
Musical pitch has multiple psychological geometries
Raja Marjieh * 1, Thomas L. Griffiths1 2 †, Nori Jacoby 3 †

Pitch perception is at the core of our experience of both speech and music1,2,3. Music theorists4,5, psychologists6,7, and
neuroscientists8,9,10 have sought to determine the psychological representation ofmusical pitch for centuries. The pitch
helix, which jointly represents logarithmic scaling of theperiodicity of a toneand theheightened similarity between tones
separated by an octave, has been widely assumed to capture the psychological geometry of pitch6,7,11. However, empir-
ical support for this structure is inconclusive, in part because it relies on studies with small sample sizes6,12,13,14,15. Here
we revisit this problem using a series of comprehensive experiments involvingmusicians and non-musicians performing
three established tasks based on similarity judgments and singing16,17,18. We show that a simple helical representation
alone cannot explain the data. Rather, our results demonstrate that, depending on the task and musical experience10,19,
the geometry of pitch can exhibit linear, degenerate-helical, and double-helical structures, suggesting a new, broader
understanding of how we perceive pitch.

As we interact with the world around us, our minds con-1

stantly create internal representations to support perception,2

action and decision making1⁷,2⁰. The geometric structure3

of those representations determines how stimuli are inter-4

nally organized and facilitates computation and generaliza-5

tion1⁷,21,22. In audition, pitch is one of the most extensively6

studied psychological phenomena, being essential to bothmu-7

sic and speech perception2,3,1⁰,1⁶,23-2⁶. Western music orga-8

nizes pitch linearly on a logarithmic scale, with tones with slow9

periodicity perceived as “low” and tones with fast periodicity10

perceived as “high”1⁶. Westernmusic additionally relies on oc-11

tave equivalence, whereby tones with periodicities that differ12

by an octave (ratio of 2:1) are associated with the same note13

name, also known as chroma⁶,1⁶,2⁷, and are perceived as simi-14

lar. The conjunction of these two features, i.e., pitch height and15

octave equivalence (Figure 1A), led psychologists like Roger16

Shepard⁶,⁷,2⁷ to the hypothesis that the internal manifold of17

pitch representations can be captured by a helix (Figure 1B).18

Since then the pitch helix representation and its decomposi-19

tion in terms of height and chroma have become canonical ex-20

amples in many textbooks on perception⁷,11,2⁸.21

Recent research, however, suggests that cultures differ in the22

type of verbal metaphors used to organize pitch2⁹ and in the23

way they respond to different acoustic pitch cues, including24

“pleasantness” or consonance of simultaneous tones3⁰,31 and25

octave equivalence1⁶. Furthermore, research has shown that26

musical experience alters individuals’ sensitivity to pitch, and27

possibly pitch representations as well12,23,32-3⁷. Even within28

Western music theory, the helix representation fails to cap-29

ture the role of other important musical intervals, like the per-30

fect fifth (3:2 ratio), which play central roles inmusic-theoretic31

constructs. This observation motivated Shepard⁶,12 and oth-32

ers1⁴,32, to propose alternative geometric constructs to support33

pitch perception and tonal perception like the double helix12,34
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the cone1⁴,3⁸, and other higher-dimensional toroidal struc- 35

tures⁶,3⁹. However, the empirical support for these alternative 36

structures is weak, often relying on small sample sizes (e.g., 37

three individual musicians1⁵), unnatural tone timbres (e.g., si- 38

nusoidal pure tones1⁴,32, or artificial Shepard tones3⁹), incom- 39

plete data⁶,12, and very specific musical primes (e.g., diatonic 40

C major scale13,1⁴) that may induce relative saliency effects12 41

(since they include only a subset of the tones being compared). 42

The recent success of large-scale online studies in shedding 43

new light on classic problems in perception research⁴⁰-⁴3, as 44

well as the development of more ecologically valid paradigms 45

to study pitch perception and production1⁶,1⁸, provide a com- 46

pelling opportunity for revisiting this classical question. In this 47

workwe probe the psychological geometry ofmusical pitch us- 48

ing three established psychoacoustic paradigms based on sim- 49

ilarity judgments and singing which together provide a holis- 50

tic view that spans both musical expertise (musicians vs. non- 51

musicians) as well as different task modalities (perceptual- 52

evaluative vs. production-based). Using these paradigms we 53

construct detailed maps that capture the perceptual similarity 54

between pitch pairs, which we then analyze using computa- 55

tionalmodels to unravel the contributions of different geomet- 56

ric structures. We show that a simple helical representation is 57

insufficient to explain the data. We find that pitch representa- 58

tions can exhibit an array of geometries, depending on task and 59

experience, ranging from a strictly height-based linear repre- 60

sentation in non-musicians to a complex double helix repre- 61

sentation in musicians that accounts for heightened similarity 62

at perfect intervals (i.e., fourth and fifth) as well as tritone aver- 63

sion. This double helix representation had been suggested as 64

a possibility by Shepard⁶,12, but has never previously been ob- 65

served in psychological data. Viewed together, these findings 66

reveal a new, broader picture of pitch perception across tasks 67

and musical experience. 68
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Fig. 1 The pitch helix representation and its underlying components, namely, the pitch height line and the chroma circle.

