Three-dimensional anatomy of the early Eocene †Whitephippus (Teleostei: Lampriformes) documents parallel conquests of the pelagic environment by multiple teleost lineages

Donald Davesne¹,²*, James V. Andrews³,⁴*, Hermione T. Beckett²,⁵, Sam Giles⁶, Matt Friedman³,⁴

¹Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
²Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
³Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1382, USA
⁴Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 48109-1382, USA
⁵Department of Biology, King’s High School for Girls, Warwick, UK
⁶School of Geography Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK

*DD and JVA contributed equally to this work.
Corresponding authors: Donald Davesne (donald.davesne@gmail.com), James V. Andrews (jamesva@umich.edu)

ORCID numbers: Donald Davesne https://orcid.org/0000-0002-4775-2360, James V. Andrews https://orcid.org/0000-0001-7093-1335, Hermione T. Beckett https://orcid.org/0000-0003-4475-021X, Sam Giles https://orcid.org/0000-0001-9267-4392, Matt Friedman https://orcid.org/0000-0002-0114-7384

ABSTRACT
The early Eocene fossil assemblage of the London Clay (Southeastern England) is a key window to the early Palaeogene diversification of teleost fishes in the open ocean. Despite their three-dimensional preservation that offers unique insight into skeletal anatomy, the London Clay fossils are still poorly described for the most part. †Whitephippus tamensis is a fossil teleost from this assemblage, known by several well-preserved specimens. Based on a complete description of the known material, including hidden structures (braincase, hyoid and branchial arches) revealed through 3D microtomography, we reinterpret †Whitephippus as an early member of the teleost group Lampriformes. More specifically, the anatomy of †Whitephippus indicates that it is likely a member of the so-called ‘pelagic clade’ including modern opahs and oarfishes. This redescription of †Whitephippus provides the earliest definitive evidence of lampriforms conquering the pelagic environment, alongside numerous other teleost lineages.

Key words: Eocene, London Clay, Teleostei, Acanthomorpha, Lampriformes, computed tomography
INTRODUCTION

Actinopterygians (ray-finned fishes) are the primary vertebrate component of open-ocean ecosystems. The Cretaceous-Palaeogene extinction event shaped this modern diversity by selectively affecting large predatory pelagic actinopterygian taxa, such as pachycormiforms, ichthyodectiforms, pachyrhizodontids and large auropiforms (Cavin, 2001; Friedman, 2009; Friedman & Sallan, 2012). Their ecological equivalents in the modern ocean are mostly spiny-rayed teleosts (acanthomorphs) such as scombrids (e.g., tunas), xiphioids (billfishes) and carangoids (e.g., jacks and dolphinfishes). Although they all represent distinct evolutionary lineages, these groups of fast-swimming predators share gross similarities like streamlined bodies and falcate caudal fins.

Evidence from the fossil record (Friedman, 2010; Friedman & Sallan, 2012; Guinot & Cavin, 2016) and node-dated molecular studies (Alfaro et al., 2018, 2009; Ghezelayagh et al., 2022; Harrington et al., 2016; Miya et al., 2013) suggest that acanthomorph lineage diversity and body shape disparity exploded in the early Palaeogene. Pelagic taxa in particular have been proposed to represent a case of parallel adaptive radiations, triggered by the conquest of ecological niches left vacant by the Cretaceous-Palaeogene extinction event (Friedman, 2010; Miya et al., 2013). The most prominent groups of pelagic predatory acanthomorphs have their earliest appearances clustered in a relatively short time interval in the late Palaeocene-early Eocene (Fierstine, 2006; Monsch & Bannikov, 2011; Santini & Carnevale, 2015; Santini, Carnevale, & Sorenson, 2013). A relatively low number of fossil sites document teleost diversity in the open ocean during this key time interval (Argyriou & Davesne, 2021; Friedman, Beckett, Close, & Johanson, 2016).

The London Clay of Southeastern England is one of these fossil localities. This Ypresian (early Eocene, c. 52-49 Ma) assemblage preserves a very diverse marine teleost fauna with very few equivalents in the early Palaeogene in terms of taxonomic richness (Casier, 1966; Friedman et al., 2016). Its composition closely matches that of modern open ocean faunas, with taxa like scombrids (Beckett & Friedman, 2016; Monsch, 2005), xiphioids (Monsch, 2005), luvarids (Bannikov & Tyler, 1995), megalopids (Forey, 1973), trichiuroids (Beckett, Giles, Johanson, & Friedman, 2018) and carangids (Casier, 1966; Friedman et al., 2016; Monsch, 2005). Remarkably, teleosts from the London Clay are preserved in three dimensions, with minimal deformation and fine internal and external anatomical details in life position. These unique taphonomic conditions offer the possibility to study phylogenetically informative anatomical structures that would usually be concealed in flattened fossils, such as the braincase and branchial arches (e.g., Beckett & Friedman 2016; Close et al. 2016; Friedman et al. 2016; Beckett et al. 2018). The diversity of the London Clay fauna has been noted as early as the 19th century (e.g., Agassiz 1845), described by Woodward (1901) and later revised in details by Casier (1966). However, some of the taxa referred to in these publications are probably misclassified (Patterson, 1993), and the phylogenetic positions of most are poorly constrained (Friedman et al., 2016).

†Whitephippus is one such case. This genus, known by several specimens (Figs. 1-4), has been attributed to the extant family Ephippidae (spadefishes) by Woodward (1901) and Casier (1966). However, some authors (Bonde, 1995; Carnevale, 2004; Friedman et al., 2016) have proposed that †Whitephippus should be classified with Lampriformes instead. Lampriformes are a clade of marine pelagic acanthomorphs that include such distinctive taxa as the endothermic opah (Lampriidae) and the giant elongated oarfish (Regalecidae). Lampriform fossil taxa are relatively numerous, documenting the extreme morphological changes underwent in the early evolution of
the group (Bannikov, 1999, 2014; Davesne, 2017; Davesne et al., 2014). Significantly, †Whitephippus is the only fossil lampriform known by complete and three-dimensionally preserved skulls (Figs. 1-2). Using computed microtomography (µCT-scan), we reevaluate the anatomy and phylogenetic position of †Whitephippus, giving a unique perspective of the evolution of lampriforms in the context of the origin of modern pelagic actinopterygian faunas.

