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Abstract: mRNA therapeutics are revolutionizing the pharmaceutical industry, but methods to optimize 
the primary sequence for increased expression are still lacking. Here, we design 5’UTRs for efficient mRNA 
translation using deep learning. We perform polysome profiling of fully or partially randomized 5'UTR 
libraries in three cell types and find that UTR performance is highly correlated across cell types. We train 
models on all our datasets and use them to guide the design of high-performing 5’UTRs using gradient 
descent and generative neural networks. We experimentally test designed 5’UTRs with mRNA encoding 
megaTALTM gene editing enzymes for two different gene targets and in two different cell lines. We find 
that the designed 5’UTRs support strong gene editing activity. Editing efficiency is correlated between cell 
types and gene targets, although the best performing UTR was specific to one cargo and cell type. Our 
results highlight the potential of model-based sequence design for mRNA therapeutics. 

Introduction 
mRNA therapeutics and vaccines provide a safe, effective, and flexible method of delivering transient 
genetic instructions to living cells and tissues1. Compared to plasmid or AAV-based delivery, mRNA offers 
several advantages, including simple manufacturing that is independent of the encoded therapeutic 
protein2, lower immunogenicity, and transient gene expression3,4. As a result, mRNA technology has been 
crucial for the rapid development of vaccines against the COVID-19 pandemic5,6, and is currently being 
developed for applications such as protein replacement therapy7,8, regenerative medicine9,10, and cancer 
immunotherapy11,12, among others13. An intriguing use of the mRNA platform is delivery of gene editing 
reagents3,14, because transient expression of gene editors avoids deleterious effects from prolonged 
exposure such as off-target editing4 and reduces the likelihood of forming anti-drug antibodies, thereby 
allowing for repeated dosing15. Though there are multiple gene editing platforms, single-chain compact 
enzymes such as megaTALs16 are particularly well-suited to mRNA delivery. megaTALs are fusions of a 
minimal transcription activator-like (TAL) effector domain with an engineered meganuclease. The TAL 
effector addresses the meganuclease, which has intrinsic specificity for a few genomic target sites, to a 
single site where it catalyzes the formation of a DNA double stranded break, thereby achieving high 
activity and specificity16. Because of these features, megaTALs have been developed for a number of 
therapeutically-relevant targets17–19. 
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The  recent success of mRNA vaccines and therapeutics is the result of decades of research in areas such 
as lipid nanoparticles for delivery20, modified nucleosides for decreased immunogenicity21,22, 5’-cap 
analogs for improved translation and stability23, and codon optimization24. Comparably little attention has 
been directed to optimizing untranslated regions (UTRs) despite their roles in controlling mRNA 
translation and stability. Many mRNA therapies currently utilize UTRs from the alpha- and beta-globin 
genes or slight modifications thereof, owing to being well described and associated with highly expressed 
proteins1,13. However, increased protein expression has been observed in a few studies when using 
alternative UTRs25–28, demonstrating the remaining untapped potential to optimize expression. A major 
obstacle is the difficulty in predicting the effects of arbitrary UTR sequences, as some cis-regulatory 
elements can affect multiple molecular processes29 and interact with RNA-binding proteins30 and 
microRNAs31,32 that may even be differentially expressed across tissues. Recently, quantitative models 
based on deep learning that predict translation efficiency33,34 and mRNA stability35 from sequence have 
started to emerge. Using these to guide UTR sequence design for mRNA therapeutics remains an intriguing 
yet relatively unexplored alternative36 (Figure 1A). 

The 5’UTR sequence in particular is a major determinant of translation efficiency and thus an intriguing 
target for engineering37–39. To initiate translation, the ribosomal 43S pre-initiation complex (PIC) scans the 
5’UTR in the 5’-to-3’ direction until a start codon is found. Therefore, 5’UTRs can affect translation by 
capturing PICs prematurely via upstream start codons (uAUGs) and ORFs (uORFs)38,40, interfering with PIC 
scanning via stable secondary structure39, or even directly recruiting ribosomes via Internal Ribosome 
Entry Sites (IRESs)41. Some 5’UTR cis-regulatory elements are exclusively located within a few bases from 
the 5’ end. For example, 5’-Terminal Oligo Pyrimidine (5’TOP) motifs consisting of a cytosine at position 
+1 followed by 4 to 15 pyrimidines42, 5’TOP-like motifs located within four nucleotides of the transcription 
start site43, and pyrimidine-rich translational elements (PRTEs) consisting of a uridine flanked by 
pyrimidines44,45 upregulate translation in response to mTOR activation during stress and have been linked 
to cancer initiation and progression. Transcriptome-wide translation measurements in a panel of cell 
lines46 and during neuronal differentiation47 have suggested that 5’UTRs regulate translation in a mostly 
cell type-independent manner whereas 3’UTRs have a greater cell type-specific effect. However, some 
5’UTRs have been observed to act in a cell type-specific manner, for example during embryo 
development48,49.To predict the influence of 5’UTR sequence on translation, we previously developed 
Optimus 5-Prime, a convolutional neural network trained on translation efficiency measurements from a 
synthetic reporter library of 280,000 random 5’UTRs33. However, there are limitations to Optimus 5 Prime. 
First, the reporter design included a constant 25 nt-long region at the very 5’ end of the transcript and 
Optimus 5 Prime may  not have learned to properly model the influence of sequence elements specific to 
this region42–45. Moreover, the overall length of the tested 5’UTRs was 75 nt (25 fixed and 50 random nt) 
in most of our experimental assays while for mRNA technology applications it may be desirable to shorten 
the 5’UTR to minimize the overall transcript length and to reduce the likelihood of unintentionally 
including cis-regulatory information that impacts mRNA stability or translation.  Second, predictive models 
used for mRNA therapeutics sequence design should aim to be accurate in all cell types and tissues where 
the therapy is expected to be functional but it is unclear whether Optimus 5 Prime predictions can 
generalize beyond HEK293T cells, where our reporter assays were conducted. Third, while we previously 
used Optimus 5 Prime to guide the design of synthetic 5’UTRs, these sequences were validated through 
GFP expression and ribosome loading experiments but not in a functional assay relevant to mRNA therapy 
or related applications33. 
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In this study, we designed de novo 5’UTRs for an mRNA-encoded gene editing application using Optimus 
5-Prime. We first sought to characterize whether Optimus 5-Prime generalized to two new cellular 
contexts relevant to mRNA therapeutics. We targeted cultured hepatocellular carcinoma (HepG2) cells as 
a proxy for liver cells, for which protein replacement8, regenerative50, and gene editing51 mRNA therapies 
are currently being developed. Additionally, we characterized T cells, where therapeutic mRNA has been 
used for transient expression of chimeric antigen receptors (CAR)52 and to express gene editors to knock 
out specific receptors during manufacturing of allogeneic CAR T cells53. Moreover, to study 5’UTR 
regulation specific to the 5’ terminal region, we constructed and characterized new mRNA reporter 
libraries with shorter, 25nt or 50nt-long, completely randomized 5’UTRs, and used the resulting data to 
train a new predictor, Optimus 5-Prime(25). Finally, we designed 5’UTRs for mRNA-delivered megaTAL 
gene editing therapeutics. We used both versions of Optimus 5-Prime along with two design methods we 
recently developed: Fast SeqProp, based on gradient descent optimization54, and Deep Exploration 
Networks (DENs), based on generative neural networks55. We synthesized megaTAL-encoding mRNAs 
with our designed 5’UTRs, conducted gene editing assays in K562 cells, and found that 24 out of 29 de 
novo UTRs designed to maximize translation resulted in high editing efficiency compared to endogenous 
controls for two different megaTALs. Furthermore, maximum editing activity was achieved with one of 
the DEN-designed 5’UTRs for one of the megaTAL targets. Our results highlight the potential of current 
sequence design methods for mRNA therapeutics and outline limitations of our current translation 
predictive models. 

Results 
Optimus 5-Prime predictions generalize to cells relevant to mRNA therapeutics 
We performed Massively Parallel Reporter Assays (MPRAs) to measure translation efficiency from our 
previously developed 5’UTR reporter library in HepG2 and T cells (Figure 1B), following an identical 
procedure as we did with HEK293T33 (Methods). Briefly, our library comprised in vitro transcribed (IVT) 
mRNAs, with a 5’UTR containing an initial constant 25nt-long segment followed by a 50nt-long fully 
random region, an EGFP CDS, and a 3’UTR derived from the bovine growth hormone (BGH) gene. We 
transfected the IVT mRNA library and, after an 8 hour incubation period, extracted cell lysates in the 
presence of the translational inhibitor cycloheximide, performed polysome profiling to separate polysome 
fractions, and sequenced each fraction. As a proxy for translation efficiency, we calculated the Mean 
Ribosome Load (MRL) for each 5’UTR, by multiplying the normalized read count on each fraction by the 
corresponding number of ribosomes33. 

After filtering for sequences with at least 100 reads in all datasets, we obtained translation measurements 
from 204,803 5’UTR variants in common across five replicates over three cell types, with similar quality 
and read coverage (Supplementary Figure 1A and B). Analyzing a subset of the 20,000 sequences with 
the highest coverage, we found MRLs to be highly correlated across cell lines (Figure 1C, Supplementary 
Figure 1C), with coefficients of determination between cell lines (r2 = 0.837-0.870 for HEK293T versus T 
cells and r2 = 0.847-0.871 for HEK293T versus HepG2) comparable to those across replicates from the 
same cell line (r2 = 0.938 for HEK293T replicates and r2 = 0.814 for T cell replicates, Supplementary Figure 
1C). While r2 decreased as we included more sequences with lower coverage, likely an artifact of 
decreasing data quality, their relationship across cell lines was maintained (Supplementary Figure 1D). 