Results69

To cover the different ways in which people process musical70

pitch, we considered three prominent behavioral paradigms71

(Figures 2A-C) that provide complementary forms of task72

engagement and applied them to both musician and non-73

musician participants. First, we wanted to probe pitch rep-74

resentations in the context of melody perception, which is75

one of the most prominent contexts that involve musical pitch76

perception across cultures⁴⁴. To that end, we expanded the77

task of Demany & Armand1⁸ (also used in Jacoby et al.1⁶)78

whereby people listened to pairs of randomly generated three-79

note melodies and rated their similarity on a Likert scale (Fig-80

ure 2A; see Methods). Crucially, we generated the second81

melody from the first by applying a fixed transposition t to the82

second and third tones across a wide two-octave range. Since83

these melodies were randomized across trials, we expected the84

average rating to be able to track the interplay between pitch85

height (how separated are the tones on a log-scale) and chroma86

(whether tone chroma is identical in both melodies, i.e., at87

octave transpositions). We recruited participants from three88

groups that differed in their musical experience. The first and89

second groups were recruited from Amazon Mechanical Turk90

(AMT).The first group comprisedAMTparticipants who self-91

reported zero years of musical experience (N = 102; YME:92

M = 0, SD = 0), and the second comprised AMT participants93

who reported at least 3 years (N = 60; YME:M = 10.5, SD =94

9.6). The third group was a cohort of professionally trained95

musicians (N = 44; YME: M = 18.6, SD = 8.6) recruited96

from music schools in Germany (see Methods). Figure 2D97

shows substantial group differences in the average profile as98

a function of the transposition interval. Non-musicians with99

no musical experience exhibited a predominantly linear pro-100

file (linear model explains 93.8% of the variance of the aver-101

age profile, CI: [91.7, 95.9]) with a small but significant bump102

at the first octave (12 semitones, CI of the mean rating dif- 103

ference between 12 and the average rating of 11 and 13 semi- 104

tones is [0.028, 0.085] which does not include zero), and mu- 105

sicians exhibiting a highly non-linear profile (linear model ex- 106

plains only 16.9% of the variance, CI: [7.1, 26.7]) that is more 107

flat with significant spikes at octave transpositions (12 and 24 108

semitones; CIs for mean rating difference for 12 and the aver- 109

age of 11 and 13, and 24 and 23 semitones were [0.292, 0.410] 110

and [0.288, 0.427], respectively) suggesting both octave equiv- 111

alence and chroma sensitivity. Non-musicians with 3+ years 112

of experience, on the other hand, exhibited a profile that is 113

somewhere in between those of the other two groups. Quanti- 114

tatively, a linear model explained 85.3% of the variance of the 115

average profile (CI: [78.4, 92.3]) and the CI of the mean differ- 116

ence in rating between 12 and the average of 11 and 13 semi- 117

tones, and between 24 and 23 semitones were [0.040, 0.129] 118

and [0.028, 0.111], respectively. 119

In order to provide a complementary perspective on pitch 120

representations, we considered the paradigm of Jacoby et al.1⁶ 121

whereby people were asked to sing back two-note melodies 122

that extended outside their singing range (Figure 2B; seeMeth- 123

ods). This task provides an ecologically-valid form of musical 124

engagement with pitch as singing is present in virtually every 125

human culture⁴⁴. Moreover, singing also involves pitch pro- 126

duction and as such complements the perceptual-evaluative 127

task of melodic similarity presented above. Participants heard 128

two-note melodies, with the first tone sampled from a fre- 129

quency range of 45.5 − 105.5 MIDI note corresponding to 130

113.2 − 3623.1 Hz, and were asked to reproduce them by 131

singing (the participants’ singing range is approximately 80− 132

1000Hz). Here we wanted to determine which pitch represen- 133

tation underlies the pattern of behavior observed in the data 134

collected by Jacoby et al.1⁶. We specifically focused on how 135

people approximated tones outside their singing range and 136

constructed similarity scores between pitch values based on 137
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Fig. 2 Probing pitch similarity across tasks and musical experience. Left panel: Schematics of the three paradigms A. similarity judgments over pairs of
melodies that differ by a transposition, B. free imitation of two-note melodies through singing, and C. similarity judgments over pairs of isolated tones.
Right panel (D-F): Corresponding normalized similarity profiles as a function of interval separations for the three behavioral paradigms and different
participant groups. Shaded area, here and everywhere else, represents 95% confidence intervals bootstrapped over participants with 1,000 repetitions.