Figure 1. †Whitephippus tamensis holotype. NHMUK PV P 6479, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Photographs of specimen in (A) left and (B) right lateral views. Arrows indicate anatomical anterior. Scale bars represent 1 cm.

Figure 2. †Whitephippus tamensis. NHMUK PV P 35057, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Photographs of specimen in (A) left and (B) right lateral views. Arrows indicate anatomical anterior. Scale bars represent 1 cm.
Figure 3. †Whitephippus tamensis. NMS 1864.6.9. London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Photographs of specimen in (A) left and (B) right lateral views. Arrows indicate anatomical anterior. Scale bars represent 1 cm.

Figure 4. †Whitephippus tamensis. NHMUK PV 41384, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Neurocranium in posterior view. Scale bar represents 1 cm.

MATERIAL AND METHODS
Specimen imaging
Computed tomography. NHMUK fossil specimens were imaged using the Nikon XT H 225 ST industrial CT scanner at the Natural History Museum, London. Reconstructed datasets were segmented and visualized in Mimics v 19.0 (Materialise, Belgium). A fossil specimen from NMS and a recent specimen from UMMZ were imaged using the
same model of instrument in the CTEES facility at the University of Michigan. Osteological figures were generated in Blender v 2.91 (blender.org) from surface (.ply) files. The surface files of segmented elements are available on MorphoSource (URL to be provided after acceptance).

Institutional abbreviations

Dagger symbol
The obelus (†) indicates extinct taxa, following Patterson & Rosen (1977).

Comparative material:
Fossil:
† Whitephippus tamensis, NHMUK PV P 6479, holotype, almost complete cranium with parts of the pectoral girdle and fin (µCT-scanned);
† Whitephippus tamensis, NHMUK PV 41384, paratype, isolated posterior portion of the neurocranium;
† Whitephippus cf. tamensis, NMS 1864.6.9, posterior portion of the cranium, vertebrae and pectoral girdle (µCT-scanned);
† Whitephippus cf. tamensis, NHMUK PV OR 35057, almost complete cranium (µCT-scanned);

Extant:
Lampris guttatus, AMNHN 79669 SD, 21720 SD, MNHN.ZA.1883-1795, ZMUC 74 (dry osteological preparations; specific attribution follows that accompanying these materials, and we acknowledge that these might belong to other species of Lampris; Underkoffler et al. 2018); Metavelifer multiradiatus, AMNH 214663 SD, 219280 SD, 91808 SD, 91800 SD and 91798 SD (dry osteological preparations); Velifer hypselopterus, MNHN.IC.1982.0025, UMMZ 220456 (preserved in alcohol and µCT-scanned).

SYSTEMATIC PALAEONTOLOGY

TELEOSTEI Müller, 1845
ACANTHOMORPHA Rosen, 1973
Order LAMPRIFORMES Goodrich, 1909
Genus †WHITEPHIPPUS Casier, 1966

† Whitephippus tamensis Casier, 1966

1901 †Laparus alticeps Woodward, p. 596
1966 †Whitephippus tamensis Casier, p. 237-243, figs. 52-54, pl. 31

Holotype. NHMUK PV P 6479.
Paratype. NHMUK PV 41384.
Type locality. Isle of Sheppey, Kent, England, United Kingdom.

Figure 5. Skull of † *Whitephippus tamensis*. NHMUK PV P 35057, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Rendered μCT models showing the (A) left and (B) right sides of the skull. Skeletal regions highlighted as follows: neurocranium (yellow), suspensorium (dark blue), jaws (platinum), opercles (sienna), ventral hyoid (blue), gill skeleton (light blue), pectoral girdle (orange), vertebral column (light yellow). Arrows indicate anatomical anterior. Scale bar represents 1 cm.

Figure 6. Skull, vertebrae, and pectoral girdle of † *Whitephippus tamensis*. NMS 1864.6.9, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Rendered μCT models showing the (A) left and (B) right sides of the specimen. Skeletal regions highlighted as follows: neurocranium (yellow), suspensorium (dark blue), jaws (platinum), opercles (sienna), ventral hyoid (blue), gill skeleton (light blue), pectoral girdle (orange), vertebral column (light yellow). Arrows indicate anatomical anterior. Scale bar represents 1 cm.
Description

Neurocranium

No specimen of †Whitephippus preserves a complete neurocranium. NHMUK PV 41384 represents an isolated neurocranium that is incomplete and largely free of surrounding matrix (Fig. 4). The neurocranium is incompletely exposed in NMS 1864.6.9, NHMUK PV P6479 and NHMUK PV 35057 (Figs. 1-3), but µCT reveals considerable detail of concealed anatomy in the latter. Our description of the neurocranium draws on all four specimens.

Anteriorly, the neurocranium includes a mesethmoid and paired lateral ethmoids that are tightly bound to one another (Figs. 5, 7). The junction between these bones is clear dorsally, where they are separated by a conspicuous vertical suture; they cannot be distinguished from one another more ventrally. The lateral ethmoid defines the anterior margin of the orbit, and its anterior and posterior surface are concave. The foramen for the olfactory nerve pierces the lateral ethmoid in its ventral half, near to the bone’s junction with the mesethmoid. Viewed anteriorly, the outer margins of the lateral ethmoids are strongly excavated at the level of this canal. The anterolateral corner of the lateral ethmoid articulates with the lacrimal (infraorbital 1).

The dorsal surface of the mesethmoid forms a trough (Fig. 7). The mesethmoid extends slightly posterior to the lateral ethmoids when viewed laterally. The broad dorsal groove of the mesethmoid forms the floor of an open chamber, defined laterally by the broken edge of the frontals. Viewed dorsally, this chamber is 'V' shaped, with its apex pointing posteriorly. The incomplete frontals are folded dorsally over their anterior third, such that their exterior surfaces face laterally. We interpret this arrangement as representing a broken frontal 'vault' that would have opened anteriorly but been enclosed laterally and dorsally. This vault accommodates the greatly elongated ascending processes of the premaxillae in extant lampriforms.

