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Abstract

Motivation: Transcriptomic long-read (LR) sequencing is an increasingly cost-effective
technology for probing various RNA features. Numerous tools have been developed to
tackle various transcriptomic sequencing tasks (e.g. isoform and gene fusion detection).
However, the lack of abundant gold standard datasets hinders the benchmarking of such
tools. Therefore, simulation of LR sequencing is an important and practical alternative
to enable the assessment of these tools. While the existing LR simulators aim to imitate
the sequencing machine noise and to target specific library protocols, they lack some
important library preparation steps (e.g. PCR) and are difficult to modify to new and
changing library preparation techniques (e.g. single-cell LRs).

Results: We present TKSM, a modular and scalable LR simulator. TKSM is
designed so that each RNA modification step is targeted explicitly by a software module.
This allows the user to assemble a simulation pipeline of any combination of TKSM
modules to emulate the sequencing design the user is targeting. Additionally, the
input/output of all the core modules of TKSM follow the same simple format (Molecule
Description Format) allowing the user to easily extend TKSM with new modules
targeting new library preparation steps.

Availability: TKSM is available as an open source software at
https://github.com/vpc-ccg/tksm.

1 Introduction 1

Long-read (LR) sequencing technologies have become a cost-effective alternative to 2

short-read (SR) sequencing for many genomic and transcriptomic sequencing 3

tasks [Amarasinghe et al., 2020a]. LRs are shown to be useful for many transcriptomic 4

tasks such as alternative isoform detection [Kovaka et al., 2019, Tang et al., 2020, Orabi 5

et al., 2023], gene fusion detection [Liu et al., 2020, Karaoglanoglu et al., 2022], 6

transcript-level expression analysis [Hu et al., 2021], or single-cell transcriptomic 7

analysis [Tian et al., 2021, Ebrahimi et al., 2022, You et al., 2023]. 8

However, due to the nature of LR sequencing as an emerging technology, there are 9

very few well established benchmark datasets or gold standard datasets to assess 10
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transcriptomic LR bioinformatics tools. Such bioinformatics tools targeting these tasks 11

require realistic simulations in order to assess their accuracy and performance. This 12

includes the the simulation’s ability to explicitly target specific library or cellular 13

processes such as single-cell barcoding and UMI tagging, PCR, or molecule truncation. 14

Existing LR simulators typically focus on simulating the sequencing process, i.e. the 15

point of contact of sequencing platform with the RNA/DNA molecule [Wick, 2019, Li 16

et al., 2020, Ono et al., 2022]. Some have extensions focusing on specific sequencing 17

libraries such as transcriptomic, plasmid, or metagenomic samples [Hafezqorani et al., 18

2020, Yang et al., 2023]. However, existing tools are not designed with modularity in 19

mind; they cannot be easily modified to address changes in the library preparation 20

protocols such as adding a barcode tag or simulating the PCR process. 21

We describe TKSM, a software that simulates realistic transcriptomic long-read 22

datasets. TKSM modular design allows to target a wide range of library/cell processes. 23

The power of TKSM lays in two key aspects: i) the ease with which its simulation 24

pipeline can be modified to cater to the user’s sequencing designs, ii) and its high 25

performance in terms of time and memory use. TKSM is open source, accessible via 26

GitHub. 27

2 Methods 28

TKSM is both flexible, in order that it can simulate a wide variety of datasets, and is 29

extendable. It is composed of several independent modules, each representing a cellular 30

(e.g. polyadenylation) or a library preparation (e.g. PCR) process that modifies a 31

nucleic acid molecule. This design allows the user to simulate different sequencing 32

protocols by using TKSM’s modules in various arrangements, imitating the different 33

steps in the desired sequencing protocol. Additionally, this modular design allows TKSM 34

to be easily extendable with future modules targeting library and cellular processes that 35

we currently do not have modules for. To enable this modularity, we designed TKSM’s 36

modules to take and generate files in the same format, that we call Molecule Description 37

Format (MDF). An MDF file is a human-readable file that describes molecules by 38

listing for each molecule its genomic intervals alongside any sequence-level modifications 39

to these intervals (e.g. substitutions). The rationale for using a human-readable format 40

is that the user can manually modify the intermediate files for their needs or write their 41

own scripts that can generate or modify these MDF files. We expand on the details of 42