how similar their response distributions were (see Methods).138

This approach is analogous to confusion matrices21 whereby139

two stimuli are similar in so far as they produce the same be-140

havioral response. The data comprised two groups: partici-141

pants with at most 3 years of self-reported years of musical ex-142

perience (non-musicians, N = 27; YME:M = 1.1, SD = 1.1)143

and participants with at least 10 years of self-reported years of144

musical experience (musicians, N = 28; YME: M = 19.2,145

SD = 6.8). We estimated similarity scores between differ-146

ent target pitch values by computing the Jensen-Shannon dis-147

tance (JSD) between their response distributions (see Meth-148

ods; raw target-response distributions are provided in Supple-149

mentary Figure 1). Figure 2E shows the resulting average sim-150

ilarity profiles. Similar to the first paradigm, non-musicians151

and musicians exhibited qualitatively different profiles, with152

non-musicians showing a linear similarity trend with some153

residual periodicity at the octave (linearmodel explains 71.2%154

of the variance with CI [42.8, 99.6], and a sinusoidal model155

with 12-semitone periodicity explains 20.1% of the variance156

with CI [0, 43.8]) and musicians exhibiting a highly periodic157

pattern with strong peaks at integer multiples of the octave158

(linear model explains 1.5% of the variance with CI [0, 4.5] 159

and a sinusoidal model with 12-semitone periodicity explains 160

93.6% of the variance with CI [89.3, 98.0]). These results pro- 161

vide further support for a structural linear-to-helical transition 162

as a function of musical experience. 163

Finally, we returned to the classic setup of Shepard1⁷ and 164

asked participants to directly rate the similarity between pairs 165

of isolated tones with as little as possible additional context 166

(Figure 2C; see Methods). We generated a high-powered sim- 167

ilarity matrix by asking participants to rate pairs of harmonic 168

complex tones taken from a two-octave range from C4 to C6. 169

We collected data from three cohorts: participants recruited 170

from AMT with zero reported years of musical experience 171

(N = 94; YME: M = 0, SD = 0), participants from AMT 172

with 3+ reported years (N = 55; YME: M = 8.5, SD = 6.4), 173

andmusicians frommusic schools inGermany (N = 32; YME: 174

M = 20.8, SD = 10.4). Figure 2F shows the average similar- 175

ity rating as a function of the interval between the two tones. 176

Again, non-musicians with zero years of musical experience 177

exhibited a near-perfectly flat profile (linear model explains 178

90.8% of the variance with CI [89.1, 92.6]), and musicians on 179
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Fig. 3Geometric component analysis of similarity. Fitted geometric coefficients to data from non-musicians andmusicians and their associated similarity
matrices shown as insets. Error bars indicate 95% confidence intervals bootstrapped over participants with 1,000 repetitions.

the other hand exhibiting a highly non-linear pattern (linear180

model explains 17.2% of the variance with CI [1.5, 32.9]) with181

spikes at the octaves (12 and 24 semitones; CIs of the mean182

difference in rating between 12 and average of 11 and 13 semi-183

tones, and between 24 and 23 semitones were [0.401, 0.581]184

and [0.279, 0.868], respectively) and sharp dips at the tritones185

(6 and 18 semitones; CIs of the mean difference in rating be-186

tween 6 and average of 5 and 7 semitones, and between 18187

and average of 17 and 19 semitones were [−0.305,−0.122]188

and [−0.285,−0.119], respectively) indicating strong octave189

equivalence but also interestingly strong tritone aversion and190

enhanced similarity at perfect intervals around it (i.e., 5, 7, 17191

and 19 semitones). Non-musicians with 3+ years of musical192

experience interpolate between the two other groups (linear193

model explains 89.8% of the variance with CI [86.8, 92.8]) and194

a small but significant peak at the first octave (CI of mean dif-195

ference between 12 and the average of 11 and 13 semitones196

was [0.045, 0.211]) and an onset of a dip at the first tritone (CI197

of mean difference between 6 and the average of 5 and 7 semi-198

tones was [−0.094,−0.017]), but not around 18 semitones (CI199

of mean difference between 18 and the average of 17 and 19200

semitones was [−0.051, 0.054]).201

Computational modeling202

The results shown in Figure 2 indicate that different partici-203

pant groups may rely on different perceptual cues to perform204

the tasks which in turnmay translate into different representa- 205

tional geometries. To tease apart the underlying mechanisms, 206

we used a computational modeling approach inspired by an 207

analysis initially proposed by Shepard12 and adapted here to 208

capture the different possible sources of variance observed in 209

our data. First, to enhance the contrast between the conditions 210

we grouped the data into broader musician vs. non-musician 211

groups (seeMethods) and computed similarity matrices based 212

on the average responses. We then determined which geomet- 213

ric structures best explained the similarity matrices. We did 214

that by introducing a basis of geometric components d(c)ij and 215

estimating how the behavioral similarity sij loaded on these 216

components by fitting a metric solution of the form 1 − sij = 217

b +
∑

c acd
(c)
ij via linear regression where b, ac ≥ 0 are non- 218

negative coefficients (Figure 3; see also Methods and Supple- 219

mentary Figures 2 and 3). The components were: a linear pitch 220

height scale dlij and three additional components that represent 221

the identification of particular intervals, namely, a component 222

doij that identifies octaves, a component dpij that identifies per- 223

fect intervals (fourth and fifth), and a component dtij that cap- 224

tures aversion to tritones. The octave component had an ad- 225

ditional width hyperparameter σo that interpolated between 226

sharp octave recognition and smoother chromamatching (see 227

Methods for explicit formulas). 228

The resulting geometric weights for each of the paradigms 229

considered are summarized in Figure 3 (the numerical values 230
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Fig. 4 Multidimensional scaling solutions in three dimensions for the various behavioral similarity matrices. Left to right: similarity judgments over
melodies that differ by a transposition (A-B), free imitation of two-note melodies via singing (C-D), and similarity judgments over pairs of isolated tones
(E-F).