Next, we compared these measurements to Optimus 5-Prime predictions (Figure 1D). While the highest 
correlation was observed with HEK293T measurements (r2 = 0.937 on 20,000 sequences with the highest 
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read coverage held out from training, Figure 1E), correlations with measurements in T cells and HepG2 
were also high (r2 = 0.841 and 0.840 respectively). Prediction accuracy did not consistently increase when 
retraining Optimus 5-Prime individually in each cell line (Supplementary Figure 2) or when training a single 
multi-output model to predict on all cell lines simultaneously (Supplementary Figure 3). Finally, given that 
the most influential known regulatory elements are composed of three letters (AUG, CUG, GUG, etc), we 
investigated whether any 3-mers could have differential effects over MRL in different cell types. To this 
end, we trained simple 3-mer-with-position linear models on each replicate (Supplementary Figure 4A,B) 
and analyzed the resulting weights, but failed to find any cell line differences beyond those present in 
replicates of the same cell line (Supplementary Figure 4C). Together, these results show that observations 
from our polysome profiling MPRA in HEK293T, as well as predictions from Optimus 5-Prime, generalize 
to HepG2 and T cells. 

De novo designed 5’UTRs enable high gene editing efficiency from megaTAL-encoding mRNAs 
Next, we used Optimus 5-Prime to design de novo 5'UTRs, with the goal of maximizing megaTAL 
expression from mRNA vectors and therefore improving gene editing efficiency. Specifically, we used 
megaTALs designed to disrupt two genes whose knockout in engineered T cells enhance antitumor 
activity56,57. The first megaTAL targeted exon 6 of the TGFBR2 gene, which codes for the TGF-β receptor 
II, a receptor for the TGF-β cytokine with prominent roles in development, regeneration, immune cell 
differentiation, and cancer58,59. Our second megaTAL targeted exon 1 of the PDCD1 gene, which codes for 
the signaling receptor Programmed Cell Death Protein 1 (PD-1) which acts as an inhibitory checkpoint 
during T cell activation60.  

We designed 19 de novo 5’UTRs and selected 11 control sequences, incorporated them into megaTAL-
encoding mRNAs, and quantified their performance via gene editing assays (Figure 2A, B). Our controls 
included eight sequences previously measured in our polysome profiling MPRA33, including four with low 
or medium measured MRLs as well as four selected from the top 0.02% by measured MRL (Supplementary 
Figure 5A). As additional controls, we included the 5’UTR sequences of the human VAT1 and LAMA5 genes 
which were identified in a prior gene editing screen as the best performing natural 5’UTRs. In previous 
MPRA measurements33 these UTRs showed high translation efficiencies similar to the commonly-used 
beta-globin UTR (top ~20% among ~17,000 short endogenous, Supplementary Figure 5B). We 
alsoincluded a minimal 5’UTR consisting of nothing more than a strong Kozak sequence61, which we had 
previously found to result in high editing efficiency. All UTRs were preceded only by the initial guanine 
triplet inserted by IVT. 

De novo 5’UTRs were designed using either Fast SeqProp54 or DENs55 (Figure 2A). To preserve Optimus 5-
Prime prediction accuracy, 5’UTR architecture was kept identical to the MPRA library used for training: a 
constant 25nt-long initial region followed by a variable 50nt segment. In Fast SeqProp, a candidate 
sequence is iteratively refined by following the gradient of the Optimus 5-Prime-predicted MRL with 
respect to a continuous representation of the sequence. By following the gradient instead of scoring 
multiple random mutations at each step, Fast SeqProp can design high performing sequences hundreds 
of times faster than simulated annealing or genetic algorithms, though it may still get stuck in local optima 
or overfit the predictor54. Although out-of-frame uAUGs are unlikely to occur in high fitness sequences, 
in-frame uAUGs could result in high predicted MRL but would produce an incorrect N-terminus. Therefore, 
we included a penalty against generated uAUGs (Methods). To reduce the possibility of overfitting, we 
scored designed sequences using an independently trained linear k-mer model (Methods, Supplementary 
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Figure 6). By following this procedure, we generated ten candidate sequences, from which we randomly 
selected four to be tested in our gene editing assays.  

To design sequences with DENs, we trained a generative neural network with the objective of maximizing 
Optimus 5-Prime-predicted MRL while minimizing the similarity across generated sequences (Methods, 
Supplementary Figure 7A-B). By explicitly minimizing similarity, we force the generator to capture a large 
section of the sequence space, thereby reducing the possibility of overfitting or getting stuck in local 
optima55. We generated 1,024 5’UTRs and selected 5 from the top 20 by predicted MRL for gene editing 
experiments (Supplementary Figure 7C-E). In addition, to validate the accuracy of the design method and 
predictor, we trained a DEN in “inverse regression” mode, where the generator receives an additional 
input that specifies a target MRL (Supplementary Figure 8A-B), and designed four 5’UTRs with predicted 
MRLs of 2, 3.5, 5, and 6.5 for experiments (Supplementary Figure 8C-F). 

As design algorithms seek to maximize performance, they may drift into low-confidence sequence space 
regions of the predictor, where sequences are too dissimilar from the training data and predictions are 
less accurate. To prevent this, we trained a Variational Auto Encoder (VAE)62, a neural network that learns 
the marginal distribution of the training data and estimates the likelihood of any new sequence with 
respect to this distribution. We then used the estimated likelihood as a regularization penalty to the cost 
function in both Fast SeqProp and DEN (Figure 2A, Supplementary Figure 9A-F, Methods). Specifically, 
we trained a VAE on a subset of 5,000 5’UTRs selected from our MPRA dataset for their high measured 
MRL and read depth (Supplementary Figure 9G). We then designed ten additional sequences via Fast 
SeqProp with VAE regularization and selected four for gene editing assays. Finally, we trained a new DEN 
with VAE regularization, generated 1,024 sequences with high predicted MRL, and picked two from the 
top 10 for gene editing assays (Supplementary Figure 10). In summary, 19 de novo 5’UTRs were selected 
for gene editing assays, including 15 sequences designed for maximal MRL (4 with Fast SeqProp, 4 with 
Fast SeqProp + VAE, 5 with DEN, 2 with DEN + VAE), as well as 4 UTRs with low and medium target MRLs 
designed with a DEN. The sequences of all 5’UTRs tested in gene editing assays can be found in 
Supplementary Table 1. 

To evaluate the performance of our designs, we synthesized IVT mRNA containing candidate 5’UTRs 
followed by the megaTAL CDS, transfected these at four dosage levels (0.25, 0.5, 1, and 2 pmol IVT mRNA) 
into K562 (lymphoblast) cells, and quantified the percentage of successful non-homologous end joining 
(NHEJ)-mediated gene disruption via sequencing (Figure 2B, Methods). As expected, editing efficiency 
increased with mRNA dosage for all 5’UTRs, with several designs exceeding 40% for the TGFBR2 and 80%  
for the PDCD1 megaTALs at 2 pmol mRNA (Figure 2C top, Supplementary Figure 11A top, Figure 2D). 
Editing efficiencies normalized against the Strong Kozak control (hereafter Kozak-normalized efficiencies) 
were highly consistent across all dosage levels (Figure 2C bottom, Supplementary Figure 11A bottom). 
Most of the assayed sequences showed editing efficiencies comparable to the Strong Kozak control. 
However, 50% of the Fast SeqProp-generated sequences showed lower editing efficiencies despite having 
high predicted MRL, regardless of VAE regularization. Kozak-normalized editing efficiencies were highly 
correlated with predicted MRL over all designed 5’UTRs (Figure 2E, Supplementary Figure 11B), although 
Fast SeqProp-derived sequences with low editing efficiency deviated from the linear trend the most. While 
we found these observations to hold for both TGFBR2 and PDCD1 megaTALs (Figure 2F), the specific 
5’UTRs resulting in maximal editing differed: LAMA5 performed the best and VAT1 performed similarly to 
the Strong Kozak control with the TGFBR2 megaTAL, whereas the opposite was true for PDCD1 (Figure 
2F). Finally, we repeated our assay in HepG2 cells and, while the general trends in Kozak-normalized 
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efficiency were maintained (Figure 2G), absolute efficiency was lower and measurement variability was 
higher (Supplementary Figure 12).  

Measuring translation efficiency of short, fully variable 5’UTRs 
5'UTR regulation may differ when sequence elements are placed close to the 5' terminus. For example, 
various pyrimidine-rich motifs have been found to influence translation in response to stress when located 
within a few bases of the 5' end42–45. Our previous 5'UTR MPRA was unable to interrogate this region, as 
a fixed 25nt segment was placed at the 5' end to facilitate library preparation (Figure 1B). To overcome 
this limitation, and to enable design of shorter 5'UTRs, we performed polysome profiling MPRAs on two 
new “random-end” mRNA libraries, where the 5’UTR consisted only of a variable 25nt or 50nt region 
preceded only by the guanine triplet introduced by IVT (Figure 3A). As with our previous 50nt “fixed-end” 
library (Figure 1B), we transfected these random-end mRNA libraries into HEK293T cells and collected 
lysates 12h later. To compensate for a lack of a constant 5’ end for PCR-based incorporation of sequencing 
adapters, we used template switching (TS), wherein a reverse transcriptase derived from the Moloney 
murine leukemia virus appends three non-templated deoxycytosines after reaching the 5’ end of the 
template mRNA. Then, a template switching oligo with three riboguanines (rGrGrG) in its 3’ end binds to 
the non-templated overhang, thereby becoming the new reverse transcription (RT) template and 
providing a fixed cDNA sequence for subsequent adapter incorporation (Figure 3A, Methods). We then 
performed Illumina sequencing and data processing (Methods), and calculated MRLs from read counts as 
previously33. 

We performed two biological replicates with the 25nt random-end library and obtained good-quality (sum 
of reads across replicates greater than 100) MRL measurements from 168,000 distinct UTRs 
(Supplementary Figure 13A, B). Inter-replicate MRL correlation was good (r2 = 0.692 for the top 20,000 
sequences by read coverage, Supplementary Figure 13C, D), although lower than our previous “fixed-
end” 50nt library (r2 = 0.938, Supplementary Figure 1D). Similarly, we performed one replicate with the 
50nt random-end library, and obtained MRL measurements from 149,000 sequences at the same quality 
level (Supplementary Figure 14). As with our previous fixed-end library, we found that 5’UTRs with uAUGs 
out of frame with respect to the intended AUG had significantly lower MRL compared to the median of 
the library and with sequences with in-frame uAUGs (Supplementary Figure 15A). A similar effect, 
although of much lower magnitude, was observed for upstream non-canonical start codons 
(Supplementary Figure 15B, C). Interestingly, MRL attenuation was noticeably lower when the uAUG was 
located near the 5’ end in the random-end libraries, suggesting distinct regulation at the very 5’ end 
compared to the rest of the 5’UTR that could not be captured in our previous fixed end library 
(Supplementary Figure 15A, Figure 3B). 