MDF files in Section S1.4 of the Supplementary Materials. The only exceptions to this 43

design pattern are the entry module which generates the initial set of molecules from a 44

transcript abundance profile and the exit module which generates the reads obtained by 45

simulating the sequencing of the given molecules. 46

Each of TKSM’s modules can be run as a separate process (tksm <module name>). 47

We also provide as part of TKSM a Snakemake [Mölder et al., 2021] script which can be 48

configured by the user to specify a wide range of simulation experiments and run them 49

all as a single command. Additionally, to optimize the computation time, we take 50

advantage of Snakemake’s piped input/output feature to allow modules to start running 51

the moment they receive any input from a previous module, rather than having to wait 52

for the preceding module to terminate. 53

TKSM can use real sequencing datasets to parameterize the behaviour of its 54

modules, or alternatively, these parameters can be specified manually by the user. For 55

example, TKSM contains pre-processing modules to compute the expression profile of 56

transcripts from a given real sample which is then used to generate the molecules in the 57

initial MDF file, whose sequencing according to a chosen protocol will be simulated by 58

the next modules. 59
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2.1 TKSM modules 60

TKSM contains three classes of modules, defined by features of their input and output: 61

i) entry-point modules start a TKSM pipeline and output an MDF file, ii) core modules 62

take an MDF file as input and output another MDF file, and iii) exit (sequencing) 63

modules take an MDF file as input and generates FASTA/FASTQ file(s) as output. 64

Additionally, there are some preprocessing utilities in TKSM that can take a real 65

sequencing dataset and output a model parameters for some of TKSM modules. A list 66

of the implemented TKSM modules is presented in Figure 1. Additional modules and 67

utilities can be implemented and easily integrated into TKSM in order to target steps in 68

other sequencing protocols. 69

Exit 
module

Core 
module

Entry-point 
module

Utility

Flt T

Tsb

Tag

plA

Trc

PCR

SCB

Flp

Tag

Exprs 
(SC) 

PAF & 
LR → BC

TPM

Exprs

PAF

TPM

Badread

PAF

Model

KDE

PAF

Model GTF

Mrg

T

Flt
F

Seq

FASTA

Shf

Glu

KDE Build truncation model
Badread Build base-level quality and error models using Badread
Exprs Bulk or single-cell transcript abundance estimation
Tsb Generate transcripts molecules from GTF and expression data
Mrg Merge output of one or more pipelines into a single MDF
plA Add polyA tail to molecules
Trc Truncate the molecules
Tag Tag 5’ or 3’ end with specified FASTA pattern
Flt Filter on conditions; optionally output failed molecules
PCR PCR amplification
Glu Given a random chance, glue the molecule to its successor
SCB Cell barcode tagging (from tags added by Tsb module)
Flp Flip the strand of the molecules with a given probability
Shf Shuffle the molecules into a random order
Seq Sequence molecules into reads using Badread

Figure 1. Existing TKSM modules and utilities alongside their high-level descriptions.
TKSM is designed with modularity in mind; the user can specify simulation pipeline of
their choosing by chaining any number of TKSM modules including the possibility using
the same module multiple times.

Abundance estimation utility 70

The abundance estimation utility takes as input a PAF file containing the alignment 71

information of the long-reads of a real transcriptomic dataset to the transcriptome. We 72

use Minimap2 [Li, 2018] to perform this transcriptomic mapping. Similarly to 73

Trans-Nanosim [Hafezqorani et al., 2020], it computes the estimated abundance of 74

different transcripts using an Expectation-Maximization (EM) algorithm 75

implementation by Simpson [Simpson, 2018] which estimates transcript abundance from 76

multi-mapping long-reads. This utility generates the transcript counts normalized by 77

the total throughput and divided by one million (transcript per million or TPM). 78