for all parameters can be found in Supplementary Table 1; en-231

larged model insets are provided in Supplementary Figure 3).232

We see that these weights vary widely depending on experi-233

ence and task, and overall we found that the geometric com-234

ponent model provided excellent fit to the observed data with235

mean Pearson correlation of r = .94 (r values ranged between236

0.82−0.98 depending on the experiment and corrected for at-237

tenuation; seeMethods for details regardingmodel evaluation;238

full list of correlations and other evaluation metrics is pro-239

vided in Supplementary Table 2). Starting from the melodic240

similarity paradigm (Figure 3A-B) we observe that most of241

the variability is driven by the linear and octave components242

in both musicians (r = .98, 95% CI: [.97, .98]) and non-243

musicians (r = .98, 95%CI: [.98, .98]) though the octave com-244

ponent was significantly more important for musicians com-245

pared with non-musicians. Moreover, the relatively dimin-246

ished linear component in musicians as well as the narrow oc-247

tave width (σo = 0.51) are suggestive of a degenerate octave248

recognition mechanism, whereby participants recognize the249

interval of an octave specifically as more similar without this250

enhanced similarity influencing other neighbouring intervals.251

Turning next to the singing paradigm (Figure 3C-D), we252

see a similar pattern where the data is largely explained by253

the linear and octave components (musicians: r = .97, 95%254

CI: [.96, .98]; non-musicians: r = .82, 95% CI: [.78, .86]). In255

particular, we see that the linear component in musicians is256

nearly absent relative to that of the octave which is sugges-257

tive of a degenerate geometry whereby chroma dominates over258

pitch height. Unlike the previous paradigm, however, here we 259

see that the optimal octave component width is much larger 260

σo = 2.10 which is indicative of a representation in which oc- 261

tave similarity affects the similarity of other neighboring in- 262

tervals and thus can be captured by distances on a chroma 263

circle. Possible mechanisms for this result could be a percep- 264

tually broad representation (as a result of the higher task de- 265

mands), and production noise. Finally, for the similarity over 266

isolated tones paradigm (Figure 3E-F) we see a distinct pattern 267

in which non-musicians (r = .96, 95% CI: [.96, .97]) exhibit 268

a strictly linear representation, while musicians (r = .93, 95% 269

CI: [.90, .96]), on the other hand, exhibit a highly complex pat- 270

tern in which all components contribute, in particular, tritone 271

aversion and enhanced similarity at perfect intervals, in addi- 272

tion to relatively balanced linear and octave components. 273

The geometries of musical pitch 274

Our computational modeling suggests that different compo- 275

nents are active in the different groups. What are the pos- 276

sible internal geometric representations that can support the 277

observed profiles in Figure 3? To answer this question, we 278

applied three dimensional multi-dimensional scaling (MDS1⁷; 279

see Methods). The resulting solutions, shown in Figure 4, ex- 280

hibit a rich array of geometries, with a simple helical repre- 281

sentation with a leading height component and a subleading 282

chroma circle appearing in two out of the six regimes consid- 283

ered (Figure 4A: non-musicians similarity over melodies; Fig- 284

ure 4C: non-musicians singing). With increased musical ex- 285
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perience, the simple helical representations become degener-286