Next, we evaluated the effect of short pyrimidine tracts (5 x C/U) at different locations within the 5’UTR 
on measured MRL, using data from both random-end and fixed-end library data (Figure 3C, 
Supplementary Figure 16). We found that pyrimidine tracts generally led to a small but statistically 
significant MRL increase compared to the library median (Supplementary Figure 16). For both libraries, 
we observed a noticeable decrease in effect size with increasing distance of the pyrimidine tract from the 
5’ end (Figure 3C, Supplementary Figure 16). Therefore, our data is consistent with oligopyrimidine tracts 
at the start of the transcript resulting in slightly increased translation in HEK293 cells even in the absence 
of stressors. 
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Predicting translation efficiency from short, fully variable 5’UTRs 
We next sought to obtain a model that generates accurate predictions on 25nt-long 5’UTRs. We evaluated 
candidate models via their prediction accuracy on the top 2,000 sequences by read coverage from the 
random-end 25nt MPRA library, which showed good inter-replicate correlation (r2 = 0.844, 
Supplementary Figure 13D). We first tested Optimus 5-Prime, for which 25nt-long input sequences were 
one-hot encoded and zero padded on the left to reach the required input length. However, we found its 
accuracy to be relatively low (r2 = 0.564 for 50nt Optimus 5-Prime, Supplementary Figure 17!, r2 = 0.600 
for 25-100nt Optimus 5-Prime, Supplementary Figure 17B). We hypothesized that these models, trained 
on data from 5’UTRs with a constant 5’ region, could not properly account for differential regulatory 
effects that sequence elements can have when located near the start of the transcript (Figure 3B and C). 
Thus, we developed Optimus 5-Prime(25), a new model trained directly on the random-end 25nt MRPA 
data. Inspired by the convolutional network VGG-1663, Optimus 5-Prime(25) contains two blocks with two 
convolutional layers and one pooling layer each, followed by two fully connected dense layers that 
ultimately compute the predicted MRL (Figure 3D, Methods). This model showed good performance on 
the same test set which was held out from training (r2 = 0.806, Figure 3E).  

Designed short 5’UTRs enable high megaTAL-induced gene editing activity 
Finally, we used Optimus 5-Prime(25) to design 14 shorter 5’UTRs for our megaTAL mRNAs. As before, we 
used Fast SeqProp to design ten new 5’UTRs with maximal predicted MRL, validated these against an 
independent k-mer linear model (Supplementary Figure 18, Methods), and randomly selected four for 
gene editing assays. We then trained a DEN to generate 1,024 25nt-long 5’UTRs that maximize both 
sequence diversity and predicted MRL, and selected 5 from the top 25 by MRL (Supplementary Figure 19, 
Methods). To test the effect of VAE regularization, we trained a new VAE on 5,000 high-coverage, high 
MRL sequences from the 25nt random-end library (Supplementary Figure 20, Methods). We then used 
VAE estimated likelihood as a regularization term to design ten additional 5’UTRs using Fast SeqProp 
(Supplementary Figure 18), and randomly selected two for gene editing assays. Similarly, we trained a 
new DEN with VAE regularization to generate 1,024 5’UTRs with maximal predicted MRL, from which we 
selected two from the top 10 (Supplementary Figure 21). As controls specific to this shorter 5’UTR design, 
we included four 5’UTRs from the random-end 25nt library with MRLs within the top 0.25% of the library 
(Supplementary Figure 22). 

We tested these new designs with our gene editing assay in K562 as described above (Figure 2B, 
Methods). As with our previous designs, editing efficiency increased with mRNA dosage (Figure 4A, 
Supplementary Figure 23 top). When normalizing against the Strong Kozak control, we found that most 
of our designed 5’UTRs performed comparably to the high performing controls at all mRNA dosages, with 
exception of one of the Fast SeqProp designs (Figure 4B, Supplementary Figure 23 bottom). Moreover, 
when targeting the TGFBR2 gene, one DEN-designed sequence outperformed all other UTRs at all mRNA 
dosages (absolute efficiency of 55.6% at 2 pmol mRNA), improving over the previous best performer 
LAMA5 by 18-33% (Figure 4C). When considering both defined-end and random-end designs, Kozak-
normalized editing efficiency was highly correlated across the TGFBR2 and PDCD1 megaTALs (Figure 4D). 
However, the DEN-designed sequence that showed the highest efficiency with the TGFBR2 megaTAL 
performed only as well as the Strong Kozak control when combined with the PDCD1 megaTAL (absolute 
efficiency of 80.8% at 2 pmol mRNA), with the VAT1 control performing best in this context (absolute 
efficiency of 91.4% at 2 pmol mRNA, Figure 4D, Supplementary Figure 23). Finally, we repeated these 
experiments in HepG2 cells and found high Kozak-normalized efficiencies for all new designs, although 
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high replication noise prevented us from identifying a single best performing sequence (Figure 4E, 
Supplementary Figure 24). In conclusion, by using model-based design methods with Optimus 5-
Prime(25), we successfully generated de novo 5’UTRs that supported high gene editing activity, including 
one that outperformed all others for the TGFBR2 megaTAL. 

Discussion 
In this study, we obtained MRL measurements from approximately 200,000 randomized 5’UTRs across T 
cells and HepG2 cells. We found that measurements were highly correlated between the two cell types 
and with measurements previously performed in HEK293T cells (Figure 1C, Supplementary Figure 1C). 
Accordingly, all measurements were accurately predicted by Optimus 5 Prime, a model trained on 
HEK293T cell data only.  Retraining Optimus 5-Prime on data from each cell line did not consistently 
improve performance (Supplementary Figure 2). Previous MRL measurements from endogenous 
transcripts in a panel of cell lines46 and during neuronal differentiation47 found that 5’UTRs regulate 
translation mostly independently of the cellular context. Our results suggest that this is also true for 
synthetic 5’UTRs and in cells relevant for mRNA therapeutics. 

To quantify the impact of the very 5’end of the message we then developed MPRAs with shorter, fully 
randomized 5’UTRs, where only three guanines at the 5’ end are kept constant due to restrictions in T7-
based IVT (Figure 3A). This approach allowed us to observe that out-of-frame uAUGs have a smaller 
inhibiting effect when located close to the 5’ end (Figure 3B), whereas poly-C/T tracts have a small 
enhancing effect that increases with proximity to the 5’ end as well (Figure 3C, Supplementary Figure 16). 
Previous work has observed that multiple types of oligo pyrimidine tracts have a marked effect over 
translation when located at or near the 5’ end, especially in response to stress or mTOR activation42–45. 
Possibly because of these 5’-proximal regulatory effects, Optimus 5-Prime predictions were not as 
accurate as for the original libraries which contained a constant 25nt region at the 5’end to facilitated 
library preparation (Supplementary Figure 17). Nevertheless, we were able to train a new model, Optimus 
5-Prime(25), specific to 25 nt-long fully variable 5’UTRs (Figure 3D-E).  

Additionally, we used model-based design to generate de novo 5’UTRs for strong expression of mRNA-
encoded megaTALs, supporting absolute gene editing efficiencies in K562 cells exceeding 40% when 
targeting the TGFBR2 gene (Figure 2C, D, Figure 4A, C) and 80% for PDCD1 (Supplementary Figure 11, 
Supplementary Figure 23). Notably, most of our designs  resulted in high editing efficiencies, matching or 
exceeding the performance of 5’UTRs taken from the top 0.02% of the random MPRA libraries (Figure 2C, 
Figure 4B). Furthermore, one of our designs resulted in a TGFBR2 editing efficiency up to 50% higher than 
all controls (Figure 4B), though this effect was not maintained with the PDCD1-targeting megaTAL (Figure 
4D, Supplementary Figure 23). Designs targeting intermediate MRLs also were found to conform to their 
target values, providing further support for the design approach (Figure 2E). Together, these results 
suggest that model-based design can very reliably maximize a computational predictor. Moreover, using 
both gene editing experiments and translation MPRAs we showed that the impact of 5’UTR sequences are 
broadly correlated across different cell types. but mechanisms that fully maximize expression are ORF- 
and possibly even cell type-dependent. Lu and coworkers recently used a high-throughput assay to test a  
library of 5’UTRs designed via a random forest model and a genetic algorithm64, and also observed that 
the strongest performers varied across CDSs and cell lines. However, their 5’UTRs were placed in the 
context of a DNA expression cassette and could therefore also influence transcription, making direct 
comparisons with our results difficult. 
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Overall, DEN-designed sequences performed better than those designed with Fast SeqProp. While the low 
number of sequences tested prevents us from making confident comparisons across methods, our results 
are consistent with Fast SeqProp being more likely to converge to solutions outside the sequence 
subspace where MRL predictions are accurate, because it optimizes each sequence independently. In 
contrast, the DEN generator network is forced to learn a representation of a large portion of the high-MRL 
sequence subspace, aided by the training penalty against any two generated sequences being too similar. 
DENs may  therefore be less likely to converge to low-confidence sequence subspaces. Alternatively, these 
observations could also be the result of different selection strategies. With DENs, we generated 1,024 
sequences per condition and chose 2-5 with the highest predicted MRL for gene editing assays. In contrast, 
with Fast SeqProp, we designed 10 sequences per condition but randomly chose 2-5 for megaTAL 
experiments. 

