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Abstract 13 

Amino acid bioavailability impacts mRNA translation in a codon depending manner. Here, we report 14 

that the anti-cancer MAPK inhibitors (MAPKi) decrease the intracellular concentration of aspartate and 15 

glutamate in melanoma cells. This results in the accumulation of ribosomes on codons corresponding 16 

to these amino acids and triggers the translation-dependent degradation of mRNAs encoding 17 

aspartate- and glutamate-rich proteins mostly involved in DNA metabolism. Consequently, cells that 18 

survive to MAPKi degrade aspartate and glutamate to generate energy, which simultaneously 19 

decreases their needs in amino acids owing to the downregulation of aspartate- and glutamate-rich 20 

proteins involved in cell proliferation. Concomitantly, the downregulation of aspartate- and glutamate-21 

rich proteins involved in DNA repair increases DNA damage loads. Thus, DNA repair defects, and 22 

therefore mutations, are, at least in part, a secondary effect of the metabolic adaptation of cells 23 

exposed to MAPKi.  24 
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Introduction 1 

Some amino acids correspond to several codons, bringing a redundancy into the genetic code, which 2 

plays a role in gene product expression level. Indeed, the nature of mRNA codons affects the dynamics 3 

of ribosomes, through the time required to "decode" each codon, with consequences on translation 4 

efficiency, protein folding and mRNA co-translational degradation through the translation-dependent 5 

mRNA decay (TDD) pathway1-7. For instance, sub-optimal codons or clusters of rare codons modulate 6 

gene product expression levels in a gene- and species-selective manner1, 3, 4, 7-9. At least in humans, sub-7 

optimal and rare codons are more frequently A/T-ending codons, while optimal codons are more 8 

frequently G/C-ending codons likely because of the more unstable interactions between A/T-ending 9 

codons with their cognate anti-codons as compared to G/C-ending codons4, 10-14. 10 

While codon usage is an intrinsic parameter of gene products with respect to their 11 

translatability and stability, there are many extrinsic parameters that modulate codon-depending 12 

effects in a cell type- and context-depending manner. Among the extrinsic parameters, enzymatic-13 

dependent biochemical modifications of anti-codons have been reported to modulate the interactions 14 

between codons and anti-codons15, 16. For example, the cytosolic thiouridylase 2 (CTU2) enzyme that 15 

biochemically modifies the tRNA wobble uridine ─ thereby affecting the decoding of some A-ending 16 

codons, such as the AAA and GAA codons ─ is required for the efficient translation of a subset of mRNAs 17 

that promote survival and resistance to therapy of BRAF-mutated melanoma cells17, 18. In addition, 18 

variation in the expression levels of different classes of tRNAs can change the codon-dependent effect 19 

on gene product expression level in a cell type- and context-dependent manner19, 20. For instance, 20 

proliferative cells express higher levels of tRNAs corresponding to A/T-ending codons than 21 

differentiated cells, leading to the differential expression levels of gene products enriched in either 22 

A/T- or G/C-ending codons21, 22. Along the same line, the expression levels of aminoacyl transferases, 23 

which load amino acids onto tRNAs, can modulate the codon-dependent effects on gene product 24 

expression levels23, 24. An example is given by the leucyl-tRNA synthetase (LARS), which increases the 25 

selective loading of tRNA-LeuCAG isoacceptor and thereby affects the translatability of mRNAs 26 

containing the CAG codon25. 27 

The bioavailability of amino acids is of particular interest as an extrinsic parameter that 28 

modulates codon-dependent effects on gene product expression levels. Indeed, the dynamics of 29 

ribosomes depend in part on the intracellular concentration of loaded-tRNAs, which itself depends on 30 

the intracellular concentration of amino acids. Thus, the translation of mRNAs requiring an amino acid 31 

whose bioavailability decreases can be impacted as shown for numerous amino acids, including non-32 

essential ones such as glutamine5, 7, 26-29. As a consequence of the link between amino acid 33 

bioavailability and translation, the synthesis of proteins with amino acid composition biases depend 34 

on the cell metabolism23, 25, 28, 30, 31. For example, a large amount of proline can be produced only under 35 
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certain metabolic conditions, which therefore determines whether some proline-rich proteins of the 1 

extracellular matrix (e.g., collagen) are produced29, 32, 33. This illustrates how the cellular metabolism ─ 2 

through amino acid bioavailability ─ is coupled to the nature of cell-expressed proteins on which the 3 

cell phenotype depends.  4 

The coupling between cell metabolism and the protein-dependent cell phenotype can be 5 

illustrated by the competition between energy production and gene product biogenesis on which 6 

depends cell proliferation because some amino acids like glutamine (Gln), glutamate (Glu) and 7 

aspartate (Asp) are at the crossroads between several metabolic pathways and the gene expression 8 

process. Indeed, the carbon skeleton of these amino acids can either be degraded and end up in the 9 

production of energy, or "recycled" to synthesize other amino acids and nucleotides (and therefore 10 

gene products)34-39. As a consequence, some amino acids may either be used by the cells to produce 11 

energy through their complete degradation or be used for the synthesis of large amount of gene 12 

products as during cell proliferation. This may explain why such amino acids play a particularly 13 

important role in cancer cells, which have a high proliferation rate that requires gene product 14 

synthesis, but are in a resource-impoverished micro-environment as a consequence of cell 15 

proliferation35, 37, 40-45. Accordingly, cancers cells are often addicted to certain amino acids, such as Gln 16 

in melanoma cells37, 41, 44, 45. The link between cell metabolism and gene expression–dependent cell 17 

phenotypes could have consequences in cancer cells exposed to anti-cancer agents, such as MAPK-18 

inhibitors (MAPKi) used to treat melanoma, since these molecules modify the cancer cell metabolism46-19 
51. In other words, anticancer therapies may impact cellular phenotypes because of metabolic-20 

dependent effects on gene product expression levels. 21 

Here, we report in a melanoma cell line that MAPKi-downregulated mRNAs encode proteins 22 

enriched for certain amino acids, including Glu and Asp whose intracellular concentration decreased 23 

in MAPKi-treated cells. Interestingly, MAPKi-downregulated mRNAs encoded proteins involved in cell 24 

proliferation and DNA repair, two classes of proteins that are globally enriched in Glu and Asp residues. 25 

In line with this observation, MAPKi-treated cells show DNA repair defects. Our results therefore 26 

support a model in which the metabolic-dependent effects of MAPKi therapy could result in secondary 27 

defects of DNA repair, which could increase the probability of genetically adapted cancer cells to 28 

emerge after MAPKi therapy.  29 
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Results 1 

Compositional biases of MAPKi-regulated gene products 2 

RNA-sequencing was performed after culturing the A375 melanoma cell line for 24h in the absence or 3 

presence of a combination of BRAF- and MEK-inhibitors (hereinafter termed MAPK inhibitors [MAPKi]). 4 

The expression levels of 2010 or 1719 mRNAs were significantly decreased (downregulated mRNAs) or 5 

increased (upregulated mRNAs), respectively, in MAPKi-treated cells as compared to control cells (Fig. 6 

1a and Supplementary Table 1). Interestingly, 813 and 753 MAPKi-downregulated mRNAs encoded 7 

proteins associated with the GO terms "nucleoplasm" and "cytoplasm", respectively, and 626 MAPKi-8 

upregulated mRNAs encoded proteins associated with the GO term "Integral component of 9 

membrane" (Fig. 1a). In agreement with the fact that nucleoplasmic and cytoplasmic proteins are 10 

typically hydrophilic soluble proteins, while membrane proteins tend to be hydrophobic proteins, we 11 

noticed that the hydrophobicity index of proteins encoded by upregulated-mRNAs was higher than the 12 

hydrophobicity index of proteins encoded by downregulated-mRNAs (Supplementary Fig. 1a). This 13 

observation raised the possibility that proteins encoded by down- or up-regulated mRNAs had 14 

different amino acid composition biases. 15 

Accordingly, hydrophilic residues, such as lysine (Lys), Glu, Asp and asparagine (Asn), were 16 

enriched in proteins encoded by MAPKi-downregulated mRNAs, while hydrophobic amino acids, like 17 

tryptophan (Trp), cysteine (Cys), phenylalanine (Phe), and leucine (Leu), were enriched in proteins 18 

encoded by MAPKi-upregulated mRNA (Fig. 1b, c). Thus, proteins encoded by downregulated mRNAs 19 

contained on average 30%, 12%, 8%, and 7% more Lys, Glu, Asp and Asn residues, respectively, than 20 

proteins encoded by upregulated mRNAs, while the latter contained on average 24%, 11%, 10%, and 21 