The divisions between the frontals and other bones are not prominent externally, and our µCT data are insufficient to resolve most of the sutures between ossifications of the neurocranium (Figs. 7-8). We therefore describe the gross morphology of the neurocranium, drawing attention to divisions between bones when these are visible. Posterior to the incomplete frontal vault, the roof of the skull is complete, and forms the broken base of a probable sagittal crest that extends along the posterior half of the frontal. Posterior to the frontal vault, the roof of the neurocranium is elevated relative to the ethmoid region, giving it a dome-shape appearance in lateral view. The dorsolateral surface of the posterior half of the neurocranium is dominated by the supratemporal fossa. This shallow, triangular depression extends anteriorly to the level of mid-orbit. A fenestra lies in the centre of the supratemporal fossa. Sutures are visible extending from this fenestra. These define the edges of the bones contributing to the supratemporal fossa: the epiotic posterodorsally, the pterotic posterolaterally, the parietal anterodorsally, and the sphenotic anterolaterally. The dorsolateral surface of the epiotic bears a flattened facet for the posttemporal. A low ridge of bone defines the ventrolateral margin of the supratemporal fossa and separates it from the dilatator fossa. The narrow, oval-shaped hyomandibular facet lies ventral to the dilatator fossa and straddles the division between the pterotic and the sphenotic.

Viewed posteriorly, the braincase has a roughly triangular profile dorsal to the foramen magnum (Figs. 4, 7-8). The foramen magnum communicates dorsally with another opening in the back of the skull through a narrow gap between median extensions of the exoccipitals, forming an inverted keyhole-shaped opening. The supraoccipital extends posterovertrally to contribute to the dorsal fringe of this opening, but does not separate the exoccipitals themselves or contribute to the
foramen magnum. The occipital condyle is located approximately at the level of the upper half of the orbit, placing it midway between the base of the neurocranium as defined by the parasphenoid and the dorsal peak of the supraoccipital as preserved. The occipital condyle is broadest dorsally, with large, kidney-shaped facets of the posterior margins of the exoccipitals that extend dorsolaterally to partially define the lateral margins of the foramen magnum. These exoccipital condyles meet on the midline immediately ventral to the foramen magnum, but they are separated ventrally by the basioccipital condyle. This condyle has an angular dorsal margin and rounded ventral margin in posterior view and is roughly the size of a single exoccipital condyle.

Figure 7. Neurocranium of †Whitephippus tamensis. NHMUK PV P 35057, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Rendered μCT models showing the (A) lateral, (B) dorsal, (C) ventral, (D) anterior, and (E) posterior views. Abbreviations: boc, basioccipital; exo, exoccipital; fm, foramen magnum; fr, frontal; let, lateral ethmoid; met, mesethmoid; obs, orbitosphenoid; pas, parasphenoid; soc, supraoccipital. Arrows indicate anatomical anterior. Scale bar represents 1 cm.

Divisions between bones contributing to the ventrolateral walls of the otic region are not clear in available material. In posterior view, these walls appear straight, joining ventrally in an acute angle that gives the braincase ventral to the occipital condyle the profile of an inverted triangle. In lateral view, the ventral margin of the otic and occipital regions is strongly sloped, defining an angle of roughly 45° with a line extending from
the main axis of the parasphenoid in the orbital region. The posterior branch of the parasphenoid approaches—but does not contact—the basioccipital condyle. A narrow notch is present in the posterior margin of the parasphenoid. It extends anteriorly roughly one-third to one-half the length of the posterior stalk of the bone. The anterior and posterior portions of the parasphenoid join at a conspicuous angle at the level of the anterior margin of the myodome. The parasphenoid bears two sets of laterodorsal processes in this region, roughly perpendicular with the shaft of the parasphenoid. The more anterior of these is long and narrow, and extends along the anterior margin of the prootic, bracing the slender, rod-like lateral commissure. The posterior projection is shorter, but anteroposteriorly thickened, and is notched by a large foramen in the neurocranium for the internal carotid artery. Anterior to these processes, the parasphenoid widens in ventral view. There is a gap between the parasphenoid and the ethmoid region. We assume this would have been bridged by the vomer in life, but this bone is not preserved in available material.

Figure 8. Neurocranium of †Whitephippus tamensis, NMS 1864.6.9, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Rendered µCT models showing the (A) lateral, (B) dorsal, (C) ventral, (D) anterior, and (E) posterior views. Abbreviations: boc, basioccipital; bsp, basisphenoid; exo, exoccipital; fm, foramen magnum; fr, frontal; obs, orbitosphenoid; pas, parasphenoid; soc, supraoccipital. Arrows indicate anatomical anterior. Scale bar represents 1 cm.
The median basisphenoid is ‘T’ shaped in anterior view, and completely divides the optic foramen from the myodome. The ventral process of the basisphenoid is long, slender, and directed slightly posteriorly. The ventral portions of the basisphenoid in the NHMUK material are not clearly shown in µCT data, but NMS 1864.6.9 clearly shows a pedicel on the midline of the parasphenoid, reaching dorsally to nearly contact the basisphenoid. These bones were most likely separated by cartilage in life.

The optic foramen is large and situated on the posteroventral roof of the interorbital region. It is delimited posteroventrally by the basisphenoid, laterally by the paired pterosphenoids, and anteriorly by the median orbitosphenoid. In ventral view, the orbitosphenoid is wider than long. Its posterior margin bears a deep notch where the bone delimits the optic foramen, and its anterior margin is more subtly excavated. The orbitosphenoid carries a pronounced keel along its ventral midline, which is directed at a subtle angle anteriorly and has a rounded ventral extremity.

Figure 9. Neurocranium of *Velifer hypselopterus*. UMMZ 220456. Rendered µCT models showing the (A) lateral, (B) dorsal, (C) ventral, (D) anterior, and (E) posterior views. Abbreviations: **boc**, basioccipital; **bsp**, basisphenoid; **exo**, exoccipital; **fm**, foramen magnum; **fr**, frontal; **let**, lateral ethmoid; **met**, mesethmoid; **obs**, orbitosphenoid; **pas**, parasphenoid; **soc**, supraoccipital; **v**, vomer. Arrows indicate anatomical anterior. Scale bar represents 1 cm.
Infraorbitals, lacrimal and sclerotic ring

The lacrimal (infraorbital 1) is preserved in both NHMUK PV P6479 and PV 35057, but is highly fragmentary in the latter (Figs. 2, 5). It is a plate-like bone with a long anteroposterior axis. The bone is deepest posteriorly, and tapers to a rounded anterior apex. A process extends from the dorsal margin of the bone and bears a concave medial facet that articulates with the lateral ethmoid. The more posterior infraorbitals are not preserved.