Although designed 5’UTRs reliably mediated editing efficiencies comparable to the best controls, only one 
designed UTR outperformed controls by a clear margin. There are several possible reasons for this 
apparent upper bound on performance. First, we note that accurate out-of-distribution predictions are 
notoriously difficult, and the design algorithms may simply not be able to access regions of the sequence 
space that are not explored by the training data. Second, we can speculate that very efficient translation 
is a default behavior and the role of 5’UTRs is often to downregulate translation to a level that is sufficient 
in a specific biological context. This would be consistent with our observation that a minimal 5’UTR 
consisting primarily of a strong Kozak sequence results in close to maximal editing efficiencies (Figure 2C, 
Figure 4B). Third, it is possible that our polysome profiling assay has limited resolution at the higher end, 
as it is difficult to resolve polysome peaks at around 8 and higher, which may have obscured potential 
differences at the upper MRL end in our translation assays. Fourth, our methods do not account for 5’UTR 
effects on mRNA stability, which could negatively affect megaTAL expression. Previous work has showed 
that mRNA can be destabilized by 5’UTRs with both low29 and high28 translation efficiencies, highlighting 
the need for models that take into account both phenomena to optimize expression. However, our editing 
efficiencies were uncorrelated with mRNA half-life predictions made with Saluki, a state-of-the-art neural 
network predictor35 (Supplementary Figure 25A and B). Furthermore, Saluki predictions suggest that 
short 5’UTR regions are unlikely to affect mRNA half-life dramatically (Supplementary Figure 25C). 
However, since Saluki was trained on endogenous transcript datasets, its predictive accuracy on synthetic 
sequences is currently unknown. Finally, processes downstream of megaTAL translation, including nuclear 
import and DNA cleavage kinetics, may limit gene editing efficiency. 

In summary, we used deep learning methods to engineer 5’UTRs that resulted in strong gene expression 
of a genome editing mRNA therapy. While most of our designs enabled strong gene editing activity, our 
ability to identify and design outperformers for all ORFs and cell lines of interest is still restricted. This 
limitation may be overcome by training predictive models on data from MPRAs that interrogate the 
interactions between 5UTR, ORF, and 3’UTR sequences, reliably measure top-end translation efficiency, 
and potentially characterize other biomolecular phenomena such as mRNA stability. 

Methods 
Polysome profiling in HepG2 cells 
HepG2 cells were cultured in EMEM + 10% FBS. The cells were in culture prior to the experiment, passage 
conditions were 20 mL media and cells at 2e5/mL into a T-75 flask, and cells were allowed to expand for 
3 days prior to transfection. Cells used were at passage 6. IVT mRNA corresponding to the 5’UTR 50nt 
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“fixed-end” library was taken from our previous work33. 1 ug IVT mRNA was transfected into one million 
cells with the Lonza 4D Nucleofector, following the manufacturer’s protocol. Cell lysis was performed 8 
hours later, followed by polysome profiling, library preparation, and Illumina sequencing as previously 
described33. 

Polysome profiling in T cells 
T cells were enriched from peripheral blood mononuclear cells (PBMCs) isolated via Ficoll-Paque gradient 
centrifugation from healthy donors. Activation was performed with anti CD3/CD28 antibodies in the 
presence of IL-2. Salt solution and lysis buffer for polysome profiling were prepared as previously 
described33. IVT mRNA corresponding to the 5’UTR 50nt “fixed-end” library synthesized as part of our 
previous work33 was used here. 1 ug IVT mRNA was transfected into one million cells with the Lonza 4D 
Nucleofector, following the manufacturer’s protocol. Transfected cells were plated in T cell growth 
medium (TCGM) at 1 million cells/mL and incubated at 37C, 5% CO2. 8 hours later, cycloheximide was 
added dropwise to the media to a final concentration of 100 ug/mL and incubated for 5 additional 
minutes. Cells were then spined down at 1500 rpm for 5 min and the supernatant was discarded. 300 uL 
of cold lysis buffer was used to resuspend the cells, and the mixture was incubated on ice for 10 minutes. 
Cells were then triturated by passing the mixture through a 25-gauge needle ten times. The mixture was 
spined down at 16,000 rpm for 5 min at 4C and the supernatant was transferred to another tube. 1.5 uL 
of 1U/uL DNAse was added, the mixture was set on ice for 30 minutes, and stored at -80C. Polysome 
profiling, library preparation, and Illumina sequencing were performed as previously described33. 

Construction of random-end 5’UTR MPRA libraries 
Our previously constructed vector pET28-IVT-Fixed-AgeI-EGFP-NheI33, containing a T7 promoter followed 
by the 25nt-long defined 5’UTR prefix and the EGFP CDS, was amplified with primers “Bri035 FP EGFP 
START” (TGGGCGAATTAAGTAAGGGC) and “Bri042_RP_T7” (CCCTATAGTGAGTCGTATTAATTTCGCG). This 
resulted in a linear dsDNA backbone with the complete original vector sequence except for the 25nt-long 
defined 5’UTR fragment. Random 50nt- and 25nt-long 5’UTRs were introduced by assembling 200 ng of 
backbone with 10 pmol of primer Bri036_T7_N50_ATG 
(TAATACGACTCACTATAGGGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNATGGGCGAATTAAGTAAGGG) or Bri043_T7_N25_ATG 
(GCGAAATTAATACGACTCACTATAGGGNNNNNNNNNNNNNNNNNNNNNNNNNATGGGCGAATTAAGTAAG
GGCGAGGAGCTGT), respectively, using the NEBuilder HiFi DNA Assembly Master Mix (NEB). 20 uL 
reactions were incubated at 50C for 1 hour to increase assembly yield. Next, water was added to reach a 
total volume of 100 uL per reaction, and purification was performed using the column-based DNA Clean 
& Concentrator 5 (Zymo) with elution in 7uL dH2O. Each library was split in two and transformed 
separately into 5-alpha cells (NEB, 3.5uL DNA in 35uL cells). Plasmid library isolation, IVT template 
synthesis, and IVT were performed as previously described33. 

Polysome profiling of random-end 5’UTR libraries 
Transfection, cell lysis, polysome profiling, and RNA extraction were performed as previously described33. 
Extracted RNA was eluted in 11 uL RNase-free water. Library preparation comprised reverse transcription, 
template switching, and qPCR amplification, all of which were performed separately for each polysome 
fraction. For reverse transcription, we first mixed 10.5 uL of purified RNA with 2 uL of 2 uM RT primer 
(AGGGACATCGTAGAGAGTCGTACTTANNNNNNNNNNAGATGAACTTCAGGGTCAGC, where Ns comprise the 
UMI) and 2uL of 10mM dNTP mixture (NEB), incubated the mixture at 65C for 5 minutes, and placed on 
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ice for at least one minute. Then, we added 4 uL Maxima RT buffer, 0.5 uL Superase-In RNAse inhibitor 
(Thermo Fisher), and 1 uL Maxima RT RNaseH minus Enzyme (Thermo Fisher), incubated at 50C for 15 
min, then 85C for 10 min, and transferred back to ice. Next, we added 1 uL RNase (from bovine pancreas, 
DNase free, Roche) and 1 uL RNase H (NEB) and incubated at 37C for 15 minutes. Finally, the product was 
cleaned with KAPA beads (Roche) with a 3x ratio of beads to DNA volume, and resuspended in 25 uL dH2O. 
For template switching, we added 8 uL Maxima RT buffer, 6 uL 50% PEG-8000, 0.5 uL Superase-In, 1 uL 
Maxima RT RNaseH minus enzyme, and 0.5 uL of 10 uM template switching oligo 
(AAGCAGTGGTATCAACGCAGAGTACATrGrGrG). This mixture was incubated at 42C for 30 minutes, then 
85C for 10 minutes. Next, 1uL RNase (Roche) and 1uL RNase H (NEB) were added and the mixture was 
incubated at 37C for 15 minutes. Finally, the product was cleaned with 3x KAPA beads and resuspended 
in 20 uL dH2O.  qPCR amplification was performed using the KAPA HiFi master mix (Roche) with forward 
primers AATGATACGGCGACCACCGAGATCTACAC[8nt-long index 
barcode]AGCGTGACAGGGACATCGTAGAGAGTCGTACTTA and reverse primers 
CAAGCAGAAGACGGCATACGAGAT[8nt-long index barcode]AAGCAGTGGTATCAACGCAGA, where the 
barcodes were specific to each polysome fraction. qPCR reactions were stopped before reaching 
saturation and purified via gel extractions. Prepared and barcoded libraries corresponding to all polysome 
fractions of both random-end 25nt replicates and the one 50nt replicate were pooled into a single library 
for sequencing. Sequencing was performed in an Illumina NextSeq 500 with the NextSeq 500/550 v2 High 
Output 75 cycle kit. The following custom primers were used: read 1: 
GCTCCTCGCCCTTACTTAATTCGCCCAT, read 2: CACCTACGGCAAGCTGACCCTGAAGTTCATCT, index 1: 
CCCATGTACTCTGCGTTGATACCACTGCTT, index 2: TAAGTACGACTCTCTACGATGTCCCTGTCACGCT. Number 
of cycles were as follows: read 1: 59, read 2: 10, index 1: 8, index 2: 8. Read 1 data should contain the 
reverse complement of the variable 5’UTR followed by the reverse complement of the template switching 
oligo, whereas read 2 should contain the random UMI. 

Processing of polysome profiling sequencing data 
Sequencing data from the “fixed-end” MPRAs in HepG2 cells and T cells (Figure 1) was processed 
identically to our previous HEK293T data33. For the “random-end” MPRAs (Figure 3), we first generated 
fastq files from the raw instrument output via bcl2fastq with the following options: --no-lane-splitting --
minimum-trimmed-read-length 9 --mask-short-adapter-reads 9 --ignore-missing-bcls. We then used a 
custom python script to retain reads with a mean q-score greater than 25 and where the 3’ end of the 
read 1 sequence matched the expected template switching oligo with a maximum edit distance of 5. We 
then used starcode-umi to collapse UMIs. Finally, we calculated MRL from UMI counts on all polysome 
fractions as described before33. 

Synthesis of megaTAL mRNA 
Briefly, ultramers were synthesized encoding the T7 sequence, a 5’ UTR, and the first 20 bases of the 
megaTAL CDS. Template for in vitro transcription was generated via PCR with the 5’ UTR-containing 
ultramers as the forward primer and an ultramer encoding the last 20 bases of the megaTAL CDS and a 
125-base polyA tail as the reverse primer. Following plasmid degradation via DpnI, the resulting amplicon 
was isolated and purified using Ampure beads (Beckman Coulter). In vitro transcription was performed 
with ARCA co-transcriptional capping. Following DNase treatment to remove residual template, the 
resulting mRNA was purified using RNase-free Ampure beads. mRNA was run on the Fragment Analyzer 
(Agilent) to verify expected size and purity, then normalized to 500 nM and stored at -80 C until needed. 
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MegaTAL gene editing assay 
mRNA at amounts ranging from 2 pmol to 0.25 pmol was electroporated in duplicate into 100,000 K562 
or HepG2 cells per well using the Lonza 4D Nucleofector 96-well shuttle attachment. Electroporation 
conditions were optimized for mRNA transfection of the respective cell type. Following electroporation, 
cells were cultured at 37C for 72 hours. Cells were lysed in Viagen DirectPCR lysis reagent (cell) following 
manufacturer protocol to extract gDNA. 