9% more Trp, Cys, Phe and Leu residues, respectively. In addition, a larger part of MAPKi-22 

downregulated mRNAs encoded for proteins with a higher frequency of Lys, Glu, Asp and/or Asn 23 

residues, while a larger part of MAPKi-upregulated mRNAs encoded for proteins with a higher 24 

frequency of Trp, Cys, Phe and/or Leu residues (Supplementary Fig. 1b). 25 

 We next analysed the codon content of MAPKi-regulated mRNAs. Down- and up-regulated 26 

mRNAs were enriched for different sets of codons (Fig. 1d). Indeed, A/T-ending codons were enriched 27 

in MAPKi-downregulated mRNAs, while G/C-ending codons were enriched in MAPKi-upregulated 28 

mRNAs. We also noticed a selective enrichment of a subset of synonymous codons since, for example, 29 

only the GAA (but not the GAG), the GAT (but not the GAC), and the AAT (but not the AAC) codons ─ 30 

corresponding to Glu, Asp and Asn, respectively ─ were enriched in downregulated mRNAs but reduced 31 

in upregulated mRNAs (Fig. 1d, e and Supplementary Fig. 1c). 32 

 In summary, mRNAs that were down- or up-regulated by MAPKi treatment contained different 33 

codon compositional biases and encoded protein sets with different amino acid compositional biases. 34 

 35 
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Compositional biases of TDD-regulated mRNAs in response to MAPKi 1 

We next tested the possibility that MAPKi treatment could affect mRNA stability in a translation-2 

dependent manner. For this, we first measured the TDD index of mRNAs by comparing the expression 3 

level of mRNAs in cells treated or not with MAPKi, at initial condition or 3 and 5 hours after inhibition 4 

of transcription alone or after inhibition of both transcription and translation (Fig. 2a). MAPKi 5 

treatment increased the TDD index of 1390 mRNAs and decreased the TDD index of 183 mRNAs (Fig. 6 

2a and Supplementary Table 1). Although not a formal proof, this observation suggested that MAPKi 7 

could affect mRNA expression levels by modulating mRNA stability in a translation-dependent manner. 8 

 Remarkably, the Lys, Glu, Asp and Asn residues were enriched in proteins encoded by mRNAs 9 

with an increased TDD index in response to MAPKi, while other amino acids, including tryptophan (Trp), 10 

glycine (Gly), alanine (Ala), proline (Pro) and leucine (Leu), were enriched in proteins encoded by 11 

mRNAs with a decreased TDD index in response to MAPKi treatment (Fig. 2b and Supplementary Fig. 12 

2a). In addition, the majority of codons that were enriched in mRNAs with an increased TDD index in 13 

response to MAPKi was reduced in mRNAs whose TDD index decreased (Fig. 2c). Furthermore, the 14 

majority of codons that was enriched in mRNAs whose TDD index increased in response to MAPKi 15 

corresponded to A/T-ending codons, while most codons enriched in mRNAs whose TDD index 16 

decreased in response to MAPKi were G/C-ending codons (Fig. 2c and Supplementary Fig. 2b). This 17 

observation agreed with a recent report showing that the MAPK pathway modulates codon optimality 18 

of A/T-ending codons8. 19 

We noticed that MAPKi treatment increased the TDD index of a large number of mRNAs when 20 

compared to the number of mRNAs whose TDD decreased (i.e., 1390 vs. 183, Fig. 2a). In addition, a 21 

large number of MAPKi-downregulated mRNAs had a significantly increased TDD index in response to 22 

MAPKi, while the TDD index of MAPKi-upregulated mRNAs was either increased or decreased (Fig. 2d). 23 

This suggested that the TDD increase could contribute to the downregulation of a large subset of 24 

mRNAs in response to MAPKi. On the contrary, TDD does not appear to explain MAPKi-induced mRNA 25 

upregulation. Based on these considerations, we decided to focus our analyses on MAPKi-26 

downregulated mRNAs whose TDD index increased in response to MAPKi. 27 

Proteins encoded by MAPKi-downregulated mRNAs whose TDD increased had a higher 28 

frequency of Lys, Glu, Asp and Asn as compared to proteins encoded by MAPKi-downregulated mRNAs 29 

whose TDD was not affected by MAPKi (Fig. 2e, upper panel). Likewise, MAPKi-downregulated mRNAs 30 

whose TDD increased had a higher frequency of AAA (Lys), GAA (Glu), GAT (Asp) and AAT (Asn) codons, 31 

as compared to MAPKi-downregulated mRNAs with a non-affected TDD (Fig. 2e, lower panel). 32 

Collectively these observations suggested that MAPKi induced the expression level 33 

downregulation of compositionally biased mRNAs by increasing their co-translational degradation (i.e., 34 

through TDD). 35 
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Compositional biases of MAPKi-regulated ribosomal peaks 1 

To analyse the dynamics of ribosomes on mRNAs in response to MAPKi, we performed ribosome 2 

profiling experiments and then computed mRNA ribosomal peaks (Fig. 3a and Supplementary Fig. 3a). 3 

mRNA regions in which the local density of ribosomes was higher in control cells than in treated cells 4 

are referred to as CC peaks, and mRNA regions in which the local density of ribosomes was higher in 5 

treated cells than in control cells, are referred to as TC peaks. In total, 1281 CC peaks were detected in 6 

984 mRNAs in control cells, and 1974 TC peaks were detected in 1509 mRNAs in treated cells (Fig. 3a 7 

and Supplementary Table 1). 8 

 We next analysed the amino acid- and codon-composition of CC peaks and TC peaks. Some 9 

amino acids were enriched in TC peaks but reduced in CC peaks and conversely some amino acids were 10 

enriched in CC peaks but reduced in TC peaks (Fig. 3b and Supplementary Fig. 3B). For example, TC 11 

peaks contained more frequently at least one Lys, Asp, Glu and/or Asn residue than CC peaks, and the 12 

latter contained more frequently at least one Ala and/or Gly residue (Fig. 3c). Furthermore, some 13 

codons were more frequent in TC peaks than in CC peaks, while other were more frequent in CC peaks 14 

(Fig. 3d and Supplementary Fig. 3b). Interestingly, most codons enriched in TC peaks were A/T-ending 15 

codons, while most codons enriched in CC peaks were G/C-ending codons (Fig. 3d). This observation 16 

suggested that ribosomes could spend more time on A/T-ending codons in MAPKi-treated cells 17 

compared to control cells in agreement with a recent report showing that the MAPK pathway 18 

modulates codon optimality of A/T-ending codons8. In addition, a higher enrichment of TC peaks in the 19 

A/T-ending codons, like GAA (Glu), GAT (Asp), AAT (Asn), and AAA (Lys) was observed in contrast to 20 

the corresponding G/C-ending codons (Fig. 3e and Supplementary Fig. 3c). Finally, in agreement with 21 

a relationship between local density of ribosomes and translation-dependant mRNA decay, we 22 

observed that the TDD index of most MAPKi-downregulated mRNAs containing TC peaks increased in 23 

response to MAPKi (Supplementary Fig. 3d). 24 

 To summarize, amino acids such as Lys, Glu, Asp and Asn were enriched in i) MAPKi-25 

downregulated mRNAs, ii) mRNAs whose TDD increased in response to MAPKi, and iii) MAPKi-induced 26 

ribosomal peaks (Fig. 3f). Furthermore, only the A/T-ending codons (AAA, GAA, GAT, AAT) 27 

corresponding to these amino acids were enriched at the expense of the corresponding G/C-ending 28 

codons, with the exception of the AAG (Lys) codon (Fig. 3g). These data support a model in which 29 

MAPKi treatment affects the dynamics of ribosomes when going through A/T-ending codons 30 

corresponding to certain amino acids (e.g., Glu and Asp), which could trigger a selective-mRNA TDD-31 

dependant degradation.  32 
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Amino acid bioavailability and codon-dependent selective effects 1 

As the decrease in the intracellular concentration of certain amino acids can induce ribosome pauses 2 

and as the MAPK pathway in melanoma cells can affect amino acid metabolism (see Introduction), we 3 

next measured the intracellular concentration of Lys, Glu, Asp, Asn, Gln and Arg in the absence or 4 

presence of MAPKi. While the intracellular concentration of Lys, Gln and Arg was not affected, the 5 

intracellular concentrations of Glu, Asp and Asn decreased in response to MAPKi (Fig. 4a). This result 6 

raised the possibility that MAPKi could have a selective effect on mRNAs whose translation requires a 7 

relatively large amount of specific amino acids like Glu and Asp. 8 

 To challenge this possibility, we cultured melanoma cells in the absence of Asp and/or Glu. 9 

