imported into an anaconda 623 

environment49. The network was configured to take a 256 x 256 x 1 input image and 624 

generate a 256 x 256 x 1 denoised image. A 40-gigabyte Nvidia Tesla A100 GPU card 625 

was used for all training and evaluation. Typically, a 1 x 512 x 512 x z-depths image 626 

stack was split into 4 x 256 x 256 x z-depths image patches before training. A starting 627 

learning rate of 1 x 10-5 was used with an Adam optimizer50. Training was allowed to 628 

continue for 300 epochs with a scheduler reducing the learning rate when network 629 

performance stagnated for more than 20 epochs. Loss functions were varied to find the 630 

optimal function to improve downstream analysis performance. Loss functions used 631 

include SSIM Loss, R2 Loss, Focal Frequency Loss (FFL), MAE (L1) Loss, MSE (L2) 632 

Loss, and combined losses such as a combined SSIM + L2, SSIM + FFL, SSIM + R2 633 

Loss51. Six down-sampling and up-sampling layers were generated with the first layer 634 

expanding the single-channel images to thirty-two channels. Residual connections were 635 

used to preserve encoded information from each down sampled layer and pass it 636 

forward to the decoder layers (see Supplementary Figure S4 online). 637 
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For the WU-net architecture, four CARE networks, one per subband, were built as 638 

described above. A DWT was used to decompose a 1 x 256 x 256 OSP into 1 x 128 x 639 

128 x 4 frequency band images. The four frequency bands would then be individually 640 

input to each CARE network for denoising. After denoising, an IDWT was used to 641 

reconstruct the 1 x 256 x 256 OSP (for greater detail see Supplementary Fig. S5 642 

online). 643 

Training time typically varied from one to two hours, with an evaluation time of 644 

approximately twenty-four seconds per image stack. For all trained CARE networks, 3D 645 

SSIM, PSNR, Mean β, β Variability, Mean RR, RR Variability, RR IQR, RR IQR 646 

Variability were analyzed. All final metrics were assessed using a single frame input, 647 

denoised, and ground truth (6 frame averages) images with built-in and custom 648 

MATLAB (MathWorks; Natick, MA) functions.  649 

Statistics 650 

For Figures 3-5c and Table 7, Fisher r-to-z transformation was used to convert 651 

Pearson’s correlation coefficients (r) to zr values52. This transform was calculated using 652 

Equation 3:  653 

 𝑧$ =
1
2 ln A

1 + 𝑟
1 − 𝑟D 

(3) 

The zr value, unlike r, belongs to a normal distribution, allowing for the calculation of a Z-654 

statistic to determine confidence intervals. To calculate the test Z-statistic for 655 

comparison of zr values to determine significance, Equation 4 was used:  656 
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𝑍%&'% =

𝑧$( − 𝑧$!

FG 1
𝑛( − 3	

+ 1
𝑛! − 3

J
 

(4) 

where n1 and n2 are the sample size of r1 and r2, respectively53. The Ztest value was then 657 

compared to the critical Z-values to determine significance and p-values using a two-658 

tailed distribution. 659 

Data Availability 660 

The raw datasets used for model generation in the current study along with the trained 661 

model weights are available from the corresponding author on reasonable request. 662 

Codes for network training and prediction are publicly available at 663 

https://gitlab.tufts.edu/georgakoudi-lab/Denoising2PImages  664 
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