ate (i.e., chroma dominates over pitch height), though the na-287

ture of the degeneracy differs between the paradigms reflecting288

in one case a recognition-based representation with octave-289

equivalence captured as isolated strands (Figure 4B: musicians290

similarity overmelodies) and in the other a degenerate chroma291

circle representation (Figure 4D: musicians singing). As for292

the third paradigm, here too we observe a complex structural293

transition as a function of experience whereby the linear rep-294

resentation observed in non-musicians (Figure 4E) factorizes295

into a double helix (Figure 4F) to account for tritone aversion296

and heightened similarity at perfect intervals, as hypothesized297

by Shepard⁶,12.298

Discussion299

Our results provide strong evidence for the conclusion that a300

simple helical representation is insufficient for explaining hu-301

man pitch perception, exaggerating on the one hand the ef-302

fect of octave equivalence in non-musicians, and missing, on303

the other, the implications of alternative sources of variance304

in the judgments of musicians, in particular, those pertaining305

to tritone aversion and preference towards perfect intervals.306

Moreover, our work highlights the dynamic nature of pitch307

representations, with production-based and perception-based308

tasks loading differently on the various components, and the309

way different representational mechanisms (octave recogni-310

tion and chroma distance) are reflected in the psychological311

geometry.312

Multiple mechanisms contribute to pitch313

perception314

The results of our study support the notion that pitch percep-315

tion involves multiple separate mechanisms2⁴. Across all ex-316

periments, we found four components that explained nearly317

all of the meaningful variance in pitch similarity (an average318

rawR2 of .78 across datasets, and an average corrected Pearson319

correlation of r = .94). However, their relative importance320

varied greatly between populations and tasks. Finding popu-321

lation and task dependency in pitch perception supports the322

idea that pitch perception is processed in higher-order brain323

areas⁹,⁴⁵.324

We found that a simple linear component dominated the325

responses of non-musicians, and also contributed to the re-326

sponses of musicians (Figure 3). This is in line with the widely327

adopted definition of pitch by the American National Stan-328

dards Institute1 (ANSI; “pitch is the auditory attribute of sound329

that allows sounds to be ordered on a scale from low to high”)330

which emphasizes the linear nature of pitch. This is also con-331

sistent with Jacoby et al.1⁶ who showed evidence that linear332

pitch perception is present in participants across cultures.333

The other leading component we found was octave equiv-334

alence. Octave equivalence is fundamental to Western mu-335

sic theory⁴,⁵,⁴⁶ and octaves are common in songs from differ-336

ent cultures around the world⁴⁴. However, its reliance on bi-337

ological mechanisms and its prevalence in participants with 338

and without musical training is debated in the literature1⁵,2⁷,⁴⁷- 339

⁵⁰. For example, Hoeschele et al.⁵1,⁵2 used an operant condi- 340

tioning test that can be run in both humans and chickadees 341

to show that only the former species exhibited octave equiva- 342

lence. Moreover, Demany&Armand1⁸ observed octave equiv- 343

alence in children but found that it was weaker in adults. Fol- 344

lowing this, Jacoby et al.1⁶ showed that octave equivalence is 345

culturally-contingent (absent in the Tsimane’, an indigenous 346

population from Bolivia) and that it is manifested in differ- 347

ent degrees even within Western participants1⁶. In addition, 348

these findings are consistent with work by Regev et al.⁵3 that 349

used EEG signal for deviance detection and showed that oc- 350

tave equivalencewas not detected automatically even by expert 351

musicians. Our findings support the idea that octave equiv- 352

alence varies across participants. More specifically, we show 353

quantitatively how the strength of octave equivalence varies 354

with musical experience (Figure 3). These findings are also 355

consistent with a large body of evidence showing differences 356

between musicians and non-musicians in auditory perception 357

and production as well as their neural correlates⁶,1⁰,1⁹,33-3⁵,⁵⁴,⁵⁵. 358

Beyond these two components our results showed that mu- 359

sicians in the similarity judgement task also relied on two 360

other components, specifically “aversion” to tritones and pref- 361

erence for perfect intervals. What can explain this behavior? 362

One possible idea is that other aspects of music perception 363

may influence musicians’ responses. For example, the phe- 364

nomenon of melodic consonance, or the perceived pleasant- 365

ness of tone sequences. Recent research suggests that Western 366

participants⁴1 exhibit a hierarchy of preferences when evalu- 367

ating the pleasantness of two-tone melodies, with tones sep- 368

arated by an octave and perfect intervals being particularly 369

pleasant, and those separated by a tritone being particularly 370

unpleasant. This pattern overlaps to a certain extent also with 371

the pattern of harmonic consonance (the pleasantness of si- 372

multaneous tones31,⁴⁰,⁵⁶-⁵⁸). Moreover, these hierarchical pat- 373

terns are also reflected in the distribution of melodic intervals 374

in musical corpora, which may drive preference via a mech- 375

anism of familiarity1⁴,⁵⁹-⁶1. Another possible and potentially 376

related mechanism is tonality, namely, the hierarchical orga- 377

nization of tones within a scale. Previous work suggests that 378

tonality may also be a shaping force in the structure of musical 379

pitch representations1⁴,32,⁶2. While our method tried to mini- 380

mize carry-on effects of tonality from previous trials (by using 381

different roving of tones across trials), it is possible that some 382

sense of tonality can be induced even within a single trial, at 383

least when it comes to expert musicians (Figure 3F). 384

Limitations and future work 385

We end by discussing limitations which point to important 386

directions for future research. First, our participant cohort 387

comes from the United States and Germany, which are West- 388

ern countries. This limits the generalizability of the present 389

findings as elements of pitch perception such as octave equiva- 390

lence andmelodic preferences vary cross-culturally1⁶. A natu- 391

ral follow-up, therefore, could look at the way representations 392
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vary across cultures by applying the same methods deployed393