However, we did not observe any significant effect on neither Asp- and Glu-intracellular concentration, 10 

nor on cell viability (Supplementary Fig. 4a and 4b). One possible explanation is that Glu and Asp are 11 

produced from Gln provided by the growth medium. Supporting this possibility, Gln depletion from 12 

the growth medium decreased the intracellular concentration of Gln as well as Glu and Asp (Fig. 4b). 13 

Since Gln deprivation somehow mimics the decrease of Glu and Asp intracellular concentration 14 

as observed in response to MAPKi (compared Fig. 4a, b), we analyzed the effect of Gln deprivation on 15 

gene expression and ribosome profile (Supplementary Table 1). The decrease in the intracellular 16 

concentration of Gln, Glu and Asp that was induced by Gln deprivation was associated with an 17 

enrichment of some codons corresponding to these amino acids in downregulated mRNAs and in 18 

ribosome peaks induced by Gln depletion (Fig. 4c). However, in contrast to what we observed in 19 

MAPKi-treated cells, the decrease in the intracellular concentration of Glu and Asp that was induced 20 

by Gln depletion was associated with an enrichment of the G/C-ending codons (i.e., GAG and GAC) and 21 

not the A/T-ending codons (i.e., GAA and GAT) (Fig. 4c). These results suggested that the decrease in 22 

amino acid bioavailability is not sufficient to explain codon-selective effects in agreement with 23 

previous reports (see Introduction). 24 

Since aminoacyl-tRNA synthetases contribute to codon-selective effects, we inspected our 25 

RNA-seq datasets and we found that the expression level of several aminoacyl-tRNA synthetases varied 26 

in response to MAPKi treatment or in response to Gln depletion. Among these, we focused on the 27 

EPRS1 aminoacyl-tRNA synthetase, which loads Glu onto the corresponding tRNAs, because the 28 

expression level of EPRS1 was repressed in response to MAPKi but increased in response to Gln 29 

depletion, as validated by RT-qPCR (Supplementary Fig. 4c). To test the potential role of EPRS1 on 30 

codon-selective effects, A375 cells were cultured in the absence or presence of Gln and in the absence 31 

or presence of EPRS1 (Supplementary Table 1). EPRS1 depletion abolished the codon-selective effect 32 

of Gln depletion with respect to the enrichment of the GAG codon to the advantage of the GAA codon 33 

suggesting that EPRS1 could at least in part participate to the codon-selective effect observed after Gln 34 

depletion (Fig. 4d). 35 
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We also observed in our datasets that some enzymes that can modulate codon-selective 1 

effects by biochemically modifying tRNAs (see Introduction) were differentially expressed in MAPKi-2 

treated cells as compared to control cells. Among these, CTU2 caught our attention for three reasons: 3 

i) CTU2 expression was decreased in MAPKi-treated cells (Supplementary Fig. 4d); ii) an important role 4 

of CTU2 in melanoma cells has already been reported18; and iii) CTU2, which modifies uracil on position 5 

34 of some tRNAs, modulates the interactions between anti-codons and some A-ending codons, in 6 

particular the AAA (Lys) and GAA (Glu) codons18. Since we observed an enrichment of these codons in 7 

MAPKi-downregulated mRNAs, TDD-induced mRNAs, and MAPKi-induced ribosomal peaks (Fig. 3g), 8 

we tested whether the CTU2 depletion could mimic the selective MAPKi-effect. Supporting such a 9 

possibility, we first observed that CTU2 depletion resulted in the downregulation of a subset of mRNAs 10 

that were also downregulated in response to MAPKi (Fig. 4e and Supplementary Table 1). In addition, 11 

the AAA (Lys) and GAA (Glu) codons were enriched in mRNAs whose TDD was increased in CTU2 12 

depleted cells, as expected18 and as observed in MAPKi treated cells (compare Fig. 4f to Fig. 3g). 13 

In sum, our observations support a model in which the decreases in Glu and Asp bioavailability 14 

in MAPKi-treated cells resulted in an increase in the local density of ribosomes going through mRNA 15 

regions that require these amino acids to be translated (Fig. 3), which could result in translation-16 

dependent mRNA degradation (Fig. 2), and consequently in the decrease of the expression levels of 17 

mRNAs encoding for compositionally biased proteins (Fig. 1). However, selective effects of codons ─ 18 

notably A/T-ending codons corresponding to Asp and Glu ─ probably depend on several parameters, 19 

such as the expression of aminoacyl transferases or tRNA-modifying enzymes (Fig. 4, see Discussion). 20 

 21 

Protein amino acid composition biases and cellular functions. 22 

Since MAPKi treatment triggers TDD of a subset of mRNAs (Fig. 2) and since TDD is likely to be dynamic 23 

and reversible, we next wondered whether the MAPKi-dependent mRNA downregulation persists after 24 

MAPKi removal, i.e., in the so-called persister cell population. To address this question, we performed  25 

RNA-seq on persister cells (Fig. 5a and Supplementary Table 1). A large number of TDD-downregulated 26 

mRNAs that we identified in cells exposed to MAPKi (Fig. 2) was still significantly downregulated in 27 

persister cells (Fig. 5a). In addition, the MAPKi-dependent decrease in Glu-, Asp- and Asn-intracellular 28 

concentration observed in MAPKi-exposed cells was also observed in persister cells (compare Figs. 4a 29 

and 5b). Furthermore, proteins encoded by MAPKi-downregulated mRNAs that were still 30 

downregulated in persister cells were enriched in Lys, Glu, Asp and Asn (Fig. 5c, left panel) and these 31 

mRNAs were enriched in the AAA (Lys), GAA (Glu), GAT (Asp) and AAT (Asn) codons (Fig. 5c, right 32 

panel). In sum, at least some composition biases observed in mRNAs that were downregulated in the 33 

presence of MAPKi were also observed in persister cells after MAPKi removal.  34 
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 We next questioned the biological functions of the proteins encoded by the different mRNA 1 

populations. Some terms, like cell division, cell cycle, DNA repair and DNA damage, were enriched 2 

among the biological functions associated with MAPKi-downregulated gene products (Fig. 5d). Very 3 

interestingly, we noticed that the proportion of gene products associated with the proliferation and 4 

DNA repair biological functions increased among MAPKi-downregulated gene products whose TDD 5 

increased in response to MAPKi and that were still downregulated in persister cells (Fig. 5d, e). For 6 

example, ~11% of MAPKi-downregulated gene products were involved in cell proliferation and this 7 

proportion reached ~33% in MAPKi-downregulated gene products with an increased TDD and that 8 

were still downregulated in persister cells (Fig. 5d, e). Consequently, >40% of the MAPKi-9 

downregulated gene products with an increased TDD that were still downregulated in persister cells 10 

were involved in DNA metabolism (i.e., proliferation and/or DNA repair; Fig.5d, e). This result was 11 

validated by RT-qPCR and Western blot analysis since the expression level of genes involved in cell 12 

proliferation was higher in control cells (CC) compared to MAPKi-treated cells (TC) and persister cells 13 

(PC) (Fig. 5f). Of note, the expression level of pro-proliferative genes increased after nine days of 14 

MAPKi-removal (RC, Fig. 5f), a time at which persister cells gave rise to a proliferative cell population 15 

similar to the initial one. 16 

Because of these observations, we analyzed the composition biases of mRNAs encoding 17 

proteins involved in proliferation and DNA repair. Proteins involved in proliferation and DNA repair 18 

were enriched in a subset of amino acids, including Lys, Glu, Asp and Asn, as compared to the human 19 

proteome (Fig. 6a, b). In addition, mRNAs encoding proteins involved in proliferation and DNA repair 20 

were enriched in the AAA (Lys), GAA (Glu), GAT (Asp), and AAT (Asn) codons (Fig. 6b, left panel). Worth 21 

noting, the AAA (Lys), GAA (Glu), GAT (Asp), and AAT (Asn) codons were more enriched in MAPKi-22 

downregulated gene products involved in proliferation and/or DNA repair when compared to the other 23 

MAPKi-downregulated gene products (Fig. 6c). 24 

Since the expression level of mRNAs encoding proteins involved in DNA repair decreased in 25 

MAPKi-treated cells and in persister cells, as validated by RT-qPCR and Western blot analysis, while γ-26 