Well-developed sclerotic ossicles are present in NHMUK PV P6479, where they are preserved as three fragments (Fig. 1).

Figure 10. Neurocranium of Lampris guttatus. AMNH 79669SD. Photographs showing the (A) dorsal, (B) ventral, (C) lateral, and (D) posterior views. Abbreviations: boc, basioccipital; bsp, basisphenoid; exo, exoccipital; fm, foramen magnum; fr, frontal; let, lateral ethmoid; met, mesethmoid; obs, orbitosphenoid; pas, paraphenoid; soc, supraoccipital; v, vomer. Arrows indicate anatomical anterior. Scale bars represent 1 cm.
Jaws

The jaws are partially preserved in NHMUK PV P6479 and PV 35057 (Figs. 1-2, 5). The anguloarticular is high and triangular shaped, being much narrower near its articulation with the quadrate than at its contact with the dentary. A posteriorly oriented prong extends from the bone ventral to the glenoid. A narrow gap separates the dentary from the anguloarticular. There is no autogenous retroarticular ossification. The dentary is incomplete in all available specimens. Its posterior portion shows a straight dorsal margin, with no visible teeth.

The upper jaws are partially preserved in NHMUK PV P6479 but are absent altogether in PV 35057. They appear to be much smaller than the high and deep lower jaws. The maxilla is toothless and anteroposteriorly elongate. Its posterior extremity is slightly rounded and it curves dorsally at its anterior end.

The ascending processes of the premaxillae are preserved in NHMUK PV P6479. They are closely associated together throughout their length. A bulbous pyritic mass lies between the ascending processes and protrudes anteriorly. This may correspond to a mineralized rostral cartilage, as Casier (1966) proposed. Apart from the ascending processes, no other parts of the premaxillae are visible due to a combination of breakage and concealment by overlying matrix and the maxillae.

Suspensorium

A complete suspensorium is preserved in NHMUK PV 35057 (Fig. 11). Only its ventral portion is visible externally, but concealed regions are clear in the µCT reconstructions. The hyomandibula is very long and its ventral shaft is especially well developed. Its articular head is relatively narrow and directed slightly anteriorly at the level of its contact with the neurocranium. This zone of contact consists of a single condyle, slightly pinched laterally in its middle. Posteroventral to the articular head, a short condyle contacts the opercular bone, projecting slightly ventrally. A conspicuous lateral ridge extends from the articular head near or along the posterior edge of the ventral
shaft of the hyomandibula. This ridge is approximately two-thirds the length of the entire ventral shaft and delimits an anteriorly-oriented fossa bounded by the anterior lamina of the ventral shaft of the hyomandibula. A narrow posterior lamina is restricted to the region immediately ventral to the opercular condyle of the hyomandibula and is completely covered by the preopercle. Anterior and ventral to the ridge, the surface of the hyomandibula is flat and faces laterally. Overall, the ventral shaft of the hyomandibula is strap-shaped, with a gentle convexity to its posterior margin. The ventral shaft is widest at the level of the dorsal articulation of the metapterygoid and terminates distally at a blunt tip, although this may be a taphonomic break.

Figure 12. Left suspensorium of *Velifer hypselopterus*, UMMZ 220456. Rendered μCT models showing the left suspensorium in (A) lateral and (B) mesial views. Abbreviations: *ecp*, ectopterygoid; *enp*, endopterygoid; *hym*, hyomandibula; *mpt*, metapterygoid; *pal*, palatine; *q*, quadrate; *sym*, symplectic. Arrows indicate anatomical anterior. Scale bar represents 1 cm.

The metapterygoid is a laminar bone that is roughly triangular in shape. The entire posterior edge of the bone contacts the anterior margin of the ventral shaft of the hyomandibula. The metapterygoid bears a posteriorly directed, spur-like process that extends from the posterodorsal corner of the bone, tracing the anterior margin of the hyomandibula. The surface of the metapterygoid faces laterally, but folds slightly along its dorsal edge.

The quadrate is subtriangular, with its tip forming a ventrally projecting condyle that articulates with the glenoid fossa of the anguloarticular. The posteroventral edge of the bone bears a thickening aligned with the quadrate condyle. The short symplectic rests in a notch that is aligned with this thickened ridge at the posterodorsal corner of the quadrate. The anterior margin of the quadrate bears a faint, laterally directed furrow at its contact with the ectopterygoid and anguloarticular. The dorsal margin of the bone comprises two edges, the more anterior of which forms a margin with the ectopterygoid, while the more posterior traces the profile of the anteroventral margin of the metapterygoid. In NHMUK PV 35057, the left quadrate is in life position, but the right one is displaced and upturned.
The endopterygoid is triradiate, with anterior, posterior and ventrolateral rami. The posterior and ventrolateral branches of the bone embrace the anterior angle of the metapterygoid. The flat surface of the posterior ramus shows a strong dorsomedial orientation. The anterior ramus bears a longitudinal ridge at its dorsal margin, presumably to strengthen the articulation with the ectopterygoid.

The anterior margin of the suspensorium is defined by the ectopterygoid and palatine. The ectopterygoid is slightly crescentic. Its posteroventral ramus is longer, narrower and more tapered than its anterior ramus; the two rami form a moderately concave ventral margin. The dorsal margin is more strongly pronounced and the mesial margin of the bone is slightly concave. The palatine is subrectangular. It contacts the ectopterygoid and endopterygoid posteriorly, and the braincase at the level of the lateral ethmoids anteriorly. There is no distinct palatine prong marking the articulation between the suspensorium and the upper jaw. However, the connection between the palatine and the braincase is marked by an anterodorsally directed articular head.

Figure 13. Left suspensorium of Lampris guttatus. AMNH 79669SD. Photographs showing the left suspensorium in (A) lateral and (B) mesial views. Abbreviations: ecp, ectopterygoid; enp, endopterygoid; hym, hyomandibula; iop, interopercle; mpt, metapterygoid; op, opercle; pal, palatine; pop, preopercle; q, quadrate; sop, subopercle; sym, symplectic. Arrows indicate anatomical anterior. Scale bars represent 1 cm.