Assessment of gene editing efficiency by amplicon sequencing 
Amplification of a ~150 bp region surrounding the megaTAL target site was performed in two PCR 
reactions. In PCR1, 1.5 uL of genomic DNA was amplified in 30 cycles using gene-specific primers 
containing Illumina overhangs. In PCR2, P5/P7 sequences and unique combinations of i5 and i7 index 
sequences were appended to yield dual-indexed amplicons in 10 PCR cycles. Samples were pooled, 
cleaned up with ampure xp beads, and normalized to 16 pM, then run on an Illumina MiSeq with 25% 
PhiX. BCL data was converted to fastq format and paired ends were merged with PEAR. Reads were 
demultiplexed and aligned using bowtie2. Editing frequency was calculated as the number of reads that 
contained insertions or deletions that included part of the 10 base window around the expected 
breakpoint divided by the total reads with a MAPQ score >20 and quality score >30. 

Training of Optimus 5-Prime (25) 
For every 5’UTR sequence in the random-end 25nt library, a weighted averaged MRL was obtained across 
replicates, with weights given by the total number of UMI reads per replicate. Sequences were then sorted 
by read depth, and those with fewer than 100 reads were discarded. The top 2,000 sequences by read 
depth were held out for testing, the next 2,000 were used for validation/early stopping, and the remaining 
193,341 were used for training. 

Model training and evaluation were done in Python 3 with tensorflow 2. Optimus 5-Prime(25) architecture 
was based on VGG-1663: it contains a number of convolutional blocks – each with two convolutional layers, 
one max pooling layer with size and stride 2, and one dropout layer – followed by a fully connected dense 
layer and a final linear node that computes the MRL. All activations except for the final node are ReLU. 
The number of convolutional filters in each block is twice the number of filters in the previous block. 
Models were trained using an MSE loss, and early stopping based on the validation loss was used. 
Hyperparameter tuning was performed with Amazon Sagemaker using their default Bayesian strategy, 
with the following parameter ranges: number of convolutional blocks: 1 - 5, kernel size: 2 - 7, number of 
filters in the first convolutional block: 16 - 128, convolutional dropout: 0 - 0.5, number of units in the final 
dense layer: 10 - 100, dropout: 0 - 0.5. The final architecture is shown in Figure 3D.  

5’UTR sequence design using Fast SeqProp 
All relevant code was run in Python 3 with keras 2.2 and tensorflow 1.15. Sequence design with Fast 
SeqProp was done as in our previous publication54. The following is a summary of design details specific 
to this study. 

For Fast SeqProp designs with the 50nt “fixed-end” architecture (Figure 2), we used a “retrained” version 
of Optimus 5-Prime initially trained on the fixed 50nt MPRA data and finetuned on sequences designed 
to maximize MRL that contained long poly-U stretches and ultimately underperformed33. The loss function 
to minimize was the sum of a fitness loss plus a sequence loss. The fitness loss was set to the negative of 
the predicted MRL. The sequence loss was set to the number of occurrences of AUGs across the generated 
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sequence. We also included a term that was set to one if an “UG” was present at the beginning of the 
designed region and zero otherwise. This is to penalize an initial uAUG since the last nucleotide of the 
fixed-end region was A. When VAE regularization was used, an additional term corresponding to the VAE 
loss was computed by passing the VAE-estimated pVAE(seq) through a margin function max(0, margin_vae 
– log(pVAE(seq))), where margin_vae = -30. The VAE loss was multiplied by a weight of 0.2 and added to 
the overall loss function. The number of gradient updates (iterations) was 20,000 for the non-VAE designs 
and 5,000 for the VAE-regularized designs. 

Fast SeqProp designs with the 25nt variable-end architecture (Figure 4) were done as above, with the 
following changes: 1) we used Optimus 5-Prime(25) (Figure 3), 2) we did not include a penalty for an initial 
UG dinucleotide, 3) margin_vae was set to -15.6, and 4) the vae loss weight was set to 0.4. 

Training of k-mer models for validation of Fast SeqProp designs 
A linear k-mer model was trained on a subset of the HEK293T 50nt fixed-end MPRA data and used as an 
additional oracle to “validate” Fast SeqProp designs (Supplementary Figure 6). Models were trained using 
the linear_model module of the scikit-learn python package. As training data, MPRA sequences were 
filtered by discarding those with fewer than 250 reads, those with uAUGs, and those starting with UG to 
avoid creating an uAUG with the last nucleotide of the fixed 5’ region which was an A. From the remaining 
125,931, sequences, 100,000 were used for training and 25,931 for testing. Next, counts of 2, 3, 4, 5, and 
6-mers were calculated, and log2(1 + kmer counts) were computed, resulting in a feature vector of size 
5,456. A Lasso model with 𝛼 = 0.001 was trained on a random subset of 50,000 sequences from the 
training data, resulting in 272 non-zero feature weights. Finally, a Ridge regression model with 𝛼 = 0.0 
was trained using only the non-zero features from the Lasso regression model. Performance on the test 
set is shown in Supplementary Figure 6B (Pearson r = 0.5213), and model predictions for sequences 
designed with Fast SeqProp are shown in Supplementary Figure 6C. 

A similar model was trained for validating Fast SeqProp designs with the 25nt random-end architecture 
(Supplementary Figure 18). Training sequences were taken from the 25nt random-end MPRA data, then 
retained only if their read count was greater than 150 and if they did not contain uAUGs. From the 
remaining 81,552 sequences, 70,000 were used training and 11,552 for testing. Calculation of feature 
vectors from kmer counts, Lasso regression, and Ridge regression were performed as above. 268 features 
with nonzero weights resulting from Lasso regression were used for Ridge regression. Performance on the 
test set is shown in Supplementary Figure 18A (Pearson r = 0.4094), and model predictions for sequences 
designed with Fast SeqProp are shown in Supplementary Figure 18B. 

5’UTR sequence design using Deep Exploration Networks 
All relevant code was run in Python 3 with keras 2.2 and tensorflow 1.15. Sequence design with Deep 
Exploration Networks (DENs) was performed as in our previous publication55. In total, we trained five 
DENs: two for maximizing MRLs in a fixed-end 50nt architecture (Figure 2), without (Supplementary 
Figure 7) and with (Supplementary Figure 10) VAE regularization, one for designing sequences with 
submaximal MRLs (“inverse regression”, Supplementary Figure 8), and two for maximizing MRLs in a 
variable-end 25nt architecture (Figure 4), without (Supplementary Figure 19) and with (Supplementary 
Figure 21) VAE regularization. DEN generator architectures, a short description of the loss function 
components, and training parameters can be found in the corresponding supplementary figures.  
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Training of Variational AutoEncoders 
VAE training and evaluation were done in Python 3 with keras 2.2 and tensorflow 1.15. Model 
architectures for the fixed-end 50nt and the random-end 25nt VAEs are shown in Supplementary Figure 
9 and Supplementary Figure 20 respectively. A high level description of how VAEs are trained and 
evaluated can be found in Supplementary Figure 9A and B. Detailed information on the loss function, 
including equations and rationale for each term, can be found in our previous publication55.  For the fixed-
end 50nt VAE, sequences for training and testing were extracted from our published fixed-end 50nt MPRA 
dataset33, by first filtering by read coverage (> 2,000 reads) and then randomly selecting 5,000 (train) and 
1,000 (test) sequences from the top 10,000 by MRL (~top 25%). For the random-end 25nt VAE, sequences 
for training and testing were extracted from the random-end 25nt MPRA dataset (Figure 3), by filtering 
by read coverage (> 500 reads) and then randomly selecting 5,000 (train) and 1,000 (test) sequences from 
the top 10,000 by MRL (~top 25%). 