H2AX ─ a marker of DNA damage ─ was significantly increased in MAPKi-exposed cells (Fig. 6d), one 27 

hypothesis is that MAPKi-exposed cells may have a higher probability of accumulating DNA damage 28 

that could increase the probability of genetic mutations to appear in descendant cells. However, 29 

measuring the genetic mutational rate of MAPKi-exposed cells is challenging, as genetic mutations can 30 

only be quantified after several rounds of replication cycles, while MAPKi represses cell proliferation. 31 

In order to circumvent this difficulty, we used two complementary approaches. 32 

First, we decided to look for nucleotide variations within mRNAs. Indeed, genetic mutations 33 

are notably the consequence of nucleotide mismatches during replication that themselves are the 34 

consequence of nucleotide chemical modifications (i.e., DNA damage such as nucleotide oxidation). In 35 
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this setting, nucleotide chemical modifications can also lead to nucleotide mismatches during 1 

transcription, giving rise to the so-called transcriptional mutations52-58. In other words, unrepaired DNA 2 

damage ─ such as nucleotide chemical modifications ─ can lead to transcriptional mutations in neo-3 

synthetized mRNAs. By comparing the transcriptome of MAPKi-exposed and persister cells to control 4 

cells at the nucleotide level, we observed that the relative frequency of transcriptional mutations 5 

affecting each of the four nucleotides increased both in MAPKi-treated cells (TC) and in persister cells 6 

(PC) (Fig. 6e, upper panel). For example, there was between 5% to 20% more transcriptional mutations 7 

changing a G nucleotide into A, C or T in MAPKi-treated cells (TC) or persister cells (PC) when compared 8 

to control cells (Fig. 6e, lower panel). 9 

The second approach we used was to generate a cellular clone expressing a reporter gene that 10 

contains a TGA stop codon preventing the synthesis of the mCherry protein, that can only be expressed 11 

if nucleotide biochemical modifications ─ induced for example by mutagenic agents, such as ENU ─ 12 

result in nucleotide mismatches that change the TGA stop codon into the TGG codon coding for 13 

tryptophan59. As expected, the number of mCherry-positive cells was increased after ENU treatment 14 

regardless of the filters used in cytometry to count positive cells (Fig. 6f, upper panel). Importantly, the 15 

ENU effect was increased when cells were simultaneously exposed to MAPKi (Fig. 6f, upper panel) or 16 

when cells were first exposed to MAPKi before to be exposed to the ENU (Fig. 6f, lower panel). 17 

Collectively, our results point to a link between the downregulation of DNA repair genes in MAPKi-18 

exposed cells and a higher rate of nucleotide mismatches. 19 

 20 

Discussion 21 

The compositional biases of MAPKi-downregulated gene products that we observed (Fig. 1) could be 22 

explained at least in two ways. First, from a gene centric point of view, the MAPK pathway could have 23 

evolved to repress the transcription of genes that are involved in DNA metabolism such as DNA 24 

replication. As gene products involved in DNA metabolism bear compositional biases (Fig. 6a, b; see 25 

below), then the MAPKi-downregulated gene products would bear these function-related 26 

compositional biases. The second possible explanation, which we term a metabolic centric point of 27 

view, is that the MAPKi-dependent decrease of the bioavailability of some amino acids (e.g., Asp and 28 

Glu) results in the translation-dependent expression level decrease of Asp- and Glu-enriched gene 29 

products. Since proteins involved in DNA metabolism are enriched in Asp and Glu, then MAPKi 30 

treatment induces the expression level decrease of gene products involved in DNA metabolism in a 31 

metabolism-depending manner. As discussed below, our results and those from previous publications 32 

support this metabolic centric point of view without excluding the well-established effects of MAPKi 33 

on the transcriptional activity of genes involved in cell proliferation. 34 
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The BRAFV600E mutation-dependent hyper-activation of the MAPK pathway in melanoma cells 1 

triggers not only cell proliferation but also the cellular addiction to some non-essential amino acids, 2 

such as Gln. Indeed, in mutated melanoma cells, the carbon skeleton of Gln fuels both non-oxidative 3 

energetic metabolism and amino acid and nucleotide biosynthetic pathways on which growing cell 4 

depends35, 45, 51, 60-63. Accordingly, growth medium depletion of Gln induced Glu- and Asp-intracellular 5 

concentration decrease, while Glu- and/or Asp-depletion did not result in their intracellular 6 

concentration decrease (Fig. 4b and Supplementary Fig. 4b), probably because Glu and Asp can be 7 

generated from Gln from the growth medium45, 63. Importantly, the use of Gln, Glu, and Asp in the 8 

oxidative phosphorylation (OXPHOS) pathway, which produces energy from the complete degradation 9 

of their carbon skeleton, is reactivated by MAPKi46-51, 60. This may explain the observed Glu- and Asp-10 

intracellular concentration decrease in MAPKi-exposed cells (Figs. 4a and 5b). This together with the 11 

observed enrichment of these amino acids in i) MAPKi-downregulated mRNAs (Fig. 1b), ii) MAPKi-12 

induced TDD mRNAs (Fig. 2b), and iii) MAPKi-induced ribosomal peaks (Fig. 3b) support a model where 13 

MAPKi-dependent effects on the cellular metabolism impacts the translation-dependent mRNA 14 

expression level through the bioavailability of amino acids. 15 

While the precise codon composition bias of MAPKi-downregulated gene products is likely 16 

depending on several parameters (Fig.4 and see Introduction), the observed amino acid composition 17 

bias of MAPKi-downregulated gene products is particularly interesting as it may explain how cells 18 

“coordinate” their metabolic activity and their phenotype. Indeed, we observed that gene products 19 

involved in DNA metabolism (e.g., DNA replication) are enriched in charged amino acids such as Glu 20 

and Asp, which can be explained in different ways. First, proteins involved in DNA metabolism are 21 

hydrophilic proteins, which rely on protein enrichment in hydrophilic amino acids such as charged 22 

amino acids (Supplementary Fig. 1a). Second, proteins involved in DNA metabolism contain positively- 23 

and negatively-charged amino acids that play an important role in protein-DNA interaction64-66. Finally, 24 

proteins involved in DNA metabolism contain negatively-charged amino acids that interact with ions 25 

(e.g., Mg2+) on which depends their enzymatic activities67. Since charged-amino acids like Glu and Asp 26 

are at the crossroad between energetic- and gene product synthesis-pathways, their degradation 27 

through the OXPHOS pathway would decrease their bioavailability, with consequences on the 28 

translation of gene products involved in cell proliferation that require these amino acids. Therefore, 29 

cells that survive MAPKi treatment would be the cells that consume amino acids through the OXPHOS 30 

pathway, which simultaneously reduced their needs in terms of amino acids and nucleotides because 31 

of the metabolic-dependent lower biosynthesis of proliferation gene products. Accordingly, persister 32 

cells (i.e., non-genetically modified cells that survive anti-MAPK therapy) i) have a lower intracellular 33 

concentration of Glu and Asp as compared to the initial cell population (Fig. 5b), in agreement with the 34 
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OXPHOS pathway re-activation reported in these cells, and ii) express a low level of gene products 1 

involved in DNA metabolism (Fig. 5d–f), in agreement with their reported slow growing rate46-48, 68-73. 2 

While favoring survival versus proliferation, the MAPKi-dependent decrease in the intracellular 3 

concentration of Glu and Asp could have a secondary effect because of the expression level decrease 4 

of gene products involved in DNA repair (Figs. 5d, e and 6d), that share the same composition biases 5 

with genes involved in cell proliferation (Fig. 6a–c). The expression level decrease of gene products 6 

involved in DNA repair may seem to be of no consequence in non-dividing cells since genetic mutations 7 

can only occur during replication. However, the fact that unrepaired DNA damage can induce base-8 

pairing mismatches during transcription ─ leading to transcriptional mutations52-58  ─ could explain the 9 

observed larger number of nucleotides variations in the transcriptome of cells exposed to MAPKi 10 

compared to control cells (Fig. 6e). Interestingly, it has been proposed that transcriptional mutations 11 

could be a “pre-selection step” toward the emergence of genetically-modified and –adapted cells52-58. 12 

Indeed, if unrepaired DNA damage leads to the synthesis of mutated gene products that contribute to 13 

the survival of a cell, this cell may have a higher probability of generating genetically-modified and –14 

adapted descendant cells because the same unrepaired DNA damage could trigger a genetic mutation. 15 