Opercular series
Apart from the isolated braincase of NHMUK PV 41384, all specimens of †Whitehippus preserve portions of the opercle and preopercle (Figs. 1-3, 5-6). Portions of the interopercle are preserved in NHMUK PV P6479, where the bone is visible along the posteroventral margin of the preopercle. The opercle is deep, nearly reaching the ventral margin of the hyomandibular shaft. The anterior margin of the opercle is nearly vertical, while the dorsal margin is gently angled with its dorsal apex located at the posterior margin of the bone. The posterior margin of the bone is gently convex, and the opercle terminates ventrally in a blunt tip. The facet for the hyomandibula is located at the junction of the dorsal and anterior margins of the opercle and is produced as an anterodorsally extending projection in lateral view.
The apex of the dorsal limb of the preopercle is located immediately ventral to the articulation between the opercle and hyomandibula. The preopercle is crescent shaped, and the dorsal limb is substantially longer than the ventral one. At their extremities, these two limbs are oriented approximately perpendicular to one another.

Figure 14. Left ventral hyoid of †_Whitephippus tamensis_. NHMUK PV P 35057, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Rendered μCT models showing the (A) lateral and (B) mesial views of the hypohyals, ceratohyals, and interhyal. Abbreviations: _cha_, anterior ceratohyal; _chp_, posterior ceratohyal; _hhd_, dorsal hypohyal; _hhv_, ventral hypohyal; _ih_, interhyal. Arrows indicate anatomical anterior. Scale bar represents 1 cm. Urohyal not imaged.

Figure 15. Left ventral hyoid of _Velifer hypselopterus_. UMMZ 220456. Rendered μCT model showing the anterior axial elements in right lateral view. Abbreviations: _br_, branchiostegals; _cha_, anterior ceratohyal; _chp_, posterior ceratohyal; _hhd_, dorsal hypohyal; _hhv_, ventral hypohyal; _ih_, interhyal. Arrow indicates anatomical anterior. Scale bar represents 1 cm. Urohyal not imaged.
Branchial skeleton and ventral hyoid arch

The ventral hyoid arch and branchial skeleton are concealed in all specimens but are visible in tomograms of NHMUK PV 35057 (Figs. 14, 17). The anterior and posterior ceratohyals are similar in size, and join one another along a subvertical junction. There is no obvious suturing between the two bones, and together they form a lozenge-shaped structure. There is no visible foramen in the anterior ceratohyal. The posterior ceratohyal is an obtuse trapezoid in lateral view and bears a fossa on its posterodorsal margin onto which the interhyal articulates. The interhyal is hooked, such that the larger ventral margin is in contact with the posterior ceratohyal—with the most dorsal point being at the midsection of the element—before curving laterally to form a small articular head with the symplectic. The anterior ceratohyal tapers anteriorly, forming a well-developed articular head situated at the tip of a short process. This condyle articulates with a deep cavity in the posterior margin of the ventral hypohyal. This posterior excavation gives the ventral hypohyal a hook-shaped profile in lateral view. Dorsally, the ventral hypohyal articulates with a nodular, dorsal hypohyal. There is no suturing between these bones, and the displacement of the dorsal hypohyals suggests the articulation between the hypohyals was cartilaginous. The shape of the posterior margin of the dorsal hypohyal corresponds to the anterodorsal margin of the anterior ceratohyal. This, combined with the presence of a
clear joint between the hypohyals and ceratohyals, suggests the potential for flexion within the ventral hyoid arch.

A combination of incomplete ossification and displacement of bones makes interpretation of the branchial skeleton complicated (Fig. 17), so our description is abbreviated. Five rod-like ceratobranchials are preserved. The first four ceratobranchials are relatively robust and grooved ventrally, while the fifth ceratobranchial is conspicuously more gracile, and consists of a slender rod without a groove. There are three basibranchials.

Figure 18. Vertebral elements of †*Whitephippus tamensis* in left lateral view. NMS 1864.6.9, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Rendered μCT model showing the vertebral elements in right lateral view. Abbreviations: *c*, centra; *en*, epineurals; *ns*, neural spines; *r*, ribs; *sn*, supraneural. Arrow indicates anatomical anterior. Scale bar represents 1 cm.

Figure 19. Anterior axial skeleton of *Velifer hypselopterus* in left lateral view. UMMZ 220456. Rendered μCT model showing the anterior axial elements in right lateral view. Abbreviations: *c*, centra; *dfs*, dorsal fin spines; *en*, epineurals; *ns*, neural spines; *pr*, proximal radials of the dorsal fin; *r*, ribs; *s*, scales; *sn*, supraneural. Arrow indicates anatomical anterior. Scale bar represents 1 cm.
Vertebral column and dorsal fin

Six complete vertebrae are visible in tomograms of NMS 1864.6.9 (Fig. 18). The neural spines form the neural arches ventrally and are unpaired distally. The neural spines are straight and angled posteriorly. There are a series of epineurals contacting the neural spines on the first two vertebrae, and the base of the neural arches on vertebrae 3–6. The preserved ribs are slender and are visibly angled. Their articular heads directly contact the vertebrae at the level of their centra. The vertebral centra bear no parapophyses or haemal arches. A straight, rod-like bone lays at an oblique angle anterior to the most anterior neural spine. We interpret it as the ventral extremity of a single supraneural. No other supraneural is visible—though it is unclear if this is taphonomic or biological. No dorsal-fin pterygiophores are visible, presumably because their ventral extremities were dorsal to the area that is preserved in the specimen.

Figure 20. Anterior axial skeleton of Lampris guttatus in left lateral view. AMNH 79669SD. Photograph showing the anterior axial elements in right lateral view. Abbreviations: c, centra; en, epineurals; ns, neural spines; r, ribs. Arrow indicates anatomical anterior. Scale bar represents 1 cm.

Figure 21. Pectoral girdle of †Whitephippus tamensis. NMS 1864.6.9, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Rendered µCT models showing the (A) lateral and (B) mesial views of the left dorsal pectoral girdle elements, and the (C) lateral and (D) mesial views of the right ventral pectoral girdle elements. Abbreviations: cl, cleithrum; pcl, postcleithrum; pt, posttemporal; scl, supracleithrum. Arrows indicate anatomical anterior. Scale bars represent 1 cm.