Code Availability 
Models and code are available at https://github.com/castillohair/paper-5utr-design. 
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Figure 1. Massively Parallel Reporter Assays (MPRAs) to measure cell type-specific 5’UTR regulation of translation. (A) A model-
based design strategy for 5’UTRs in mRNA therapeutics applications, using neural network-based predictive models trained on 
MRPA data. (B) Summary of polysome profiling MPRA. A library with a randomized 50nt 5’UTR region was synthesized as in vitro 
transcribed (IVT) mRNA, transfected into HEK293T, T cells, and HepG2 cells, and fractionated using a sucrose gradient to separate 
mRNAs with different numbers of ribosomes. Fractions were then barcoded and sequenced, and the Mean Ribosome Load (MRL) 
was calculated for each 5’UTR variant as a proxy of translation efficiency. The resulting data contained 204,803 5’UTR variants 
with 100 or more reads in all replicates, in two replicates in HEK293T, two in T cells, and one in HepG2. (C) Comparison of MRL 
measurements across cell lines. 5’UTR variants were sorted by the minimum number of reads across all replicates, and the top 
20,000 were used for this analysis. (D) Architecture of Optimus 5-Prime, a convolutional neural network model for predicting 
MRL from 5’UTR sequence33. (E) Optimus 5-Prime predictions compared to MRL measurements in all three cell lines. The top 
20,000 5’UTRs by read count in HEK293, which were not used for model training, were used for this analysis. 
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Figure 2. Model-based design of 5’UTRs for gene-editing mRNA therapeutics. (A) Top: schematic of megaTAL mRNA vector. The 
5’UTR has the same architecture as in our MPRA (Figure 1B). Bottom: the variable 5’UTR region is designed via a combination of 
two design algorithms (Fast SeqProp54 or Deep Exploration Networks (DENs)55) and two regularization strategies (no additional 
regularization or Variational AutoEncoders (VAEs)62). (B) Schematic of gene editing experiment. megaTAL mRNA with each 5’UTR 
was individually synthesized via IVT and transfected into K562 cells. After 72 hours, DNA sequencing of the genomic region 
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targeted by the megaTAL was sequenced and the gene editing efficiency was calculated. (C) Editing efficiencies for mRNAs with 
a megaTAL targeting the TGFBR2 gene, for 30 different 5’UTR including designs and controls. Each group of four bars represents 
the editing efficiency of one 5’UTR sequence transfected at four mRNA doses (0.25, 0.5, 1, or 2 pmol mRNA). Two biological 
replicates were performed per 5’UTR and mRNA dosage, and are represented by individual markers. Colors represent the source 
in the case of controls or the design method. Top: absolute editing efficiencies. Bottom: efficiencies normalized to the Strong 
Kozak control at the corresponding mRNA dosage. Editing efficiencies for the first High MRL MPRA control, the first No VAE Fast 
SeqProp design, the second No VAE DEN design, and the third Varying MRL DEN design were close to zero only at a dosage of 
0.25 pmol mRNA, and were deemed to be the result of experimental error and excluded from subsequent analysis. (D) Absolute 
editing efficiency as a function of mRNA dosage for a few selected 5’UTRs, indicated with a vertical arrow in the bottom panel of 
(C). (E) Kozak-normalized editing efficiency of the TGFBR2 megaTAL vs. Optimus 5-Prime predicted MRL for all designed and MPRA 
control 5’UTRs. (F) Comparison of Kozak-normalized editing efficiencies when using a megaTAL targeting the TGFBR2 or the 
PDCD1 genes. (G) Comparison of Kozak-normalized editing efficiencies for the TGFBR2 megaTAL in K562 versus HepG2 cells. In 
(E), (F), and (G), each marker and error bar represent the mean and standard deviation of the Kozak-normalized editing 
efficiencies across all mRNA dosages for a particular 5’UTR. 
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Figure 3. Polysome profiling MPRA on fully randomized 5’UTR libraries. New libraries contain a 25nt- or 50nt-long randomized 
region in the 5’UTR, preceded only by the G triplet appended by IVT. (A) Schematic of mRNA library preparation based on 
template switching (TS). (i) Reverse transcription (RT) proceeds from the EGFP CDS into the mRNA 5’end. (ii) The reverse 
transcriptase (RTase) adds three deoxycytosines (CCC) to the 3’ of the cDNA, to which a TS primer ending in three riboguanines 
(rGrGrG) binds. (iii) the RTase “switches” templates, thereby adding the reverse complement of the TS primer to the 3’ end of 
the cDNA. (iv) Illumina adapters are incorporated using PCR via primers that bind to the flanking constant regions. (B-C) Median 
MRL of all sequences containing a uAUG (B) or a 5nt-long oligopyrimidine (C or U) tract (C) at the indicated position from the start 
of the transcript, for the 25nt- (yellow) or 50nt-long (orange) randomized 5’UTR libraries, as well as our previous “fixed-end” 50nt 
library (green). MRL was normalized to the median of each library. (D) Architecture of Optimus 5-Prime(25), trained on data from 
the random-end 25nt MPRA library. (E) Performance of Optimus 5-Prime(25) on a set of 2,000 5’UTRs from the random-end 25nt 
library held out from training. 
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Figure 4. Model-based design of shorter 5’UTRs for gene editing mRNA therapeutics. (A) Top: schematic of mRNA vector, with 
a 25nt-long variable 5’UTR segment as in Figure 3. Bottom: Absolute editing efficiencies for mRNAs with a megaTAL targeting the 
TGFBR2 gene, for 21 different 5’UTR including designs and controls. Each group of four bars represents one 5’UTR sequence 
transfected at four mRNA doses (0.25, 0.5, 1, or 2 pmol mRNA). Two biological replicates were performed per 5’UTR and mRNA 
dosage, and are represented by individual markers. Colors represent the source in the case of controls or the design method. 
Editing efficiencies for the first No VAE Fast SeqProp design and the second +VAE DEN design were close to zero only at a dosage 
of 0.25 pmol mRNA, and were deemed to be the result of experimental error and excluded from subsequent analysis. (B) Editing 
efficiencies normalized to the Strong Kozak control at the corresponding mRNA dosage. (C) Absolute editing efficiency as a 
function of mRNA dosage for a few selected 5’UTRs indicated with a vertical arrow in (B). (D) Comparison of Kozak-normalized 
editing efficiencies when using a megaTAL targeting the TGFBR2 gene vs. the PDCD1 gene. (E) Comparison of Kozak-normalized 
editing efficiencies for the TGFBR2 megaTAL in K562 cells or HepG2. In (D) and (E), each marker and error bar represent the mean 
and standard deviation of the Kozak-normalized editing efficiencies across all mRNA dosages for a particular 5’UTR, and designs 
with the fixed-end 50nt architecture (Figure 2 and relevant Supplementary Figures) are also included. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2023. ; https://doi.org/10.1101/2023.06.15.545194doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.15.545194
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure 1. Comparison of polysome profiling MPRA data in HEK293, T cells, and HepG2. (A) Cell lines and number 
of biological replicates. (B) Comparison of number of reads for each 5’UTR sequence across all pairs of replicates. (C) MRL 
comparison for the 20,000 5’UTR sequences with the highest minimum read coverage across all replicates. A regression line for 
each pair is shown in black along with the coefficient of determination r2. (D) r2 as a function of the number of sequences used. 
Sequences were sorted by the minimum number of reads across all replicates in descending order. Then, the top x sequences (x 
axis) were used to calculate a corresponding r2 value (y axis). The large marker and the gray lines indicate the number of 
sequences and r2 in (C). 
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Supplementary Figure 2. Optimus 5-Prime performance when retrained on cell type-specific polysome profiling data. The top 
20,000 5’UTR sequences with the highest minimum read coverage across all cell type replicates were separated for testing, and 
the remaining sequences were used for training. For every cell line and replicate indicated in each row, Optimus 5-Prime was 
retrained from scratch on the training dataset after filtering for sequences with more than 200 reads. Then, MRL predictions on 
the test dataset were generated and compared with measurements from each cell line and replicate in each column. 
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Supplementary Figure 3. Performance of a multi-output version of Optimus 5-Prime. (A) Model diagram. The architecture is the 
same as the original Optimus 5-Prime, but with a final dense layer with three outputs corresponding to each cell type. During 
training, we added an additional final layer containing learnable linear scalings to account for systematic bias of replicates of the 
same cell type. This final layer is not saved with the model after training. (B) Model performance when compared to MRL 
measurements in all cell type replicates, on a held-out test dataset containing 20,000 sequences with the highest minimum read 
coverage across all replicates. 
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Supplementary Figure 4. Analysis of 3-mer with position models across all cell type replicates. (A) Model schematic. Five 
models, one per cell line and replicate, were trained on z-normalized data using Ridge regression and a regularization coefficient 
of 1e-5. Regression weights and bias are represented by the 3,072-long vector W and the scalar b. (B) Model performance. Models 
were evaluated on the 20,000 sequences with highest read coverage on each cell line and replicate, which were held out from 
training. (C) Comparison of model parameters (3,072 weights + bias) across all five models. 
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Supplementary Figure 5. Controls for the megaTAL gene editing assays. (A) Selection of controls from the fixed-end MPRA 
library. For the “high MRL” control set, starting from the HEK293T MPRA library we excluded sequences with a read count lower 
than 1,000 or if they contained uATGs or started with TG. The remaining sequences were sorted by MRL, and four from the top 
twenty were selected. For the “submaximal MRL” control set, we similarly filtered by read count and excluded sequences with 
TG at the start, and selected four sequences with MRLs close to 2, 3.5, 5, and 6.5. Top: architecture of the MPRA library. Bottom: 
Histogram of a high-coverage (# reads > 1,000) subset of the MPRA library, along with the MRLs of all eight selected sequences. 
(B) Selection of controls from a library of short (<=100bp) human 5’UTRs measured in our previous polysome profiling study33. 
Top: architecture of the MPRA library. Bottom: histogram of a subset (16,779 sequences with # reads > 10) of the human 5’UTR 
library, along with the MRLs of the two selected sequences (VAT1, LAMA5) and the hemoglobin beta (HBB) 5’UTR commonly used 