Although this model is speculative with respect to the data we provided, persister cells have been 16 

proposed to be a reservoir of genetically modified and therapy-resistant cells69. 17 

In conclusion, we propose that MAPKi-induced metabolic changes result in the bioavailability 18 

decrease of amino acids such as Glu and Asp, which contributes to the expression level decrease of 19 

proteins enriched in these amino acids, including proteins involved in proliferation and DNA repair (Fig. 20 

7). The coupling between metabolism and gene expression could, as a side effect, results in the 21 

accumulation of DNA damage ─ owing to the expression level decrease of DNA repair enzymes ─ 22 

leading first in transcriptional mutations and then in genetic mutations, increasing therefore the 23 

probability of genetically-mutated and –adapted clones to emerge in response to MAPKi.  24 
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Methods  1 

Cell culture and persister cells 2 

The human melanoma A375 cell line (ATCC) was cultured at 37 °C and 5% CO2 in Dulbecco’s Modified 3 

Eagle’s medium (DMEM; Gibco) supplemented with 10% FBS, 2 mM glutamine and penicillin–4 

streptomycin. Cells were split at 80% confluence, three times a week. MAPKi-treated cells were 5 

cultured in a medium containing 1 µM vemurafenib/cobimetinib (with 500 nM vemurafenib and 500 6 

nM cobimetinib) (Euromedex) for 24 h. Glutamine-depleted cells were cultured in a glutamine-free 7 

medium for 24 h. Persister cells were obtained after being cultured for 72h in a medium containing 8 

1 µM vemurafenib/cobimetinib in three experimental batches (A–C). Batch A was harvested after 9 

three days and batches B and C were cultured in drug-free DMEM for two and nine additional days. 10 

siRNA transfections, cell harvesting, RNA extraction and qRT-PCR 11 

Two different siRNAs (Merck, Supplementary Table 2) that target constitutive exons with minimum 12 

predicted off-targets were designed and pooled together. Cells were reverse-transfected with 13 

lipofectamine RNAiMAX (ThermoFisher), following the manufacturer’s instructions. After transfection, 14 

cells were washed twice with ice-cold PBS, scraped with 1 ml of PBS and pelleted by centrifugation 15 

(500×g for 1 min at 4 °C). Cells were then suspended in 1 ml lysis buffer (10 mM Tris-HCL pH 7.5, 5 mM 16 

MgCl2, 100 mM KCl, 1% Triton X-100) and incubated on ice for 10 min. Cellular lysates were centrifuged 17 

(1000×g for 10 min, 4 °C), and the cytoplasmic supernatants were used for the subsequent 18 

experiments. RNA was extracted using TRI Reagent (Sigma), following the manufacturer’s instructions. 19 

For RT-qPCR, 1 µg of extracted RNA was retro-transcribed using the Maxima First Strand cDNA 20 

Synthesis Kit (ThermoFischer), following the manufacturer’s instructions. qPCR reactions were run in 21 

triplicate on a LightCycler 480 (Roche) in 10 µl reactions. The amino acid intracellular concentration 22 

was performed by the AltaBioscience and Xell companies. 23 

Gene annotation 24 

Bioinformatics analyses were performed using the GRCh38.p13 assembly and NCBI’s annotation. Only 25 

genes with at least one coding sequence (CDS) and one start and stop codon were kept. Merged genes, 26 

and CDS that overlap several exons or an ambiguous coding frame were filtered out. A total of 19,143 27 

coding genes and 196,652 CDS were selected. In the following analyses, the mRNAs are the 28 

concatenation of the CDS of a gene and a gene was associated with only one mRNA. 29 

RNA-seq and QuantSeq  30 

RNA-seq libraries were prepared and sequenced by Novogene (rRNA depletion library preparations, 31 

sequencing on Novaseq 6000 2x150). QuantSeq libraries were prepared using the QuantSeq 3' mRNA-32 

Seq Library Prep Kit (Lexogen). RNA (500 ng) was spiked-in with 1 µl of a 1:100 dilution of ERCC Spike-33 

In Mix (ThermoFisher) prior to library preparation. QuantSeq libraries were then quantified, pooled 34 

and sent for sequencing at Novogene (Novaseq 6000 2x150). Only fastq files containing forward reads 35 
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were used for QuantSeq analyses, while the entire pair of fastq files were used for RNA-seq analyses. 1 

Adapters were removed from raw reads and trimmed using fastp version 0.20.174  with the following 2 

parameters: qualified_quality_phred 30 -l 25 --detect_adapter_for_pe) (RNA-seq) and 3 

qualified_quality_phred 20 -3 --cut_tail_window_size 10 --4 

adapter_sequence=AGATCGGAAGAGCACACGTCTGAACTCCAGTCA –adapter_sequence=AAAAAA 5 

(QuantSeq). Reads were mapped against the human genome GRCh38.p13 with HISAT2 version 2.2.1. 6 

Reads were counted on exons with htseq-count version 0.13.5. Unexpressed genes (genes with raw 7 

read counts < 2 across all conditions) were filtered out only for RNA-seq data. Differential expression 8 

analysis was performed with the DESeq2 package version 1.34.0 using the option lfcThreshold = 0.585 9 

(only RNA-seq data). Differentially expressed genes with an average DESeq2 normalized expression 10 

above 10 across conditions were kept (only RNA-seq data). 11 

TDD experiments and analysis 12 

TDD monitoring was performed as previously described (https://doi.org/10.1101/2020.10.16.341222). 13 

Briefly, the culture medium was removed at 24h after plating cells and replaced with fresh medium 14 

containing 1 µM vemurafenib/cobimetinib (with 500 nM of each) or DMSO. After another 18 h, cells 15 

were treated with fresh cycloheximide (100 µg/ml) or DMSO for 5 min and then treated with tryptolide 16 

(25 µM) or DMSO. This was prepared in four identical batches (A–D): batch A was harvested 17 

immediately upon +/- tryptolide treatment (T0 samples), and the batches B, C and D were harvested 18 

after 3 (T3) and 5 (T5) hours of treatment, respectively. Computation of the TDD index was performed 19 

using pre-processed reads, mapped and counted with htseq-count (see above). From the raw count 20 

tables obtained with htseq-count, the CPM was computed for each gene. Then, we searched for genes 21 

with a stable expression in MAPKi and DMSO conditions for normalization. A gene was considered as 22 

stable if i) its CPM count was greater than 0.2 in initial condition, ii) its CPM count after 3 or 5 hours of 23 

transcription inhibitor treatment was at least 10% greater than its CPM at initial condition; and iii) its 24 

CPM at initial condition was greater than 10% of its CPM after 3 or 5 hours of transcription inhibitor 25 

treatment. Only “stable genes” in all replicates were kept. Stable genes were used as normalization 26 

factors in DESeq2 package to normalize reads counts. The TDD index was next computed for an mRNA 27 

produced by a gene G using the following formula: 28 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡 − 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡

𝑅𝑅0
 29 

where 𝑅𝑅0 is the normalized number of G reads at 0h (initial condition), 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡 is the normalized 30 

number of G reads after t hour of exposition to a transcription (Tci) and a translation inhibitor (Tli) and 31 

𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝑡𝑡 is the normalized number of G reads after t hour of exposition to a Tci. The TDD index was 32 

computed, for each replicate, at T3 and T5 for cells treated with MAPKi and DMSO. The TDD index 33 

according to the condition (MAPKi or DMSO), the time (T3 or T5) and the replicate was modeled using 34 
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a linear model (in R function lm) for each mRNA. With these models, a student test was computed to 1 

test if the TDD index of a mRNA increased or decreased in response to MAPKi as compared to the 2 

DMSO condition. 3 

Ribosome profiling and analysis 4 

Ribosome profiling samples were prepared as described in 5 

https://doi.org/10.1101/2022.04.29.489990. Briefly, cells were harvested with PBS and lysis buffer 6 

supplemented with 100 µg/ml cycloheximide (Sigma) and 2 mM DTT. The lysate was analysed at 7 

260 nm absorbance to estimate the total quantity of material and then treated with nucleases. For 8 

every 5 units of A260 absorbance, 6 µl of MNase (1 mg/ml; Nuclease S7, Roche) was added to the 9 

lysate, along with CaCl2 to a final concentration of 10 mM. Lysates were then incubated at 25 °C for 30 10 

min, transferred to ice and then applied to 10–50% sucrose gradients containing cycloheximide 11 

(100 µg/ml). After ultra-centrifugation at 35,000 rpm for 2h and 40 min at 4 °C, gradients were 12 

fractionated using a fraction collector, and the fractions containing the digested monosome fragments 13 