Pectoral girdle and fin

NMS 1864.6.9 best preserves the dorsal portions of the pectoral girdle on the left side of the specimen, while the ventral portions of the pectoral girdle are best preserved on the right (Fig. 21). The dorsal and ventral branches of the posttemporal extend the length of three vertebrae. The dorsal branch ends in a broad, flat head that articulates with the epioccipital. The ventral branch ends in a cylindrical head that articulates with the intercalar. Tomographic cross-sections of the posttemporal show highly mineralized struts along the long axis of the bone. The
ventrolateral margin of the posttemporal articulates with a shattered supracleithrum whose shape cannot be adequately described. Posterior to the supracleithrum is the dorsal point of the cleithrum, which is sharply pointed and rises to the approximate height of the posttemporal bifurcation. Ventrally, the cleithrum comprises two flanges—one that continues laterally from the more dorsal portion, and another that penetrates mesially and bears an anteriorly-oriented convexity, such that the cleithrum appears as a chevron in coronal cross-section.

Figure 22. Pectoral fin skeleton of † Whitephippus tamensis holotype. NHMUK PV P 6479, London Clay Formation, early Eocene (Ypresian), Southeast England, UK. Rendered µCT models showing the (A) left and (B) right views of the pectoral fin elements. Abbreviations: cor, coracoid; lep, lepidotrichia; pcl, postcleithrum; rad, radials; s, scales; sca, scapula. Arrows indicate anatomical anterior. Scale bar represents 1 cm.

The pectoral fin is best preserved in NHMUK PV 35057, where the posterior half of the scapula, anterior portions of the coracoid, a complete series of radials, and pectoral fin rays are present (Fig. 22). Additionally, fragments of the postcleithrum are visible between the chondral components of the girdle.

The scapula is broken along the scapular foramen on both the left and right side of the specimen, with a predominantly flat dorsal edge dropping nearly 90° to a swooping margin abutting the coracoid. At the anterodorsal margin of each break is an enlarged knob that forms an embayment for the propterygium (first pectoral radial). The scapular foramen appears to have been exceedingly large relative to the remainder of the pectoral skeleton: its diameter is more than half the height of the scapula. The coracoids are poorly preserved, with only the most dorsal portions articulated well enough to figure. The concave dorsal margin of the coracoid follows the convex ventral margin of the scapula, and its posterior border is similarly a continuation of the posterior border of the scapula.
The radials are displaced, making their identity difficult to ascertain. Despite this, four independent sizes of radials are evident, suggesting that there were four pairs in life. They appear to have extended posterovertrally past the margin of the scapulocoracoidal boundary, such that they would have sat along the cartilage between the scapula and coracoid in life. The anteriormost pectoral radial is stout—reaching a height less than half that of the fourth pectoral radial—and possesses a perforation common to actinopterygians, which confirms its identity as the first pectoral radial. The remaining pectoral radials are approximately hourglass shaped and increase in size across the series—though taphonomic displacement from life position has moved a central radial posterior to the fourth (last) radial on the right side of the pectoral skeleton (Fig. 22, B).

Pectoral fin rays (lepidotrichia) begin at the most anterior boundary of the first pectoral radial and span the length of where the four radials would have sat in life. Each fin ray bears a club-like articular head proximally that attenuates distally before thickening at the junction of the paired lepidotrichia.

Portions of the postcleithrum are visible mesial to the pectoral fin rays, and whether it formed one or two separate ossifications in life is unclear. They are anteroposteriorly elongate at their dorsal extremities and the ventral portions of the postcleithral shaft approximate a triangle in coronal cross-section.

Figure 23. Left pectoral skeleton of *Velifer hypselopterus*. UMMZ 220456. Rendered μCT models showing the (A) mesial and (B) lateral views of the pectoral skeleton. Abbreviations: cl, cleithrum; cor, coracoid; lep, lepidotrichia; pcl, postcleithrum; pt, posttemporal; rad, radials; sca, scapula; scl, supracleithrum; st, supratemporal. Arrows indicate anatomical anterior. Scale bar represents 1 cm.
Squamation

Squamation is preserved over the pectoral girdle of NHMUK PV P 6479 (Figs. 1, 2), and posterior to the skull of NMS 1864.6.9 (Fig. 3). In both cases the scales are large, slightly overlapping cycloid scales.

![Figure 24.](image)

DISCUSSION

† *Whitephippus* as a lampriform

Anatomical studies strongly support lampriform monophyly (Davesne et al., 2014, 2016; Delbarre, Davesne, & Friedman, 2016; Oelschläger, 1983; Olney, Johnson, & Baldwin, 1993; Wiley, Johnson, & Dimmick, 1998) with a series of morphological characters that, although not necessarily unique to the clade, are diagnostic when found in combination (Figs. 9-10, 12-13, 15-16, 19-20, 23-24). The lampriform characters found in † *Whitephippus* include: (1) the frontals forming an anterior cavity or 'vault' (Figs. 7, 9-10), (2) the frontals constituting the anterior portion of the sagittal crest (Figs. 7-10), (3) the median ethmoid partially posterior to the lateral ethmoids (Figs. 7, 9-10), (4) the palatine lacking an anterior process that articulates with the upper jaw (Figs. 11-13), and (5) the condylar anterior extremity of the anterior ceratohyal (Figs. 14-16). Moreover, † *Whitephippus* shows characters states that are plesiomorphic for acanthomorphs as a whole and differing in other clades such as percomorphs (including ephippids, to which it was formerly aligned). These include the single-headed condyle of the hyomandibula (Figs. 11-13), the presence of an orbitosphenoid and the supraoccipital not contributing to the dorsal roof of the foramen magnum (Davesne et al., 2016; Johnson & Patterson, 1993; Olney et al., 1993). The attribution of † *Whitephippus* to Lampriformes is then strongly supported by the available anatomical information, in contradiction with Casier's (1966) interpretation as an ephippid.
Position within Lampriformes

Lampriform intrarelationships are largely congruent between phylogenetic studies based on morphological characters: Lampris forms a clade with the elongate Taeniosomi, to the exclusion of veliferids (Davesne et al., 2014, 2016; Delbarre et al., 2016; Olney et al., 1993; Wiley et al., 1998). Available evidence suggests that †Whitehippus is associated with this nested lampiriform group.