in this work which by design are suitable for cross-cultural re-394

search. Second, the observed linear to double-helical struc-395

tural transition in pitch perception as a function of musi-396

cal training resembles other structural-representational tran-397

sitions in the literature such as that of numbers as a function398

of education⁶3. In that case, a linear magnitude-based repre-399

sentation transforms into a non-linear representation that en-400

capsulates different mathematical categories. It would be in-401

formative to investigate the parallels between those two de-402

velopmental trajectories and to leverage large-scale online re-403

cruitment to construct detailed maps for the latter (number).404

Third, in the present work we exclusively focused on popu-405

lation level analysis of representations, however, since musi-406

cal experience is very subjective one might expect to see in-407

dividual differences⁵⁸ which are worth investigating. Finally,408

there are other established paradigms for studying pitch rep-409

resentations that exist in the literature which we did not con-410

sider⁵2. Future work could apply geometric component anal-411

ysis to these and see whether a similar picture emerges. We412

hope to explore these directions in future research.413

To conclude, while pitch perception provides the funda-414

mental backbone underlying both speech and music percep-415

tion, it is neither simple nor static. Rather, our results reveal416

a highly complex and dynamical phenomenon that manifests417

multiple psychological geometries and bears parallels with418

mathematics and language. More broadly, our work show-419

cases how combining large-scale behavioral studies with es-420

tablished psychophysical paradigms and computational mod-421

eling can provide new answers to fundamental questions in422

auditory research. We believe that scaling up psychological re-423

search in tandem with concurrent computational approaches424

will continue to provide exciting new hypotheses concerning425

the nature of human cognition.426

Methods427

Software implementation428

The similarity judgment paradigms were designed and deployed us-429

ing PsyNet1, a modern framework for complex experiment design430

which builds on the Dallinger2 platform for online experiment host-431

ing and participant recruitment. Participants interact with the ex-432

periment in the browser using a front-end interface which, in turn,433

communicates with a back-end Python cluster that organizes the ex-434

periment timeline. All experiment and analysis code are available in435

the Supporting Information provided with this manuscript (see Code436

and Data availability below).437

Stimuli438

We defined absolute pitch using the Musical Instrument Digital In-439

terface (MIDI) semitonal scale which is based on a logarithmic pitch440

representation. This was motivated by previous research which441

showed that participants acrossmany cultures use approximately log-442

arithmic pitch representations1⁶. Specifically, the MIDI scale was de-443

fined as follows: f = 440 × 2(p−69)/12 where f is frequency in Hertz444

1https:∕∕www.psynet.dev
2https:∕∕dallinger.readthedocs.io∕en∕latest∕

and p is the corresponding pitch value. This means that a Concert A 445

(A4 or 440 Hz) corresponds to a value of 69 on this scale. 446

Similarity paradigms The similarity judgment paradigms used 447

complex harmonic tones that were synthesized using Tone.js3, a 448

Javascript library for audio synthesis in the browser. We used addi- 449

tive synthesis so that tones were given by s(t) =
∑nH−1

i=0 wi sin(2πfit) 450

with nH = 10, fi = f0 × (i + 1) for some fundamental frequency f0, 451

wi = 10−ωi/20, ωi = ρ log2(i+ 1) and ρ = 3 which corresponds to 3 452

dB/octave roll-off. 453

In the similarity judgment paradigm over melodies, random 454

melodies were synthesized by first uniformly sampling a starting tone 455

in the MIDI range 76-80, and then generating the second and third 456

tones by subtracting a uniformly sampled integer interval in the range 457

5−7 and 9−11 semitones, respectively. Thismeans that the resulting 458

melodies could have a variety of melodic intervals per transposition 459

so that pre-existing musical expectations would not prime the per- 460

ception of the transposition interval. Transpositions were then gen- 461

erated by subtracting a fixed integer interval in the range 0−24 semi- 462

tones from the second and third tones. As for the similarity judgment 463

paradigm over tones, tones covered the MIDI range 60 − 84 corre- 464

sponding to the notes C4-C6. 465

Singing paradigm The singing paradigm also involved addi- 466

tively synthesized harmonic complex tones with nH = 10 harmonics, 467

though with a roll-off of 12 dB/octave. Two-note melodies were pro- 468

duced by sampling the first tone from the range of 45.5− 105.5, and 469

then creating the second tone by adding one of the intervals 0,±1,±2, 470

or ±3 semitones. Each experiment consisted of a series of ‘‘blocks’’ 471

presented in random order, each of which presented stimuli within 472

a single frequency register. Within each block the f0 of the first tone 473

was constrained to particular register. Full information is provided 474

in the section ”General Experiment Structure” of the paper by Jacoby 475

et al.1⁶. 476

Participants 477

Similarity paradigms Non-musician participants for the simi- 478

larity judgment studies were recruited on Amazon Mechanical Turk 479

(AMT) subject to the following recruitment criteria designed to en- 480

sure data quality: 1) participants must be 18 years of age or more, 481

2) they must reside in the United States, 3) they have a 99% approval 482

rate or higher on priorAMT tasks, and 4) have successfully completed 483

5,000 tasks on AMT. These participants provided informed consent 484

under a PrincetonUniversity Institutional ReviewBoard (IRB) proto- 485

col (application 10859) and were paid a fair wage of 12 USD per hour. 486

Overall,N = 194 participants completed the similarity overmelodies 487

study with a reported age range of 19 − 77 (M = 40.3, SD = 12.2) 488

and 0− 53 (M = 3.5, SD = 7.1) years of musical experience. As for 489

the similarity over tones study, N = 186 participants completed the 490

study with a reported age range of 20 − 78 (M = 40.2, SD = 10.3) 491

and 0− 34 (M = 2.8, SD = 5.2) years of musical experience. 492

Musicians for the similarity judgment studies were recruited from 493

music schools through an internal participant pool at theMax Planck 494

Institute for Empirical Aesthetics in Germany. Participants were re- 495

cruited to this pool by research assistants who sent emails to localmu- 496

sic conservatories and handing flyers at the entrance of the conserva- 497

tory to possible participants. In order to participate, musicians were 498

required to be at least 18 years of age and to preferably have at least 499

3https:∕∕tonejs.github.io∕
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10 years of activemusical training. Participants provided consent un-500