(80S) were kept. Fractions were supplemented with SDS (to a final concentration of 1%) and then 14 

digested with proteinase K (Roche, final concentration of 2 µg/ml) for 45 min at 42 C. Protected RNA 15 

fragments were then purified using an acidic phenol–chloroform extraction (Fischer, BP1753I) and 16 

precipitated overnight at –20°C with 0.1× volume of sodium acetate (3 M, pH 5.2), 1× vol isopropanol, 17 

1 µl GlycoBlue and 10 mM MgCl2 (to help recover smaller nucleic acids). Purified RNA fragments were 18 

then 3’-end dephosphorylated using PNK and fractionated on a 10% acrylamide denaturing gel, and 19 

the smears of interest (26–32 bp) were cut from the gel and purified. Size-selected fragments were 20 

rRNA-depleted by hybridization using RNA probes75, successively RNAse H– and DNAse-treated and 21 

then purified again with a phenol–chloroform extraction before proceeding to cDNA library 22 

preparation following the Omniprep Library preparation protocol76. An adaptator sequence was 23 

ligated to RNA, which was then retrotranscribed with barcoded primers. The barcoded cDNAs were 24 

size-selected on a 10% denaturing acrylamide gel, purified and then circularized (CircLigase, Lucigen). 25 

Amplification with barcoded primers was performed with a few numbers of PCR cycles (5 to 8) and a 26 

high-fidelity polymerase (Q5, NEB). Amplified libraries were size-selected on a non-denaturing 8% 27 

acrylamide gel and purified, and their quality and concentrations were assessed using the TapeStation 28 

DNA 1000 ScreenTapes. Ribosome profiling OmniPrep libraries were sequenced by GenomEast (HiSeq 29 

4000 1×50bp). After removing adapter sequences from raw reads using cutadapt version 2.1 with the 30 

parameters -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -u 13 --maximum-length=40 --31 

minimum-length=20 -q 28,28 for Ribo-seq data, and the parameters -a AGATCGGAAGAG -g 32 

CTCTTCCGATCT -A AGATCGGAAGAG -G CTCTTCCGATCT for RNA-seq data (raw reads, see “Total RNA-33 

seq and QuantSeq" section). A trimming step was then performed using UrQt version 1.0.1877, and 34 

reads were mapped to GRCh38.p13 genes sequences using HISAT2 version 2.2.178  with parameters --35 
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rna-strandness 'F' --norc for Ribo-Seq data. Next, alignment files were converted, using deepTools 1 

version 3.0.279, to bigWig files containing a count per million (CPM) mapped reads normalized coverage 2 

at one nucleotide resolution. A peak calling step and a statistical analysis were then performed. For a 3 

replicate i and a gene G, a normalized coverage cNorm was computed for a test T and a control C 4 

condition using the following formula: 5 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟𝑟𝑟(𝐺𝐺𝑇𝑇)
𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟(𝐺𝐺𝑇𝑇)

 6 

where coverageribo was obtained from Ribo-seq data, and coveragerna from RNA-seq data. Nucleotide 7 

positions at which no coverage was detected from RNA-seq data were skipped. The difference cDiffi 8 

between normalized coverage in T and C condition was then computed for each replicate i. Thus, for a 9 

number N of replicates, a set of coverage CDIFF per replicates was obtained as follows: 10 

𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 = {𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐1, . . . , 𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇 , . . . , 𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑁𝑁} 11 

The average coverage 𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇 = {𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇0, . . . , 𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝, . . . , 𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝐿𝐿−1} at each CDS position p of 12 

a gene G of length L was computed between replicates, where cMeanp was computed as follows: 13 

𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 =
∑ 𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇,𝑝𝑝𝑁𝑁
𝑇𝑇=1

𝑐𝑐
,∀0 ≤ 𝑝𝑝 < 𝐿𝐿;𝑝𝑝 ∈ 𝐶𝐶𝑇𝑇𝐶𝐶 14 

Next, the average coverage MeanCov and standard error StdMean were computed for the gene G, and 15 

a coverage threshold T was defined with 𝑇𝑇 = 𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝐶𝐶𝑐𝑐𝑐𝑐 + (𝐶𝐶𝑆𝑆𝑇𝑇𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇) × 3, where MeanCov and 16 

StdMean were computed using the formulas: 17 

𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝐶𝐶𝑐𝑐𝑐𝑐 =
∑ 𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝𝐿𝐿−1
𝑝𝑝=0

𝐿𝐿
 18 

𝐶𝐶𝑆𝑆𝑇𝑇𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇 = �∑ �𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝 − 𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝐶𝐶𝑐𝑐𝑐𝑐�
2𝐿𝐿−1

𝑝𝑝=0

𝐿𝐿
 19 

Each region at which cMean was above T was considered as a peak. Peaks inside CDS with an average 20 

coverage below 3 across RNA-seq replicates, were removed. Peaks defined by a region where the 21 

average RNA-seq coverage was below 3 were discarded. A score was given for each peak, beginning at 22 

a position s and ending at a position e in a gene. Only peaks position with a score above 3 in two 23 

replicates were kept.  The score was computed using the formula below: 24 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇 = �
∑ 𝑐𝑐𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝑝𝑝𝑒𝑒
𝑝𝑝=𝑠𝑠

(𝑇𝑇 − 𝑠𝑠)𝑇𝑇
− 1� × 100 25 

The first analysis was done by taking the MAPKi or glutamine-deprived conditions as the test condition, 26 

and the DMSO or untreated condition as the control condition, respectively. For each analysis 27 

performed with this method, another was carried out by reversing the control and test conditions. 28 
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Randomization tests were performed to test whether a set of peaks P had a codon compositional bias, 1 

or whether peptides encoded in peak regions had an amino acid bias. For this, 10,000 sets of control 2 

peaks C similar to P (same peak number and peak size) located in CDS were sampled. For each peak of 3 

P and C, the frequency of a given feature X (i.e. codon or encoded amino acid) was computed using the 4 

formula: 𝐶𝐶𝑐𝑐𝑇𝑇𝐹𝐹(𝑋𝑋) = 𝐶𝐶𝑐𝑐𝐶𝐶𝑇𝑇𝑆𝑆 (𝑋𝑋) 𝑠𝑠⁄ , where Count(X) is the number of X in a peak and s is the total 5 

number of codons in this peak. The average frequency of X,  MeanX, was then computed for P and the 6 

10,000 sets of C 𝑐𝑐𝑀𝑀𝑀𝑀𝑐𝑐𝐶𝐶 = {𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝐶𝐶1, . . . ,𝑐𝑐𝑇𝑇𝑐𝑐𝑇𝑇𝐶𝐶10000}. To calculate an empirical p-value, the 7 

number of control frequencies MeanCi upper or equal or lower or equal than the frequency MeanX was 8 

determined. The smaller number between these two was then divided by the number of control peak 9 

sets (i.e. 10,000). Note that the p-value cannot be lower than 1/10,000 to avoid multiple testing 10 

caveats. The p-value was then corrected using the Benjamini–Hochberg procedure. Figure 3E was 11 

generated with codons inside coding sequences (CDS) of genes producing transcripts that have at least 12 

one ribosome peak. Codons overlapping two different CDS were discarded from the analysis. The 13 

frequency of a given codon was computed in the CDS region overlapped by a peak. Starting from the 14 

central coordinate of the peak ((end - start)/2 rounded up), the frequency of codons was then 15 

computed up to 50 windows of 10 codons with a step of 1 upstream and downstream the peak. 16 

Compositional bias analyses 17 

To test whether the codon content of different sets of genes was different, the frequencies of each 18 

codon in genes according to their size and set was modeled with a generalized linear model for the 19 

beta distribution with zero inflation (with R glmmTMB function of the glmmTMB package using 20 

beta_family(link = "logit") parameter). Then, a Tukey’s test (pairwise comparison) for the ‘set’ factor 21 

was done (with R emmeans and pairs functions of the emmeans package). Control sets of genes 22 

correspond to expressed genes having a mean DESEQ2 normalized expression greater than 10 and not 23 

being in other tested sets. The same procedure was applied to test whether the amino acid content of 24 

different sets of proteins was different. When several codons or amino acids are displayed in a figure, 25 

an additional Benjamini-Hotchberg correction is performed. The relative frequency of a feature X was 26 

computed as follow: 27 

𝑅𝑅𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇𝐹𝐹(𝑋𝑋) =
𝐶𝐶𝑐𝑐𝑇𝑇𝐹𝐹(𝑋𝑋)𝑡𝑡 − 𝐶𝐶𝑐𝑐𝑇𝑇𝐹𝐹(𝑋𝑋)𝑇𝑇