The Lampris + Taeniosomi clade is notably characterised by a pectoral fin inserting horizontally and supported by three autogenous radials (Fig. 24), the anterior-most being fused to the scapula (Olney et al., 1993). The pectoral fin of †Whitehippus inserts horizontally in the only specimen that preserves it (Fig. 1). However, the anterior-most pectoral-fin radial is not fused to the scapula (Fig. 22), corresponding to the plesiomorphic lampiriform arrangement (Fig. 23). Lampris and taeniosomes also lack a dorsal foramen in the ceratohyal (Oelschläger, 1983), with †Whitehippus showing this same condition (Fig. 14). In Lampris and taeniosomes, the infraorbital series consists in the lacrimal only (Oelschläger, 1983); this is also the case in †Whitehippus, but it is possible, although unlikely, that it is due to incomplete preservation. At the same time, typical taeniosome characters (Olney et al., 1993) are lacking in †Whitehippus: the neural spines of the anterior vertebrae are not inclined anteriorly (Figs. 18-20), and there is at least one supraneural bone (supraneurals are absent in taeniosomes).

Finally, two anatomical features seemingly unique to the extant Lampris are found in †Whitehippus: (1) the exoccipital condyles have kidney-shaped posterior facets (Figs. 4, 10) that define the lateral wall of the foramen magnum (Oelschläger, 1983; Olney et al., 1993) and (2) the anterior ribs insert directly on very short or inexistent vertebral parapophyses (Figs. 18, 20) —there are developed parapophyses in veliferids (Fig. 19).

The available †Whitehippus material then shows a unique combination of character states, either shared with the Lampris + Taeniosomi clade (pectoral fin inserting horizontally, only one bone in the infraorbital series, no foramen in the anterior ceratohyal) or more specifically with Lampris (dorsally-expanded exoccipital condyles, lack of parapophyses). This would support that †Whitehippus is a member of the Lampris + Taeniosomi clade, and possibly an early member of Lampridae. One character however (the anterior-most pectoral-fin radial is not fused to the scapula), contradicts this attribution. The exact phylogenetic position of †Whitehippus within lampriformes is therefore best considered uncertain. A comprehensive phylogenetic analysis of the group including its well-preserved and anatomically disparate Palaeogene fossil members—sometimes collectively termed “veliferoids”—is sorely needed.

It is to be noted that the few molecular studies in which veliferids were included tend to support a different set of deep divergences within lampriforms. Analyses of the 12S mtDNA (Wiley et al., 1998), a combination of six mitochondrial and nuclear markers (Grande, Borden, & Smith, 2013), and complete mitogenomes (Wang et al., 2023) have all recovered a Lampris + veliferid clade sister to taeniosomes, contradicting morphological analyses. Future discussions of the phylogenetic position of †Whitehippus (and fossil lampriforms in general) will need to acknowledge this possible topology.

Lampriform diversity in the Palaeogene

The lampriform lineage extends to the Late Cretaceous, with the †pharmacichthyids of the Cenomanian of Lebanon, the Cenomanian-Campanian †‘aipichthyoids’ and
†Nardovelifer from the Campanian of Italy (Davesne et al., 2014, 2016; Delbarre et al., 2016). However, the oldest members of the lampriform crown group are Cenozoic in age. *Incertae sedis* (‘veliferoid’, e.g. deep-bodied) lampriforms from Paleocene deposits in Scandinavia: the Danian Kebenhavn Limestone of Denmark and Southern Sweden yields †*Bathyosoma* and cf. †*Palaeocentrotus* (Adolfsen, Milan, & Friedman, 2017; Davis, 1890), with the former genus also known from an erratic boulder of the Thanetian Lellinge Greensand (Bonde & Leal, 2017; Friedman, Andrews, Saad, & El-Sayed, 2023). The fish-bearing horizon of the Danata Formation of Turkmenistan, which appears to correspond to the Paleocene-Eocene boundary, yields †*Danatina* and †*Turkmene* (Bannikov, 1999; Daniltshenko, 1968). The Ypresian Fur Formation of Denmark yields the enigmatic †*Palaeocentrotus* plus an undescribed, †*Analectis*-like taxon (Bonde, 1966; Bonde, Andersen, Hald, & Jakobsen, 2008). The earliest lampriforms that can be confidently classified within modern families are two veliferids- †*Veronavelifer* and †*Wetonius*—from the late Ypresian of Bolca, Italy (Bannikov, 1990, 2014; Carnevale & Bannikov, 2018; Carnevale, Bannikov, Marramà, Tyler, & Zorzin, 2014) – although Near et al. (2013) have argued that †*Turkmene* is a lamprid, without providing a detailed justification. Bolca also yielded two taxa historically described as lampriforms: the enigmatic ‘*Pegasus*’ (Carnevale & Bannikov, 2018; Carnevale et al., 2014) and †*Bajaichthys* (Bannikov, 2014; Sorbini & Bottura, 1988), the latter now regarded as a morphologically unusual zeiform (Davesne, Carnevale, & Friedman, 2017). The Palaeogene lampriform fossil record includes a variety of taeniosomes, all assigned to Lophotidae: †*Eolophotes* from the Lutetian of Georgia (Daniltshenko, 1980), †*Protolophophorus* and †*Babelichthys* from the late Eocene of Iran (Arambourg, 1943; Davesne, 2017; Walters, 1957) and †*Oligolophophores* from the early Oligocene of Russia (Bannikov, 1999). These Russian deposits also yield the *incertae sedis* deep-bodied genera †*Analectis* and †*Natgeosocus* (Bannikov, 2014; Daniltshenko, 1980), with strata of comparable age in Germany yielding the veliferid †*Oechsleria* (Micklich & Bannikov, 2023). Unambiguous Lampridae are only known in the fossil record by the large-bodied †*Megalampiris* from the Chattian (Late Oligocene) of New Zealand (Gottfried, Fordyce, & Rust, 2006) and by numerous specimens of *Lambris* from the Miocene of California (David, 1943; Jordan & Gilbert, 1919). If † *Whitephippus* is a lamprid, it would then be the first definitive Eocene representative of the family.