in mRNA therapeutics. The legend indicates the MRL percentile of these three 5’UTRs compared to the rest of the library. In the 
megaTAL experiments, human 5’UTR controls did not include the initial constant 25nt, but had a consensus Kozak sequence 
(GCCACC) appended at their 3’ end. See TABLE for full sequences. 
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Supplementary Figure 6. Using a linear k-mer model to validate fixed-end 50nt-long Fast SeqProp designs. (A) k-mer model 
architecture. W is a 272-long weight vector, and b is a scalar bias. See Methods for a description of the model and training 
procedure. (B) Observed vs. predicted MRL on a held-out set of 25,931 5’UTRs with no uAUG and greater than 250 reads. Pearson 
r = 0.5213 (C) Comparison of predicted MRL for the four sequences designed via Fast SeqProp and the four sequences designed 
via Fast SeqProp with VAE regularization, when using Optimus 5-Prime or the k-mer model from panel (A). A violin plot of the 
entire MPRA library is shown on the left for comparison. K-mer model predictions from the designed sequences are within the 
top 1% compared to equivalent predictions on the entire test set shown in (B). 
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Supplementary Figure 7. 50nt 5’UTR design using Optimus 5-Prime and a Deep Exploration Network (DEN). (A) Architecture of 
the DEN generator network, which takes a continuous-valued 100-dimensional latent vector and returns a 50x4-dimesional 
continuous-valued logit representing a sequence. Convolutional and Transpose convolutional layers are represented as 
𝐶𝑜𝑛𝑣(𝐹,𝑊, 𝑆, 𝑃, 𝐴) and 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝐹,𝑊, 𝑆, 𝑃, 𝐴), where 𝐹 and 𝑊 are the number and size of convolutional filters, 𝑆 is 
the stride, 𝑃 is the padding, and 𝐴 is the activation function. (B) DEN training schematic. Only the DEN generator’s weights are 
optimized via gradient descent. As the predictor, we used a “retrained” version of Optimus 5-Prime, initially trained on the fixed 
50nt MPRA data and finetuned on sequences we previously designed to maximize MRL that ultimately underperformed33. At any 
iteration, two sequence logits are generated from two uniformly random seed vectors. Optimus 5-Prime is used to obtain an MRL 
prediction from a one hot-encoded sequence sampled from 𝑙𝑜𝑔𝑖𝑡!. The training objective to minimize is the weighted sum of the 
following components: 1) a fitness component set to −𝑀𝑅𝐿, 2) a similarity component calculated from both PWMs as follows 
𝑚𝑎𝑥=0, 𝐶𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑃𝑊𝑀!, 𝑃𝑊𝑀")– 	𝑚𝑎𝑟𝑔𝑖𝑛#$%$&'($)*B, and 3) an entropy component set as the Shannon Entropy of 
𝑃𝑊𝑀! up to a margin 𝑚𝑎𝑥 C0,𝑚𝑎𝑟𝑔𝑖𝑛+,)(-.*	–	(2	– 	𝑒𝑛𝑡𝑟𝑜𝑝𝑦)E to ensure 𝑃𝑊𝑀! is close to a one hot-encoded sequence. 
Weights for the fitness, similarity, and entropy components of the loss function were 0.1, 5, and 1. Margin values for the similarity 
and entropy terms were 0.3 and 1.8. Training was performed for 250 epochs. (C) Colormap representation of 50 5’UTR sequences 
randomly chosen from the 1,024 generated by the trained DEN. Each row represents a separate sequence, and color indicates 
nucleotide identity. (D) Distribution of edit distances per nucleotide, for 500 random pairs chosen from the MPRA library (left) or 
the 1,024 sequences generated by the DEN. (E) Distribution of MRLs measured from the MPRA library (left), or predicted by 
Optimus 5-Prime on all 1,024 DEN-generated sequences (middle) and the four selected sequences from this set (right).  
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Supplementary Figure 8. Design of 5’UTR sequences of varying MRLs using Optimus 5-Prime and an “inverse regression”-type 
Deep Exploration Network (DEN). (A) Architecture of the DEN generator network. Compared to Supplementary Figure 7, this 
network has an additional input representing the target MRL of the 5’UTR to be generated. Additionally, after being processed 
by two dense layers, this input is concatenated to the input of each convolutional layer. (B) DEN training schematic. Compared 
to Supplementary Figure 7, we additionally sample target MRL values from a uniformly random distribution during training, and 
set the fitness loss to the squared difference between the target and predicted MRL. Weights for the fitness, similarity, and 
entropy components of the loss function were 0.2, 5, and 1. Margin values for the similarity and entropy terms were 0.3 and 1.8. 
Training was performed for 100 epochs. (C) After DEN training, 1,024 5’UTR sequences covering a range of target MRLs were 
generated and compared to the MRL predicted by Optimus 5-Prime. (D) Colormap representation of 50 5’UTR sequences 
randomly chosen from the 1,024 generated by the trained DEN, sorted by predicted MRL. Each row represents a separate 
sequence, and color indicates nucleotide identity. (E) Distribution of edit distances per nucleotide, for 500 random pairs chosen 
from the MPRA library (left) or the 1,024 sequences generated by the DEN. (F) Distribution of MRLs measured from the MPRA 
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library (left), or predicted by Optimus 5-Prime on all 1,024 DEN-generated sequences (middle) and the four selected sequences 
from this set (right). 
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Supplementary Figure 9. Variational Autoencoder (VAE) to estimate the likelihood of 5’UTR sequences in the fixed-end 50nt 
MPRA. (A) Schematic of a VAE structure and function. In the VAE framework, a sequence 𝑥 originates from sampling a latent 
vector 𝑣 from a continuous prior distribution 𝑝(𝑣)~𝑁(0, 1), followed by sampling 𝑥 from the likelihood 𝑝(𝑥|𝑣). Sequences in the 
dataset used for VAE training correspond to latent vectors close to 0 and therefore more likely under the prior. Two neural 
networks allow (probabilistic) conversion between the sequence and the latent space. On one hand, an encoder accepts a one 
hot-encoded 𝑥 and returns the mean 𝜇 and log variance log(𝜎") of a normal distribution corresponding to 𝑝(𝑣|𝑥). Conversely, a 
decoder converts a latent vector into a sequence logit, which can be converted into a PWM encoding 𝑝(𝑥|𝑣). Conceptually, the 
marginal probability of a sequence 𝑝(𝑥) ≅ 𝑝/01(𝑥) is the expected cross-entropy (“distance”) between the 𝑥 and the output 
𝑃𝑊𝑀(𝑣), when 𝑣 is sampled from 𝑝(𝑣) = 𝑁(0,1). In practice, it is more efficient to sample 𝑣 from 𝑁=𝜇(𝑥), 𝜎"(𝑥)B and use a 
correction factor to account for the different distribution (importance sampling). For implementation details, see55. (B) During 
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VAE training, encoder and decoder weights are updated via gradient descent to minimize the KL-divergence between  𝑁(0,1) 
and 𝑁=𝜇(𝑥), 𝜎"(𝑥)B, as well as the cross-entropy between 𝑥 and 𝑃𝑊𝑀(𝑣), for all 𝑥 in the training set. For a more comprehensive 
description of VAE training, see 55. (C-F) Architecture of the Encoder network (C), decoder network (D), and the residual blocks 
used in the encoder (E) and decoder (F). Convolutional and transpose convolutional layers are represented as 𝐶𝑜𝑛𝑣(𝐹,𝑊, 𝑆, 𝑃, 𝐴) 
and 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠(𝐹,𝑊, 𝑆, 𝑃, 𝐴), where 𝐹 and 𝑊 are the number and size of convolutional filters, 𝑆 is the stride, 𝑃 is the padding, 
and 𝐴 is the activation function. For the 50nt VAE, a 54nt-long sequence is used where the last 4 bases are masked out with zeros. 
(G) Likelihood of different sequence sets under a VAE trained on high MRL 5’UTR sequences. Histograms were generated from 
1,000 sequences randomly selected from the full MPRA library, the VAE training and testing sets, or randomly generated in silico. 
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Supplementary Figure 10. 50nt 5’UTR design using Optimus 5-Prime, a Deep Exploration Network (DEN), and VAE 
regularization. (A) DEN training schematic. Compared to Supplementary Figure 7, we here used a VAE pretrained as shown in 
Supplementary Figure 9 to estimate the marginal 𝑝/01(𝑥) of a generated sequence 𝑥, and we add a VAE component to the loss 
function set to max=0,𝑚𝑎𝑟𝑔𝑖𝑛/01 − 𝑙𝑜𝑔=𝑝/01(𝑥)BB. Weights for the fitness, similarity, entropy, and VAE components of the 
loss function were 0.1, 5, 1, and 0.5. Margin values for the similarity, entropy, and VAE terms were 0.3, 1.8, and -30. Training was 
performed for 100 epochs. (B) Colormap representation of 50 5’UTR sequences randomly chosen from the 1,024 generated by 
the trained DEN. Each row represents a separate sequence, and color indicates nucleotide identity. (C) Distribution of edit 
distances per nucleotide, for 500 random pairs chosen from the MPRA library (left) or the 1,024 sequences generated by the DEN. 
(D) Distribution of MRLs measured from the MPRA library (left), or predicted by Optimus 5-Prime on all 1,024 DEN-generated 
sequences (middle) and the two selected sequences from this set (right).  
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Supplementary Figure 11. Performance of 50nt 5’UTR designs on the PDCD1 megaTAL. (A) Editing efficiencies for mRNAs with 
a megaTAL targeting the PDCD1 gene, for 30 different 5’UTR including designs and controls. Top: absolute editing efficiencies. 
Bottom: editing efficiencies normalized to the Strong Kozak control. Analogous to Figure 2C but with the PDCD1 megaTAL instead 
of TGFBR2. Editing efficiencies for the first High MRL MPRA control, the first No VAE Fast SeqProp design, the second No VAE DEN 
design, and the third Varying MRL DEN design were close to zero only at a dosage of 0.25 pmol mRNA, and were deemed to be 
the result of experimental error and excluded from subsequent analysis. (B) Kozak-normalized editing efficiency of the PDCD1 
megaTAL vs. Optimus 5-Prime predicted MRL for all designed and MPRA control 5’UTRs. Analogous to Figure 2E but with the 
PDCD1 megaTAL instead of TGFBR2. 
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Supplementary Figure 12. Performance of 50nt 5’UTR designs on the TGFBR2 and PDCD1 megaTALs in HepG2. (A and C) Editing 
efficiencies for mRNAs with a megaTAL targeting the TGFBR2 (A) or PDCD1 (C) genes in HepG2 cells, for 30 different 5’UTR 
including designs and controls. Top: absolute editing efficiencies. Bottom: editing efficiencies normalized to the Strong Kozak 
control. Analogous to Figure 2C and Supplementary Figure 11A but using HepG2 cells instead of K562. Only three mRNA dosage 
levels were evaluated for TGFBR2. (B and D) Kozak-normalized editing efficiencies of the TGFBR2 (B) and PDCD1 (D) megaTALs 
vs. Optimus 5-Prime predicted MRL for all designed and MPRA control 5’UTRs. Analogous to Figure 2E and Supplementary Figure 
11B but using HepG2 cells instead of K562. 
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Supplementary Figure 13. Basic analysis of random-end N25 MPRA library. (A) Sequencing read coverage for all sequences 
across two biological replicates. (B) Number of sequences resulting from a given cutoff on the total number of reads per sequence 
across both replicates. Marker indicates 168,297 sequences with at least 100 reads. (C) MRL correlation across replicates, for the 