Single cell expression. We augmented this abundance estimation method in order 79

that it can also accept cellular barcode tags, generated by tools such as 80

scTagger [Ebrahimi et al., 2022] or FLAMES [Tian et al., 2021]. This allows the 81

generation of single-cell resolution transcript expression profiles, and thus to generate 82

simulated single-cell datasets. To the best of our knowledge, TKSM is the only 83

simulator that can generate single-cell transcriptomics long-read datasets. To do that, 84

we maintain a separate count for each pair of cellular barcode and transcript. We then 85

feed these counts to the standard EM algorithm for abundance estimation. 86

Transcribing 87

The Transcribing module takes as input a gene annotation file (GTF) describing the 88

genomic intervals corresponding to the transcripts and the transcript abundance 89

estimation profile generated by TKSM Abundance estimation utility, and generates a 90

set of molecules from which sequencing reads will be simulated. The Transcribing 91
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module is an entry-point module and thus it does not take an MDF file as input and it 92

generates an MDF file as output. Given a user defined parameter N , the module 93

samples N transcripts from the GTF file according to their abundance frequencies and 94

outputs them in MDF format. Any cellular barcode information present in the 95

abundance file for a given transcript is recorded in the output MDF. 96

Gene fusions. The Transcribing module can optionally generate gene fusion 97

transcripts, for gene fusions induced by genomic structural variants. The user can 98

specify genomic breakpoints of fusion-inducing structural variations (e.g. deletion, 99

inversion or translocation); otherwise they are randomly chosen. Then, gene fusion 100

transcripts are generated randomly from the transcripts of the involved genes and their 101

expression (see details in Supplementary Material Section S1.6). As the MDF format 102

enables the representation of various combinations of genomic intervals, irrespective of 103

their chromosome or strand, and as downstream modules are indifferent to the 104

molecular content, fusion transcripts will be handled like any other molecule in any 105

subsequent TKSM modules. 106

Single-cell barcoding 107

This module adds single-cell barcode sequences to the molecules using data generated by 108

the Transcribing module. If the expression data passed to the Transcribing module was 109

generated in single-cell expression mode, the Transcribing module will add the cellular 110

barcode information of each molecule in a special tag (e.g. CB:ACTACGAAGAAACCAT) in 111

its MDF output. These cellular barcode tags are mainly used by the Single-cell 112

Barcoding module to add the barcode sequence to their respective molecules. 113

Tagging 114

The Tagging module inserts custom sequences to the simulated molecules. This enables 115

the user to add any combination of primers and/or UMI tags to the simulated 116

molecules. The Tagging module is flexible and accepts IUPAC formatted strings of 117

nucleotide codes to be appended at either the 5′ or 3′ ends of the molecules. For 118

example, tksm tagging -3 AYNN will append at the start of each molecule a random 119

tag that begins with A, followed by C or T, followed by 2 random nucleotides. 120

Filtering 121

The Filtering module takes a series of conditions on the molecule records and filters any 122

molecules that fail one or more of these conditions. The module supports conditions on 123

the length of the molecule, overlaps with genomic loci or chromosomes, and the presence 124

of specific tags (e.g. cellular barcode). This module is useful for creating different 125

pipelines for the molecules that pass the filter and those that fail it. 126

PCR 127

The PCR module duplicates the input material simulating the PCR process in a manner 128

similar to work done in Calib [Orabi et al., 2019] and Minnow [Sarkar et al., 2019]. The 129

PCR module takes as parameters the number of PCR cycles, c, the error rate per 130

duplicated base, e, and the PCR efficiency, f ∈ [0, 1]. Additionally, the PCR module 131

takes the desired number of molecules, N , to be selected from the exponentially many 132

molecules that will be present at the end of the PCR process. Conceptually, in each 133

PCR cycle, the module randomly selects a set of molecules to duplicate equal to the 134

number of input molecules multiplied by f . It then inserts random substitution errors 135

to the duplicated molecules equal to their total length multiplied by e. It then proceeds 136
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to the next cycle using the old and new sets of molecules as input. Finally, from the 137

exponentially many molecules created, the modules randomly outputs N of them. 138

The parameter N is generally a small fraction of the the number of molecules 139

present at the end of the PCR process, which is equal to M × (1 + f)c where M is the 140

number of input molecules. Therefore, creating all the PCR molecules at the same time 141

would lead to a huge memory footprint. Rather, TKSM processes each molecule 142

independently by creating a truncated duplication tree for it. Initially, the tree has a 143

single node representing the original molecule. In each PCR cycle, the module decides 144

randomly (with success rate of f) for each node in the tree if this node should be 145

expanded into a subtree. If the expansion test is successful, TKSM adds a new child to 146

the node, associated to a newly duplicated molecule obtained from its parent by 147

simulating a number of random mutations equal to the molecule length multiplied by e. 148