𝐶𝐶𝑐𝑐𝑇𝑇𝐹𝐹(𝑋𝑋)𝑇𝑇
 28 

Where Freq(X)t is the average frequency of a codon or amino acid X in a test set of mRNAs or proteins 29 

and Freq(X)c is the average frequency of a codon or amino acid X in the set of mRNAs expressed in 30 

A375 cells or their encoded proteins. 31 

Functional enrichment analysis and heatmap 32 

Gene ontology (GO) enrichment analysis was performed using DAVID Ontology80. An annotation file 33 

containing GO terms and a gene association file (that links proteins to their most specific GO terms) 34 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.19.544800doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.19.544800


18 
 

were downloaded from http://geneontology.org/. A homemade tool was developed to extract all 1 

proteins associated with GO:0051301 (cell division) and GO:000628 (DNA repair). Proteins associated 2 

with child terms of these GO terms were also treated as belonging to these terms. Only child terms 3 

linked to their parents with the qualifiers ‘involved_in’, ‘located_in’, ‘is_active_in’, or ‘part_of’ were 4 

considered. In addition, proteins associated with the Uniprot keywords KW-0131 (cell cycle) and KW-5 

0227 (DNA damage) were downloaded from https://www.uniprot.org/keywords/. Only reviewed 6 

human proteins were kept. The average frequency of each amino acid in these lists of proteins was 7 

calculated using FasterDB (http://fasterdb.ens-lyon.fr/faster/home.pl). Overall, 10,000 sets of proteins 8 

were randomly sampled for each list of proteins, and the average frequency of each amino acid for 9 

each set was computed. Finally, an empirical p-value was computed for an amino acid X in a given 10 

protein list P as: 11 

𝑃𝑃𝑒𝑒𝑒𝑒𝑝𝑝 =
𝑐𝑐𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑙𝑙) + 1

10,000 + 1
 12 

where k is the number of controls sets with an average frequency of X higher or equal to P, and l is the 13 

number of controls sets with an average frequency of X lower or equal to P. For each list of proteins, 14 

the p-values were corrected using the Benjamini-Hochberg procedure and then transformed using the 15 

following formula: 𝑇𝑇 = 1 − 𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎 × 𝑠𝑠, where 𝑃𝑃𝑟𝑟𝑎𝑎𝑎𝑎 is the corrected p-value and s =1 if k > l; otherwise, 16 

s = − 1. 17 

Transcriptional mutagenesis 18 

Mapped reads files (see “RNA-seq and QuantSeq” section) were recovered and duplicated reads were 19 

removed using the program MarkDuplicates from picard toolkit version 2.18.11 (Picard Toolkit 2019. 20 

Broad Institute, GitHub Repository. https://broadinstitute.github.io/picard/) with the parameters 21 

VALIDATION_STRINGENCY=LENIENT REMOVE_DUPLICATES=true. Then, the number of mapped reads 22 

within each files were recovered using idxstats commands of samtools v1.11. Each bam file was sub-23 

sampled, using samtools v1.11, to have approximately the same number of mapped reads as in the 24 

smallest bam file. The command mpileup of the program bcftools v1.16 was used to produce bcf files 25 

using the following options: -I -d 10000 -O b -a AD. The mpileup was only performed on human exonic 26 

regions. SNP and unchanging nucleotide positions were next called using the command call from 27 

bcftools and the parameters -A -V indels -m -O b. The resulting positions were filtered by depth and 28 

quality with the command filter from bcftools and the parameters -i 'QUAL>=10 && DP>=700' -O b. 29 

Finally, these bcf files were again filtered using a homemade Python script to keep only positions that 30 

have at least 700 nucleotides of coverage depth and an alternative allele frequency lower than 5%. A 31 

transcriptional SNP was identified by REF>ALT, where REF is the nucleotide found in the reference 32 

genome at a particular position, and ALT is the nucleotide found on mapped reads at this position with 33 

REF ≠ ALT. The number X of nucleotide positions with a coverage depth greater than 700 and containing 34 
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a SNP REF>ALT was recovered. This number X was then divided by the total number of nucleotide REF 1 

with a coverage greater than 700 to obtain a proportion of sites REF with a SNP REF>ALT. Then, we 2 

tested whether the proportions of the same SNP across different conditions were different by using a 3 

logistic regression. We used the same procedure to test whether the proportion of SNP REF>* are 4 

different between conditions. A SNP REF>* corresponds to any SNP located on a given nucleotide REF 5 

with a coverage above 700 in the genome. The relative SNP frequency of a given condition compared 6 

to DMSO-treated cells was computed using the same formula as defined in “Compositional bias 7 

analyses section”. 8 

Mutagenesis reporter experiments 9 

A stable clonal A375 cell line expressing GFP and a mutated and non-fluorescent version of mCherry 10 

(CherryOFF) was obtained from retro-viral particles, prepared from the pQC-CherryOFF-GFP plasmid 11 

according to Birnbaum et al59. pQC-CherryOFF-GFP was a gift from Fangliang Zhang (Addgene plasmid 12 

#129101 ; http://n2t.net/addgene:129101 ; RRID:Addgene_129101). Genetically-modified cells were 13 

treated for 72 h with DMSO (CTRL), 1 mM ENU (+ENU, N3385, Merck), or 1 mM ENU + 1 µM 14 

vemurafenib/cobimetinib (+ENU+MAPKi). Alternatively, cells were treated with DMSO (CTRL), 1 mM 15 

ENU (+ENU), or 1 µM vemurafenib/cobimetinib (MAPKi) for 72 h before to be cultured in a drug-free 16 