Ecological implications

Modern veliferid lampriforms are predominantly demersal and neritic, living at depths not exceeding 250 m (Heemstra, 1986). Their ecological habits, but also their maximum size of approximately 40 cm, differ notably from the much larger size (up to 160 cm in *Lambris* and 800 cm in *Regalecus*; Hawn and Collette 2012; Roberts 2012) and epipelagic to bathypelagic lifestyle of other lampriforms. The relatively small sized, deep bodied stem-lampriforms from the Late Cretaceous are reminiscent of veliferids and presumably had similar ecological preferences as well (Delbarre et al., 2016). In contrast, most lampriforms from the late Paleocene and early Eocene are found in formations reflecting a more open-ocean environment, such as the Thanetian-Ypresian Danata Formation of Turkmenistan and the early Ypresian Fur Formation of Denmark (Bonde et al., 2008; Schröder, Rasmussen, Möller, & Carnevale, 2022b, 2022a), to the exception of the veliferids from the late Ypresian Bolca Lagerstätte which is reconstructed as a shallow marine reef environment (Bellwood, 1996; Marramà, Bannikov, Tyler, Zorzin, & Carnevale, 2016). Similarly, the London Clay was deposited in an open-ocean, continental shelf palaeoenvironment (King, 1981, 1984), which is
reflected by the faunal composition of its teleost fauna (Friedman et al., 2016). Based
on this phylogenetic and ecological distribution, it appears likely that the putative clade
formed by Lampridae and taeniosomes to the exclusion of velliferids could be characterised as a 'pelagic clade'. As a probable member of this clade, †Whitephippus
then documents the transition in ecological preferences from proximal and demersal
to oceanic and pelagic in lampriforms.

While the previous environment of the other pelagic acanthomorph clades is
mostly unknown, their appearances in the fossil record are largely coordinated in time.
The oldest scombrids are found in the Selandian of Angola (Dartevelle & Casier, 1949).
The oldest carangids (Bannikov, 1985; Santini & Carnevale, 2015), billfishes (Fierstine,
2006; Monsch & Bannikov, 2011), and luvarids are all from the Paleocene-Eocene
boundary of the Danata Formation. Deep-bodied lampriforms are also found at the
latter horizon (Bannikov, 1999). The positions of these lampriform taxa are not clear,
although some have suggested they might have affinities to the 'pelagic clade' (e.g.,
Near et al. 2013). Another open ocean fauna slightly older than the London Clay is
found from the Fur Formation of the early Ypresian of Denmark. It preserves other incertae sedis lampriforms as well as scombrids, carangids and fossils attributed to
other modern pelagic families such as stromateids and nomeids (Bonde, 1966; Bonde
et al., 2008; Schroder et al., 2022b). Of all the aforementioned early Palaeogene
oceanic teleost faunas (to which a few other clay formations preserving fossils in three-
dimensions can be added; Friedman et al. 2016), the London Clay is by far the most
diverse: it includes gadiforms (e.g., †Rhioccephalus), ophidiforms (†Ampheristus),
trichiurids (†Eutrichiurides), gempylids (†Progempylus), scombrids (e.g.,
†Ecoelopoma, †Micromatus), carangids (e.g., †Eothyynnus), xiphioids (e.g.,
†Xiphiorhynchus) and now lampriforms with †Whitephippus.

Molecular studies seem to confirm the origin and rapid diversification of pelagic
acanthomorph clades in the early Palaeogene (Harrington et al., 2016; Miya et al.,
2013; Near et al., 2013) that is suggested by the fossil record, even if older ages of
divergence are sometimes estimated (Santini & Carnevale, 2015; Santini et al., 2013;
Santini & Sorenson, 2013). In particular, the taxa that occupy today the large-bodied
pelagic predator ecological niche all seem to appear around the Paleocene-Eocene
boundary. These taxa convergently share peculiar morphological and ecological traits
that are also found in Lampris: relatively large body sizes, a crescentic caudal fin with
the base of fin rays enveloping the caudal-fin skeleton, and a predatory behaviour that
involves fast, active swimming over long distances and dives below the warm surface
water. Billfishes, tunas and Lampris also independently developed a form of localised
endothermy in the braincase, complemented in tunas and Lampris by a whole-body
endothermy generated by axial and pectoral-fin red muscles, respectively (Dickson &
Graham, 2004; Legendre & Davesne, 2020; Wegner, Snodgrass, Dewar, & Hyde,
2015). Whether †Whitephippus had the same kind of postcranial morphology is mostly
unknown, but it might be possible to estimate if its metabolism was similar to that of
modern Lampris by using bone histology as a proxy (Davesne, Meunier, Friedman,
Benson, & Otero, 2018).

The novel attribution of †Whitephippus to lampriforms extends the taxon list of
the early pelagic fauna of the London Clay. It reinforces the apparent observation that
multiple lineages of acanthomorph teleosts simultaneously conquered the pelagic
environment following the faunal depletion by the Cretaceous-Palaeogene mass
extinction, separately acquiring similar morphological and physiological adaptations.
Numerous taxa from the London Clay, but also from other early Palaeogene open
ocean faunas (e.g., from the Fur Formation), remain poorly described and without a
precise systematic attribution. An in-depth revision of these exceptional fossils is needed to achieve a better understanding of the evolutionary dynamics underlying acanthomorph teleost diversification and the establishment of modern marine faunas.

ACKNOWLEDGEMENTS
We thank Stig Walsh (NMS), Emma Bernard and Zerina Johanson (NHMUK) for providing access to the fossil material, and Radford Arrindell (AMNH), Patrice Pruvost and Zora Gabsi (MNHN) and Randy Singer (UMMZ) for providing access to extant comparative material. Daniel Delbarre (University of Oxford) and Niels Bonde (University of Copenhagen) are thanked for their insightful discussions on the fossil specimens.

This study includes data produced in the CTEES facility at University of Michigan, supported by the Department of Earth and Environmental Sciences and the College of Literature, Science, and the Arts. This research was supported by the Natural Environment Research Council (grant NE/J022632/1 to MF), the Leverhulme Trust (grants PLP-2012-130, to MF), the University of Michigan Rackham Graduate School (Rackham Merit Fellowship to JVA), and the Alexander von Humboldt Foundation (to DD).

REFERENCES
Bannikov, A. F. (2014). A new genus of the family Palaeocentrotidae (Teleostei, Lampridiformes) from the Oligocene of the Northern Caucasus and comments

Davesne, D., Carnevale, G., & Friedman, M. (2017). *Bajaichthys elegans* from the Eocene of Bolca (Italy) and the overlooked morphological diversity of Zeiformes.

Müller, J. (1845). Über den Bau und die Grenzen der Ganoiden, und über das natürliche System der Fische. Abhandlungen Der Königlichen Akademie Der