der a Max Planck Ethics Council protocol (application 2021_42) and501

were paid at a rate of 15 USD per hour. Participant took the experi-502

ment remotely, and the web-interface was identical to the one used503

by the AMT participants. Overall, N = 44 musicians completed504

the similarity over melodies study with a self-reported age range of505

20 − 50 (M = 30.4, SD = 8.6) and 2 − 41 years of musical experi-506

ence (M = 18.6, SD = 8.6). As for the similarity over tones study,507

N = 32musicians completed the study with a self-reported age range508

of 21 − 62 (M = 33.0, SD = 10.7) and 2 − 46 years of musical ex-509

perience (M = 20.8, SD = 10.4). All but three individuals had more510

than 10 years of musical experience. We also note that the number of511

musicians varied between the similarity paradigms due to the nature512

of online recruitment whereby participants had the freedom to select513

which experiments they wanted to complete from a list of available514

studies.515

Singing paradigm The singing data analyzed in the present work516

was reproduced fromExperiment 4 in Jacoby et al.1⁶. The experiment517

comprised N = 28 US musicians with an age range of 18− 69 (M =518

31.1, SD = 10.5) and 10−38 years of musical experience (M = 19.2,519

SD = 6.8), as well as,N = 27 US non-musicians with an age range of520

20− 49 (M = 32.1, SD = 8.4) and 0− 3 years of musical experience521

(M = 1.1, SD = 1.1).522

Pre-screening523

Similarity paradigms To enhance online data quality, in the524

similarity tasks participants were required to complete a headphone525

prescreening test⁶⁴ to ensure that they were wearing headphones. In526

each trial of this test, participants heard a series of three tones and527

were asked to judge which of these was the quietest. The tones were528

designed to induce a phase cancellation effect when played on speak-529

ers which would lead participants without headphones to answer in-530

correctly. Participants who failed the headphone test were not al-531

lowed to proceed to the main experiment but were nevertheless fully532

compensated for the time taken to perform the pre-screening test.533

Singing paradigm In the singing task, participants performed a534

hearing task (see Jacoby et al.1⁶) to make sure they had normal hear-535

ing. Participants who failed the task were excluded.536

Performance incentives537

To motivate online participants to provide honest responses for the538

otherwise subjective tasks, participants in the similarity paradigms539

were informed that they could receive a performance bonus depend-540

ing on the quality of their responses. Specifically, they received the541

following instructions: “The quality of your responses will be auto-542

maticallymonitored, and youwill receive a bonus at the end of the ex-543

periment in proportion to your quality score. The best way to achieve544

a high score is to concentrate and give each trial your best attempt”.545

While the tasks are subjective in nature, we used self-consistency as546

a measure of performance quality. This was done by repeating 5 ran-547

dom trials at the end of the experiment and then computing Spear-548

man correlation between the original and repeated answers. The re-549

sulting score s was then used to compute a small bonus of up to 10550

cents using the formula min(max(0, 0.1s), 0.1).551

Procedure 552

Similarity paradigms In the similarity over melodies task, the 553

experiment proceeded as follows: upon completing the consent form 554

participants received the following instructions: “In this experiment 555

we are studying how people perceive melodies. In each round you 556

will be presented with two three-note melodies and your task will be 557

to simply judge how similar they are. You will have seven response 558

options, ranging from 0 (’Completely Dissimilar’) to 6 (’Completely 559

Similar’). Choose the one you think is most appropriate. You will 560

also have access to a replay button that will allow you to replay the 561

sounds if needed. Note: no prior expertise is required to complete 562

this task, just choose what you intuitively think is the right answer”. 563

Participants then completed two practice trials and then proceeded to 564

the main experiment. The procedure for the similarity over isolated 565

tones task was identical, except that we replaced “melodies” in the 566

instructions with “sounds”. 567

Singing paradigm For the singing task the procedure was as fol- 568

lows: in each session participants completed a series of trials whereby 569

they listened to a melody and were instructed to replicate it as well as 570

possible. Participants were seated in front of amicrophone and facing 571

the experimenter. All stimuli were presented through headphones 572

and participants recorded their responses using the microphone (see 573

Jacoby et al.1⁶ for full details). 574

Data analysis 575

Constructing similarity matrices To generate an aggregate 576

similarity matrix from the direct similarity judgment paradigms, 577

we applied the following procedures. In the case of similarity over 578

isolated tone pairs, we simply computed the average Likert score 579

per pair of items and divided by a constant of 6 so that similarity 580

scores would be normalized between 0 and 1 (rather than 0 and 6). 581

As for similarity over melodies, since the data is one-dimensional 582

in that case (a pitch transposition t between random melodies) we 583

constructed a two-dimensional matrix aij from the one-dimensional 584

data st using the formula aij = s|pi−pj| where pi and pj are pitch values 585

of interest. We again divided by a factor of 6 so that similarity scores 586

would be normalized between 0 and 1. As for the singing data, the 587

procedure is slightly more complicated and is described below. 588

589

Singing response distributions To construct similarity matri- 590

ces based on the response distributions of human singers, we first ap- 591

plied a 2D Gaussian kernel density estimate (KDE) ρ(pt, pr) to the 592

target-response pitch pairs (pt, pr) using the KernelDensitymethod 593

of the scikit-learn⁴ Python package with a bandwidth parame- 594

ter of σ = 1.2 semitones and a resolution of 500 × 500 bins. We 595

used this bandwidth as it provided a good tradeoff between relia- 596

bility and resolution. Dissimilarity between two target pitches pt1 597

and pt2 was then computed by applying the Jensen-Shannon dis- 598

tance jensenshannon from the scipy⁵ package to the KDEmarginals 599

ρ(pr|pt1) and ρ(pr|pt2). 600

Multi-dimensional scaling We constructed MDS embeddings 601

using the MDSmethod of scikit-learn. This was done in two steps, 602

first we applied a metric MDS to find an initial embedding which was 603

⁴https:∕∕scikit-learn.org∕stable∕
⁵https:∕∕scipy.org∕
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then fed as an initialization into a non-metric MDS. We used three604