Then TKSM decides whether to capture (i.e. output) this newly created molecule 149

randomly with success rate equal to probability of capturing a molecule in the output: 150

N/
(
M × (1 + f)c

)
. 151

polyA tails addition 152

The polyA module appends a polyA tail to the molecules in its input MDF following a 153

normal distribution of the length of the tails with a specified mean and standard 154

deviation. To estimate these parameters from a real dataset, we use a simple script 155

described by Orabi et al. [2023] to detect the length of the polyA tails of the reads of 156

the real dataset. 157

Strand flipping 158

This module takes an MDF and randomly reverses the order of the intervals of the 159

molecules in the MDF according to a user-defined probability p. If a molecule is 160

reversed, the module then adds a tag to its intervals indicating that their sequence is 161

reversed complemented. The module is useful for simulating sequencing protocols that 162

are not strand-specific. 163

Gluing 164

The Gluing modules takes an MDF and a user specified probability p. It then processes 165

each molecule, and with probability 1− p it outputs the molecule with no modification 166

and with probability p it prepends the molecule to the next molecule. The Gluing 167

module aims to simulates the behaviour of ONT signal mis-segmentation process in 168

which sometimes the ONT software fails to segment the signal of two consecutive 169

molecules and as a result outputs their sequences as a single read. 170

Shuffling 171

This module takes an MDF and outputs its molecules in random order. To allow for 172

reduced output latency and memory consumption, the module buffers the input into a 173

dynamically allocated array with a maximum size of N (user defined with default of 174

N =∞). Once the buffer array is full, the module will randomly output one of its 175

molecules and replace it with a new incoming molecule. Once the input is exhausted, 176

the buffer array is shuffled in-place and its molecules are outputted. The smaller N is, 177

the more localized the shuffling will be. The randomized shuffling of the molecules 178

enables the user to generate a random subsample from an MDF and is necessary for 179

modules that assume a random order of the molecules such as the Gluing module. 180
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Truncating 181

This module simulates the process by which only a portion of the molecule is sequenced 182

due to truncation. Such sequence truncation is caused by library preparation artifacts 183

or, specifically in the case of ONT sequencing, by early stopping of the sequencing due 184

to pore blocking [Soneson et al., 2019, Amarasinghe et al., 2020b]. To simulate the 185

truncation of transcriptomic molecules, we use a two-dimensional kernel density 186

estimation (KDE) model to decide the truncation length with respect to the transcript 187

length, similar to Trans-Nanosim [Hafezqorani et al., 2020]. In TKSM, we use 188

Scikit-learn’s KDE implementation [Pedregosa et al., 2011]. The exact details of how 189

the KDE models are derived and the differences between our approach and that of 190

Trans-Nanosim are described in Section S1.5 of the Supplementary Material. 191

Merging 192

The Merging module is a simple module that concatenates the MDF outputs of one or 193

more other TKSM modules into a single MDF file. This module is another entry-point 194

module alongside the Transcribing module. The main use of this module is to enable 195

simulation pipelines that take as input the output of one or more simulation pipelines; 196

for example the user may use this module to build a mixed-sample simulation dataset 197

by merging the MDF output of multiple pipelines that use the Transcribing modules on 198

different samples. 199

In the piped version of TKSM, the Merging module is slightly more complicated than 200

a simple simple concatenation operation. This is because concatenating files linearly 201

and in-order can result in a deadlock when the input and output of the modules is 202

piped. To avoid such deadlock, we implemented a multi-threaded version of the Merging 203

module that assigned a CPU thread to each file, concurrently consuming the input files. 204

Sequencing 205

The Sequencing module takes an MDF and the genome reference file(s) of the simulated 206

sample and generates sequencing reads of the molecules in the MDF. The module can 207

generate perfect reads (i.e. with no base-level errors) or erroneous reads, under a given 208

error model. To generate erroneous reads we integrated some functions from the 209

Badread [Wick, 2019] long-read simulator into a multi-threaded implementation in the 210