top 20,000 sequences by read coverage. Black line represents a regression line. (D) r2 as a function of the number of sequences 
used. Sequences were sorted by the total number of reads across both replicates in descending order. Then, the top x sequences 
(x axis) were used to calculate a corresponding r2 value (y axis). The large marker indicates the number of sequences and r2 in (C).  
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Supplementary Figure 14. Read coverage as a function of the number of sequences retained in the random-end N50 MPRA. 
Marker indicates 57,165 sequences with at least 100 reads. 
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Supplementary Figure 15. Effects of upstream start codons on MRL in three MPRA libraries. Median MRL of all sequences 
containing a uAUG (A), uCUG (B), and uGUG (C) at the indicated position from the start of the EGFP ORF, for the 25nt- (yellow) 
or 50nt-long (orange) randomized 5’UTR libraries, as well as our previous “fixed-end” 50nt library (green). MRL was normalized 
to the median of each library. (A) is identical to Figure 3B but aligned to the EGFP start codon instead of the start of the transcript.  
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Supplementary Figure 16. Detailed analysis of the effects of 5’UTR polypyrimidine tracts on MRL in three MPRA libraries. (A) 
Median MRL (solid lines) and interquartile range (shaded regions) of all sequences containing 5nt-long polypyrimidine (C or U) 
tract at the indicated position from the start of the transcript. Identical to Figure 3C but with the interquartile range indicated. 
(B) Bonferroni-corrected p-values from a Mann Whitney U test of medians between the MRL of sequences that contain a 5nt-
long polypyrimidine tract at the indicated position versus sequences that do not contain 5nt-long polypyrimidine tracts at all. 
Horizontal bar indicates p = 10-25. (C) MRL of library sequences containing a 5nt-long polypyrimidine tract (C or U) within the 
random region, starting at position 1 (red bars), 2 or after (blue bars), anywhere (purple bars), or none at all (gray bars). MRLs 
were normalized to the median of each library as in (A). Bars indicate the normalized median MRL within each group. Error bars 
indicate the interquartile range. Horizontal brackets indicate Bonferroni-corrected p-values from a Mann Whitney U test of 
medians between the MRLs in each group. *: p < 10-20, **: p < 10-100. 
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Supplementary Figure 17. Performance of previously developed Optimus 5-Prime models on the random-end 25nt library. (A) 
Performance of the original Optimus 5-Prime trained on the fixed-end 50nt 5’UTR library. (B) Performance of Optimus 5-Prime - 
10033, a model with the same architecture as the original Optimus 5-Prime but trained on a 5’UTR library with a fixed 25nt 
segment followed by a variable region between 25 and 100nt long. As in Figure 3E, these models were evaluated against a test 
dataset comprised of the 2,000 sequences with the highest read coverage in the random-end 25nt MPRA library.  
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Supplementary Figure 18. Using a linear k-mer model to validate 25nt-long Fast SeqProp designs. See Methods for training and 
model details. (A) Observed vs. predicted MRL on a held-out set of 11,349 sequences with no uAUG and greater than 200 reads. 
Pearson r = 0.4094. (B) Comparison of predicted MRL for the five sequences designed via Fast SeqProp and the two sequences 
designed via Fast SeqProp with VAE regularization, when using Optimus 5-Prime(25) or the k-mer predictors. A violin of the entire 
MPRA library is shown on the left for comparison. Compared to k-mer model predictions on the entire test set shown in (A), most 
predictions on the designed sequences are within the top 1%. The exceptions are two sequences designed without VAE 
regularization, which are within the top 1.2% and 6.3%, and one VAE-regularized design, which is within the top 4.5%. 
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Supplementary Figure 19. 25nt 5’UTR design using Optimus 5-Prime(25) and Deep Exploration Networks. (A) Architecture of 
the DEN generator network, which takes a continuous-valued 100-dimensional latent vector and returns a 25x4-dimesional 
continuous-valued logit representing a sequence. Convolutional and Transpose convolutional layers are represented as 
𝐶𝑜𝑛𝑣(𝐹,𝑊, 𝑆, 𝑃, 𝐴) and 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝐹,𝑊, 𝑆, 𝑃, 𝐴), where 𝐹 and 𝑊 are the number and size of convolutional filters, 𝑆 is 
the stride, 𝑃 is the padding, and 𝐴 is the activation function. (B) DEN training schematic. Training was performed as described in 
Supplementary Figure 7 but with Optimus 5-Prime(25) (Figure 3) as the predictor. Weights for the fitness, similarity, and entropy 
components of the loss function were 0.35, 5, and 1. Margin values for the similarity and entropy terms were 0.3 and 1.8. Training 
was performed for 100 epochs. (C) Colormap representation of 50 5’UTR sequences randomly chosen from the 1,024 generated 
by the trained DEN. Each row represents a separate sequence, and color indicates nucleotide identity. (D) Distribution of edit 
distances per nucleotide, for 500 random pairs chosen from the 25nt random-end MPRA library (left) or the 1,024 sequences 
generated by the DEN. (E) Distribution of MRLs measured from the MPRA library (left), or predicted by Optimus 5-Prime(25) on 
all 1,024 DEN-generated sequences (middle) and the four selected sequences from this set (right).  
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Supplementary Figure 20. Variational Autoencoder (VAE) to estimate the likelihood of 5’UTR sequences in the 25nt random-
end MPRA. The general VAE architecture and training scheme is identical to those in Supplementary Figure 9A and B. (A-D) 
Architecture of the Encoder network (A), decoder network (B), and the residual blocks used in the encoder (C) and decoder (D). 
Convolutional and transpose convolutional layers are represented as 𝐶𝑜𝑛𝑣(𝐹,𝑊, 𝑆, 𝑃, 𝐴) and 𝐶𝑜𝑛𝑣𝑇𝑟𝑎𝑛𝑠(𝐹,𝑊, 𝑆, 𝑃, 𝐴), where 
𝐹 and 𝑊 are the number and size of convolutional filters, 𝑆 is the stride, 𝑃 is the padding, and 𝐴 is the activation function. (E) 
Likelihood of different sequence sets under a VAE trained on high MRL 5’UTR sequences. Histograms were generated from 1,000 
sequences randomly selected from the full MPRA library, the VAE training and testing sets, or randomly generated in silico. 
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Supplementary Figure 21. 25nt-long 5’UTR design using Optimus 5-Prime(25), a Deep Exploration Network (DEN), and VAE 
regularization. (A) DEN training schematic. Compared to Supplementary Figure 19, we use a VAE, pretrained as shown in 
Supplementary Figure 20, to estimate the marginal 𝑝/01(𝑥) of a generated sequence 𝑥, and we add a VAE component to the 
loss function set to max=0,𝑚𝑎𝑟𝑔𝑖𝑛/01 − 𝑙𝑜𝑔=𝑝/01(𝑥)BB. Weights for the fitness, similarity, entropy, and VAE components of 
the loss function were 0.3, 5, 1, and 0.5. Margin values for the similarity, entropy, and VAE terms were 0.3, 1.8, and -30. Training 
was performed for 100 epochs. (B) Colormap representation of 50 5’UTR sequences randomly chosen from the 1,024 generated 
by the trained DEN. Each row represents a separate sequence, and color indicates nucleotide identity. (C) Distribution of edit 
distances per nucleotide, for 500 random pairs chosen from the 25nt random-end MPRA library (left) or the 1,024 sequences 
generated by the DEN. (D) Distribution of MRLs measured from the MPRA library (left), or predicted by Optimus 5-Prime(25) on 
all 1,024 DEN-generated sequences (middle) and the two selected sequences from this set (right). 
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Supplementary Figure 22. Random-end 25nt MPRA “high MRL” controls for the megaTAL gene editing assays. (A) Starting from 
the random-end 25nt MPRA library data in HEK293T, we excluded sequences if their read count was lower than 1,000 or if they 
contained uATGs. The remaining sequences were sorted by MRL, and four from the top twenty were selected. The histogram 
shows the measured MRLs of all four control sequences, compared with a high-coverage (# reads > 1,000) subset of the MPRA 
library. 
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Supplementary Figure 23. Performance of the 25nt 5’UTR designs on the PDCD1 megaTAL. Editing efficiencies for mRNAs with 
a megaTAL targeting the PDCD1 gene, for 21 different 5’UTRs including designs and controls. Top: absolute editing efficiencies. 
Bottom: editing efficiencies normalized to the Strong Kozak control. Analogous to Figure 4A and B but with the PDCD1 megaTAL 
instead of TGFBR2.   
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Supplementary Figure 24. Performance of 25nt 5’UTR designs on TGFBR2 and PDCD1 megaTALs in HepG2. Editing efficiencies 
for mRNAs with a megaTAL targeting the TGFBR2 (A) or PDCD1 (B) genes in HepG2 cells, for 21 different 5’UTRs including designs 
and controls. Top: absolute editing efficiencies. Bottom: editing efficiencies normalized to the Strong Kozak control. Analogous 
to Figure 4A-B and Supplementary Figure 23 but using HepG2 instead of K562. 
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Supplementary Figure 25. Half-life predictions for mRNAs containing all designed 5’UTRs versus editing efficiencies. Predictions 
were made using Saluki35, a model comprised of an ensemble of 50 hybrid convolutional/recurrent neural networks. Inputs to 
the predictor are a one-hot encoded mRNA sequence, a binary sequence indicating whether each base corresponds to the first 
base of a codon in the main ORF, and another binary sequence indicating splice sites. Outputs are log half-life predictions for each 
model in the ensemble. For this analysis, the splice site sequence was set to all zeros to reflect the absence of splicing in IVT 
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mRNA. (A and B) Kozak-normalized editing efficiencies in K562 (A) and HepG2 (B) versus predicted log half-life. X coordinates of 
markers and horizontal error bars are the mean and standard deviations of Saluki ensemble model predictions. Titles indicate 
whether editing efficiencies correspond to TGFBR2 or PDCD1 megaTALs, and their respective Pearson correlation coefficients. (C) 
5’UTRs have a limited ability to tune Saluki-predicted mRNA stability. Here, we used the EGFP ORF and the BGH-derived 3’UTR to 
mimic the conditions in our MPRA assay. “Designed 5’UTRs” correspond to those in (A) and (B). “Endogenous transcripts” 
correspond to all protein-coding full transcripts from ensembl without splicing site annotations. “Full endogenous 5’UTRs” 
correspond to the same endogenous ensembl 5’UTRs along with the EGFP CDS and BGH 3’UTR. In “Truncated endogenous 
5’UTRs”, the final 50 nt of every endogenous 5’UTR was placed downstream of the constant 25 nt 5’UTR sequence from our 
MPRA library, along with the EGFP CDS and BGH 3’UTR. 
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