components, a maximum iteration value of 10,000, and a tolerance605

parameter of 1e-100. MDS was applied to the fitted model similarity606

matrices to reveal their corresponding geometries. For completeness,607

we provide the MDS solutions associated with the raw unprocessed608

data in Supplementary Figure 4. While they are naturally noisy due to609

MDS overfitting to noise, they still exhibit the observed key features610

of the degenerate geometries and the interleaved strands of the double611

helix.612

Geometric components The explicit formulas for the differ-613

ent geometric components were: a linear pitch scale d(l)ij ∝ |pi −614

pj|, two positive interval recognition components d(c)ij = 1 −615

exp (−(χ(pi, pj)− c)2/2σ2
c )whereχ(pi, pj) = min{ψij, 6−ψij} and616

ψij = |pi − pj| mod 12 to capture chroma distance (i.e., intervallic617

distance irrespective of register) and c = 0, 5 for octave (d(o)ij ) and618

perfect intervals (fourth and fifth; d(p)ij ), respectively, and one nega-619

tive recognition component d(c)ij = exp (−(χ(pi, pj)− c)2/2σ2
c )with620

c = 6 to capture tritone aversion (d(t)ij ). We fixed σc = 0.25 semi-621

tones for the tritone and perfect intervals as a narrow interval recog-622

nition threshold and optimized the octave width σo as a hyperparam-623

eter since different values of σo efficiently interpolate between sharp624

octave recognition and smooth distance on the chroma circle (since625

c = 0). As a sanity check for the chosen width parameter values,626

we refitted the model in the musician tone similarity condition (Fig-627

ure 3F, the only condition in which the tritone and perfect conso-628

nance had significant contributions) but this time allowing all width629

parameters to vary. We found that the optimal width parameters did630

not differ much from our chosen values (σo = 0.39, σt = 0.18 and631

σp = 0.50). In addition, to ensure that the coefficients are properly632

normalized (i.e., each geometric component varied between 0 to 1),633

we rescaled the linear component such that its largest separation on634

a given range of interest equals to one (e.g. if pitch differences varied635

between 0 and 24 semitones, we defined d(l)ij = |pi − pj|/24).636

Model fitting and evaluation We fitted geometric components637

to the data using the LinearRegression method of scikit-learn.638

This was done by first flattening the upper triangular part of each639

component’s distance matrix d(c)ij into a feature vector v(c)i and then640

fitting a linear regression of the form 1 − si = b +
∑

c acv
(c)
i where641

b, ac ≥ 0 are non-negative coefficients and si is the flattened upper-642

triangular matrix of the behavioral similarity data. We repeated this643

fitting process 1,000 times by bootstrapping over participants in a644

split-half fashion (i.e., generating randomhalf-splits of the data based645

on participants and then fitting the model to one half and testing on646

the other). The optimal octave width hyperparameter σo was fine-647

tuned using the blackbox optimizer scipy.optimize.minimize over648

the bootstrapped linear regression procedure described above. To649

quantify model performance, we computed three Pearson correlation650

coefficients for each of the 1,000 split-halves as follows: rdd the corre-651

lation between the corresponding human similarity matrices of each652

split, rdm the correlation between the model fit on one half with the653

human similarity of the other (there are two ways to compute this so654

we took the mean), and rmm the correlation between the fitted mod-655

els on each half. We then used these values to compute the corrected656

correlation for attenuation r = rmd/
√rddrmm.657
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Supplementary Information849

Supplementary Figure 1 Pitch imitation through singing. Target vs. response pitch distributions for musicians and non-musicians (using a Guassian kernel
with σ = 1.2 semitones; density normalized relative to a uniform distribution).

Supplementary Table 1 Full list of model parameter values and their 95% confidence intervals

Task Group Intercept Linear Octave Tritone Perfect σo

Similarity (melodies) Non-musicians 0.12± 0.02 0.64± 0.05 0.12± 0.02 0.01± 0.01 0.01± 0.01 0.63
Similarity (melodies) Musicians 0.07± 0.05 0.21± 0.07 0.43± 0.05 0.00± 0.01 0.03± 0.02 0.51
Singing Non-musicians 0.21± 0.04 0.16± 0.07 0.13± 0.07 0.00± 0.00 0.00± 0.00 2.33
Singing Musicians 0.19± 0.03 0.03± 0.02 0.40± 0.08 0.00± 0.00 0.00± 0.00 2.10
Similarity (tones) Non-musicians 0.13± 0.03 1.00± 0.04 0.01± 0.02 0.00± 0.00 0.02± 0.01 0.23
Similarity (tones) Musicians −0.03± 0.11 0.42± 0.12 0.45± 0.08 0.15± 0.05 0.02± 0.06 0.06

Supplementary Table 2 Full list of evaluationmetrics and their 95%confidence intervals using split-half bootstrap over participantswith 1,000 repetitions.

Task Group R2 rdd rmm rdm r

Similarity (melodies) Non-musicians .95± .01 .99± .00 .99± .00 .98± .00 .98± .00
Similarity (melodies) Musicians .94± .02 .97± .03 .99± .03 .96± .02 .98± .00
Singing Non-musicians .54± .11 .74± .12 .94± .15 .69± .10 .82± .04
Singing Musicians .84± .09 .89± .04 .99± .01 .91± .01 .97± .01
Similarity (tones) Non-musicians .91± .01 .97± .00 .99± .00 .95± .00 .96± .00
Similarity (tones) Musicians .49± .09 .55± .07 .97± .06 .68± .05 .93± .03
Note: The measures are: R2 coefficient of determination, rdd data-data Pearson correlation, rmm model-model Pearson correlation, rdm data-
model Pearson correlation, and r data-model correlation corrected for attenuation (see Methods for full details).
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Supplementary Figure 2 Raw similarity matrices for the different behavioral paradigms considered in the paper.
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Supplementary Figure 3 Fitted model similarity matrices for the different behavioral paradigms considered.
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Supplementary Figure 4 Three-dimensional multidimensional scaling solutions for the raw unprocessed behavioral similarity matrices in Supplementary
Figure 2. Left to right: similarity judgments over melodies that differ by a transposition, free imitation of two-note melodies via singing, and similarity
judgments over pairs of isolated tones.
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