Sequencing module. We also used Badread’s method of building a k-mer substitution 211

error and quality score model. As part of TKSM Snakemake, the user may specify to 212

train Badread models on the given real samples or to use pre-trained Badread models. 213

This allows TKSM to be easily applied to new or future long-read sequencing 214

chemistries. 215

2.2 Customizable TKSM pipelines using Snakemake 216

An important design choice for TKSM is to make it easily customizable by the user, i.e. 217

to make it easy to build a, possibly complex, simulation pipeline using the modules 218

described above. To achieve that, we packaged TKSM with Snakemake and 219

configuration scripts that can be edited by the user to add new modules or to defined 220

simulation experiments using any arrangement of TKSM modules. To define a 221

simulation pipeline, the user lists the names of required TKSM modules and specify, for 222

the modules that require model construction, the real samples to build such models on. 223

Additionally, using the Merging module, the user may build complex pipelines that are 224

composed of different linear pipelines. An example of the configuration script is 225

presented in Supplementary Material Section S1. 226
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3 Results 227

A B

plA SCBTag 
(UMI)

Tsb Trc

Exprs 
(SC)

PAF & 
LR → BC

TPM

GTF

KDE

PAF

Model

Tag 
(Illum)

Mrg

T

F

Flt (has 
barcode?) Flp Tag 

(ONT)PCR Seq

FASTA

Tsb plATrc Flp Tag 
(ONT)

GTF

Seq

FASTA

KDE

Model

PAF

Exprs

TPM

PAF

Single-cell hybrid RNA-seqBulk RNA-seq

Figure 2. TKSM simulation pipelines. A) Typical RNA-seq simulation pipeline that
imitates Trans-Nanosim’s workflow. B) Single-cell long-read simulation pipeline. The
pipeline makes use of the Filtering and Merging modules to add the short-read Illumina
adapter and 10x Genomics cellular barcodes only to molecules that have a tag indicating
that they should have a cellular barcode.

To illustrate TKSM and assess its performances, we designed three simulation 228

pipelines to emulate examples of standard transcriptomic sequencing protocols. 229

Specifically, we present simulations of a standard bulk RNA sequencing experiment, a 230

hybrid long-short read single-cell RNA sequencing (scRNA-seq) experiment, and an 231

RNA sequencing experiment similar to the bulk RNA sequencing experiment but with 232

100 random gene fusion events added. The Snakemake configuration files that specify 233

these simulation pipelines are presented in Listings S2, S3, and S4 of the Supplementary 234

Material. We use Matplotlib Hunter [2007] and Numpy [Harris et al., 2020] to generate 235

many of our results. 236

In the standard bulk RNA-seq experiment, we primarily compare against 237

Trans-Nanosim [Hafezqorani et al., 2020] and try to conform to its pipeline design using 238

TKSM modules. For both the bulk and gene fusion experiments, we use an RNA-seq 239

sample generated from the MCF7 cell line by Chen et al. [2021] (direct RNA, replicate 240

1, run 2). We first accessed the SG-NEx data on 2020-06-17 via 241

https://registry.opendata.aws/sgnex/. For the scRNA-seq experiment, we used an 242

in-house dataset, named N1, first described by Ebrahimi et al. [2022]. N1 follows the 243

short-long single-cell hybrid protocol described previously in the literature [Singh et al., 244

2019, Tian et al., 2021, Gupta et al., 2018]. In this manuscript, we use a random 245

subsample of N1 with ∼1M long-reads. The three TKSM pipelines are illustrated in 246

Figure 2 and Figure S8 of the Supplementary Materials. 247

Using these experiments, our goal is to assess TKSM on multiple metrics: i) the 248

similarity of the simulated data to input real data on measures such as transcript 249

expression, molecule sequence truncation and single cell barcode detection rates, and ii) 250

time and memory footprint of various steps, iii) the ability to generate gene fusion 251

events that can be detected by standard gene fusion tools. The results for the gene 252

fusion experiment are presented in Section S1.7 of the Supplementary Material. Note 253

that all the results presented in this section are reproducible using Snakemake scripts 254

provided on the TKSM’s GitHub repository. 255

3.1 Data characteristics 256

Our goal in this section is to demonstrate that TKSM is capable of producing simulated 257

sequencing data that has realistic characteristic in terms of its biological features (e.g. 258

isoform expression) and technological artifacts (e.g. sequencing error). To assess these 259

characteristics, we compare the simulated datasets to the input real dataset they were 260

based on (MCF7 for bulk RNA-seq and N1 for scRNA-seq). 261
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Transcript expression profiling 262

We used LIQA [Hu et al., 2021] to compute the expression profiles of the different 263

simulated and real bulk RNA-seq datasets. We additionally generated transcript 264

expression profiles using Minimap2, trans-Nanosim, and TKSM. For Minimap2, we used 265

the number of primary alignment of the long-reads to the transcripts as transcript 266

counts. For trans-Nanosim and TKSM, we use the read analysis.py quantify and 267

tksm abundance commands, respectively, to generate transcript counts. We then 268

normalize all the generated counts to be transcript-per-million (TPM) counts by 269

dividing each transcript count by the total expression and multiplying by one million. 270

For the scRNA-seq dataset, we used TKSM single-cell mode of the abundance 271

estimation utility. We then combine the TPM counts of each gene since the number of 272

unique single-cell barcode and transcript pairs is very large compared to the the number 273

of generated reads. The TPM counts using these different methods on the bulk RNA-seq 274

datasets are plotted in Figures 3 and S1 and for the scRNA-seq dataset in Figure 4. 275

On the bulk RNA-seq datasets, TKSM and Trans-Nanosim have high concordance 276

with the input real dataset with correlation coefficients of 0.71 and 0.71, respectively. 277

Both tools have small root mean square error (RMSE) rates of 196 and 161, respectively. 278

On the scRNA-seq dataset, TKSM has a lower correlation coefficient of 0.46 compared 279

to its performance on the RNA-seq dataset. However, a reduction in the correlation 280

coefficient for the scRNA-seq dataset is expected since it includes over 367K 281

gene/barcode data points compared and thus has a lot more opportunity for variation 282

from the input counts. 283

Figure 3. Transcript expression (TPM) of bulk RNA-seq datasets computed by LIQA.

Truncation 284

To measure the truncation level of the sequencing pipeline, we mapped the long-reads of 285

the different datasets to the transcriptome using Minimap2. For each primary 286

alignment, we compute the read mapping length (query end− query start) which we 287

use as a proxy for the post-truncation sequencing length. The mapping lengths are 288

plotted as bar graphs in Figure 5 and Figure S2 of the Supplementary Material. Both 289

Trans-Nanosim and TKSM generate very similar read length distribution compared to 290

the input datasets. 291
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Figure 4. Hybrid scRNA-seq using TKSM single-cell transcript expression utility. Each
point represents the expression sum of the transcripts of the same gene and cellular
barcode.
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Figure 5. Mapped length of the reads in the bulk RNA-seq datasets vs the length of
the transcript of their primary alignment using Minimap2.

PolyA tail lengths 292

To compute the length of the observed polyA tails on the long-reads, we use a simple 293

poly-A detection method described by Orabi et al. [2023]. The distribution of the 294

polyA tails and lengths is plotted in Figure 6 for the bulk RNA-seq dataset and in 295
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Figure S3 of the Supplementary Material. The real N1 scRNA-seq dataset seem to have 296

a bi-modal distribution (polyA tails < 10bp and ∼ 25bp) which are not both captured 297

by the TKSM simulated dataset. However, the distribution observed for the TKSM 298

dataset is closer to the real data distribution compared to Trans-Nanosim. 299
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nanosim_bulk (µ=8.67, =5.20)

Figure 6. Poly-A length of the reads in the bulk RNA-seq datasets as computed by
TKSM. TO SUPP. MAT.

Base-level sequencing errors 300

To assess the base-level sequencing error profile of the datasets, we aligned the reads to 301

the transcriptome using Minimap2 with -c flag to generate the alignment CIGAR 302

strings. We then compute, as a percent of the mapped read length, the match, 303

substitution, insertion, and deletion rates. The distributions of the sequencing errors are 304

plotted in Figure S4 of the Supplementary Materials both the bulk RNA-seq and 305

scRNA-seq datasets. 306

Single-cell barcode profile 307

To assess the distribution of edit error on the cellular barcodes present on the 308

long-reads, we performed pair-wise alignment of each whitelist cellular barcode to each 309

long-read using Edlib [Šošić and Šikić, 2017] Python package. Instead of aligning to the 310

whole long-read, we only considered the ranges [25, 75) and [−75,−25) of the long-reads 311

to reduce the running time. The cellular barcodes whitelist was generated by running 312

scTagger [Ebrahimi et al., 2022] on the full long-read dataset. We considered each 313

cellular barcode and its reverse complement as independent barcodes. Only the 314

alignments minimizing the edit distance, d, are kept from all the computed pair-wise 315

alignments. If only one such alignment exists, then we consider it a unique alignment. 316
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Otherwise we consider the alignments to be ambiguous. The TKSM generated dataset 317

has a realistic distribution of cellular barcode matching in terms of the ambiguity of 318

assigning each long-read to a barcode and the number of errors detected on the barcode 319

as shown in Figure 7. 320

We also wanted to assess the distribution of where the Illumina short-read adapter is 321

located on the the long-reads. To compute these loci, we ran scTagger on the 322

scRNA-seq long-read datasets. We observe that the simulated dataset generated by 323

TKSM has a similar distribution to the real dataset in terms of the loci of the SR 324

adapter on the LRs and in terms of the number of LRs that scTagger is unable to detect 325

a SR adapter on. This is demonstrated in Figure S5 of the Supplementary Materials. 326
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Figure 7. Brute-force detection of the cellular barcodes on a random sample of 50,000
long-reads from each dataset.

3.2 Time and memory use 327

We used GNU Time to monitor the memory and CPU use of the tested tools. The 328

overall results for the bulk RNA-seq and the scRNA-seq experiments are presented in 329

Table 1. The detailed results for the different steps of all these experiments are 330

presented in Tables S1 and S2 of the Supplementary Materials. For both tools, we 331

separate the preprocessing steps (e.g. mapping, sequence error profiling, cell barcode 332

detection) from the core steps (e.g. molecule generation, sequencing). For TKSM, we 333

run its core processes twice: once in regular (i.e. blocking) mode and once in piped 334

mode. 335

As we observe in Table 1, TKSM finishes its preprocessing and core processing in, 336

respectively, %36 and %37 less time than Trans-Nanosim despite generating the same 337

amount of data and running similar pipelines. For the core processes, TKSM runs in 338

27% or 25% less time, respectively, on bulk RNA-seq and scRNA-seq datasets, when it 339

runs in piped mode compared to its regular mode and without any increase in memory 340

usage. 341

4 Conclusion 342

TKSM is a modular and high-performing transcriptomic LR sequencing simulator. Its 343

modular design enables the user to construct a large verity of sequencing experiments 344
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Experiment Tool
Time (min) Memory

(GB)Real User

Bulk
RNA

Nanosim
preprocess 46.2 603.6 36.2

core 8.7 224.0 0.8

TKSM
preprocess 28.9 461.5 9.4

core 5.5 86.0 3.5
piped core 4.0 90.1 3.5

scRNA TKSM
preprocess 17.8 227.3 12.5

core 16.2 283.2 3.5
piped core 12.2 340.4 3.5

Table 1. Time and memory usage as reported by GNU Time (v1.9) for bulk RNA-seq
and scRNA-seq datasets. All tools were allowed to run with up to 32 CPUs. For regular
(i.e. blocking) TKSM runs, reported real and user times are the sum of individual
processes and memory is the maximum memory use by any individual process. For
piped TKSM runs, the reported time and memory values are captured by GNU Time
for the whole pipeline treated as a single process.

with minimal effort. TKSM’s standardized input and output for its modules allows us 345

and the users of TKSM to add new modules that target existing and future library 346

preparation techniques that TKSM currently does not target. For example, it is easy to 347

envision an alternative entry-point module to the Transcribing module that generates 348

nucleic acid molecules from DNA fragmentation while still making use of the rest of 349

TKSM modules. TKSM also performs well in terms of generating realistic datasets with 350

characteristics matching the real datasets it is imitating. Additionally, TKSM is 351

engineered with efficient CPU and memory use in mind and its performance on those 352

metrics is excellent. 353
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