medium for 6 days before to be treated with 1 mM ENU (+MAPKi+ENU) for 72 h. 17 

 18 

Data availability:  The raw NGS datasets from this study were deposited on Gene Expression 19 
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Figure 1
a A375 cells were cultured for 24h in the absence (CTRL) or in the presence of MAPKi (TC) before RNA-
sequencing. Number and GO term analysis of MAPKi-regulated genes.
b Amino acid relative frequency (%) in proteins encoded by MAPKi-regulated mRNAs. The x-axis and y-
axis correspond to the relative frequency (%) of each amino acid computed from proteins encoded by
MAPKi-upregulated and –downregulated mRNAs, respectively in comparison to the amino acid frequency
in control proteins, i.e. proteins encoded by mRNAs expressed in the A375 cells. * in red or in blue means
that the frequency of an amino acid is statistically different (beta regression analysis followed by a
Tukey’s test (pairwise comparison) FDR ≤ 0.05) when comparing control proteins to proteins encoded by
MAPKi-upregulated or –downregulated mRNAs, respectively.
c Amino acid frequency in proteins encoded by MAPKi-upregulated mRNAs (red) or by MAPKi-
downregulated mRNAs (blue). ***means that amino acids frequencies are statistically different (beta
regression analysis followed by a Tukey’s test (pairwise comparison) FDR <0.001) when comparing
proteins encoded by MAPKi-downregulated mRNAs or by MAPKi-upregulated mRNAs.
d Codon relative frequency (%) in MAPKi-regulated mRNAs. The x-axis and y-axis correspond to the
relative frequency (%) of each codon computed in MAPKi-upregulated and -downregulated mRNAs,
respectively in comparison to all other mRNAs expressed in A375 cells (control mRNAs). * in red or in
blue means that the frequency of a codon is statistically different (beta regression analysis followed by a
Tukey’s test (pairwise comparison) FDR ≤ 0.05) when comparing control mRNAs to mRNAs that were
upregulated or downregulated, respectively in MAPKi-treated cells. Green, red, orange, and blue dots
represent A-, T-, G-, and C-ending codons, respectively.
e Codon frequency in MAPKi-upregulated mRNAs (red) or in MAPKi-downregulated mRNAs (blue)
mRNAs. *** means that codons frequencies are statistically different(beta regression analysis followed
by a Tukey’s test (pairwise comparison) FDR <0.001) when comparing MAPKi-downregulated mRNAs and
MAPKi-upregulated mRNAs.
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Figure 2
a A375 cells were cultured for 18h in the absence or in the presence of MAPKi and were exposed to
transcription inhibitors (Tci) and/or to translation inhibitors (Tli) for 0, 3, or 5 h. The TDD index of each A375-
expressed mRNA was computed by subtracting the normalized-number of reads (R) obtained in the presence
of both Tci and Tli (R(Tci + Tli)) to the normalized-number of reads obtained in the presence of only Tci
(R(Tci)). This subtraction was next divided by the initial normalized-number of reads (R0).
b Amino acid relative frequency (%) in proteins encoded by mRNAs whose TDD was regulated by MAPKi. The
x-axis and y-axis correspond to the relative frequency (%) of each amino acid computed from proteins
encoded by mRNAs whose TDD index was decreased or increased, respectively in comparison to control
proteins, i.e. all other proteins encoded by mRNAs expressed in the A375 cells (control proteins). * in red or
in blue means that the frequency of an amino acid is statistically different (beta regression analysis followed
by a Tukey’s test (pairwise comparison) FDR ≤ 0.05) when comparing control proteins to proteins encoded by
mRNAs whose TDD was decreased or increased, respectively in MAPKi-treated cells.
c Codon relative frequency (%) in mRNAs whose TDD was regulated by MAPKi. The x-axis and y-axis
correspond to the relative frequency (%) of each codon computed from mRNAs whose TDD decreased or
increased, respectively in comparison to control mRNAs, i.e., all other mRNAs expressed in A375 cells. * in
red or in blue means that the frequency of a codon is statistically different (beta regression analysis followed
by a Tukey’s test (pairwise comparison) FDR ≤ 0.05) when comparing control mRNAs to mRNAs whose TDD
was decreased or increased, respectively in MAPKi-treated cells. Green, red, orange, and blue dots represent
A-, T-, G-, and C-ending codons, respectively.
d Comparison of the TDD index of mRNAs calculated in control cells or in cells treated for 24h by MAPKi. On
the left, the TDD index measured in control cells of each MAPKi-downregulated mRNA (x-axis) was plotted
against their TDD index measured in MAPKi-treated cells (y-axis). On the right, the TDD index measured in
control cells of each MAPKi-upregulated mRNAs (x-axis) was plotted against their TDD index measured in
MAPKi-treated cells (y-axis). Grey dots represent mRNAs whose TDD index was not statistically different (NS)
when comparing treated cells to control cells. Black dots represent mRNAs whose TDD index was statistically
different (S, linear regression analysis two-tailed t-test p-value ≤ 0.05) when comparing treated cells to
control cells. The gray line indicates when the TDD values are identical under the compared conditions.
e Frequency (%) of codons (on the bottom panel) and amino acids (on the top panel) in three different mRNA
populations and the three different protein sets that they produce. On the top, amino acid frequency in
proteins encoded by control (CTRL) mRNAs (i.e. expressed mRNAs without those downregulated by MAPKi),
MAPKi-downregulated mRNAs whose TDD was not increased, and MAPKi-downregulated mRNAs whose TDD
increased. On the bottom, codon frequency in control (CTRL) mRNAs, MAPKi-downregulated mRNAs whose
TDD was not increased, and MAPKi-downregulated mRNAs whose TDD increased. *** FDR< 0.001 and * FDR
≤ 0.05 in beta regression analysis followed by a Tukey’s test (pairwise comparison). NS: Not statically
significant.
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Figure 3
a A375 cells were cultured for 24h in the absence (CTRL) or in the presence of MAPKi (TC) before
performing ribosome profiling and identifying ribosomal peaks in control cells compared to treated cells
(CC peaks) or in treated cells compared to control cells (TC peaks).
b Amino acid relative frequency (%) in peptides encoded by ribosome peaks in control (CC peaks) or
MAPKi-treated (TC peaks) cells. The x-axis and y-axis correspond to the relative frequency (%) of each
amino acid computed from CC peaks or TC peaks, respectively compared to random control peaks. * in
red or in blue means that the frequency of an amino acid is statistically different (one-tailed
randomization test FDR ≤ 0.05) when comparing CC peaks or TC peaks, respectively to control peaks.
c Percentage of TC peaks (blue) and CC peaks (red) that contain different numbers (#) of Lys, Glu, Asp,
Asn, Ala or Gly residues.
d Codon relative frequency (%) in mRNA regions with a ribosome peak in control (CC peaks) or MAPKi-
treated (TC peaks) cells. The x-axis or y-axis correspond to the relative frequency (%) of each codon
computed from CC peaks or TC peaks, respectively compared to random control peaks. * in red or in blue
means that the frequency of a codon is statistically different (one-tailed randomization test FDR ≤ 0.05)
when comparing CC peaks or TC peaks, respectively to control peaks. Green, red, orange, and blue dots
represent A-, T-, G-, and C-ending codons, respectively.
e Frequencies of codons within and around ribosome peaks. The average frequencies of codons at bin 0
was computed in ribosome protected mRNA regions. The same procedure was applied for other bins
(windows of 10 codons) starting from the central coordinate of each peak. The red curve corresponds to
the values computed from CC peaks and the red shadow reflects the standard deviation of the values.
The blue curve corresponds to the values computed from TC peaks and the blue shadow reflects the
standard deviation of the values.
f Amino acid relative frequency (%) in proteins encoded by MAPKi-downregulated mRNAs, mRNAs whose
TDD increased in response to MAPKi, and in peptides encoded by regions with ribosomal peaks induced
by MAPKi (TC peaks) as described in Fig. 1B, 2B, and 3B respectively. ***FDR ≤ 0.05 (beta regression
analysis followed by a Tukey’s test (pairwise comparison) and ** FDR ≤ 0.05 (one tailed randomization
test).
g Codon relative frequency (%) in MAPKi-downregulated mRNAs, mRNAs whose TDD increased in
response to MAPKi, and in mRNAs regions with ribosomal peaks induced by MAPKi (TC peaks) as
described in Fig. 1D, 2C, and 3D respectively. ***FDR ≤ 0.05 (beta regression analysis followed by a
Tukey’s test (pairwise comparison) and ** FDR ≤ 0.05 (one-tailed randomization test).
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Figure 4
a Ratio of the intracellular concentration of Lys, Glu, Asp, Asn, Gln, and Arg in cells exposed 24h to MAPKi as
compared to control cells. * P≤ 0.05 (two-tailed paired t-test, n=4).
b Ratio of the intracellular concentration of Lys, Glu, Asp, Asn, Gln, and Arg in cells grown for 24h in the absence of
Gln compared to control cells. * P≤0.05 (two-tailed paired t-test, n=3).
c Relative frequency of G/C-ending codons (GAG, GAC, and CAG) and A/T-ending codons (GAA, GAT, and CAA)
corresponding to Glu, Asp, and Gln in mRNAs whose expression level was downregulated in glutamine-depleted cells
(-Gln) compared to all other expressed mRNAs and in ribosomal peaks induced by Gln-depletion compared to random
control peaks. ** corresponds to a Tukey’s test (pairwise comparison, FDR ≤ 0.01) and *corresponds to a one-tailed
randomization test (FDR≤ 0.01).
d Relative frequency of the GAG and GAA codons corresponding to Glu in mRNAs whose expression level was
downregulated in Gln-depleted cells (-Gln) and in mRNAs whose expression level was downregulated in Gln-depleted
cells transfected with an siRNA targeting EPRS1 (-Gln + siEPRS1). Relative frequencies were computed against all
other expressed mRNAs. Beta regression analysis followed by a Tukey’s test (pairwise comparison) FDR ≤ 0.01 (**) or
< 0.001 (***).
e The log2 fold change of the expression level of each MAPKi-downregulated mRNAs (x-axis) was plotted against the
log2 fold change of their expression level in siCTU2-transfected cells compared to control cells (y-axis). Black dots
represent mRNAs whose expression level was significantly (DESeq2 adjusted p-values≤ 0.05, n=3) decreased by at
least 50% (while still having an average normalized expression level greater than 10) when comparing siCTU2-
transfected cells to control cells.
f Relative frequency of the A/T-ending codons (AAA and GAA) corresponding to Lys and Glu in mRNAs whose
expression level was downregulated and in mRNAs whose TDD increased in siCTU2-transfected cells. *** beta
regression analysis followed by a Tukey’s test (pairwise comparison, FDR < 0.001).
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Figure 5
a A375 cells were cultured for 72h in the absence of MAPKi (CTRL) or in the presence of MAPKi (TC). Some treated
cells were next grown for a supplementary 48h in the absence of MAPKi (persister cells, PC). The log2 fold change of
each MAPKi-downregulated and TDD-induced mRNAs (x-axis) was plotted against the log2 fold change of their
expression level when comparing persister cells (PC) to control cells (y-axis). Black dots represent mRNAs whose
expression level was significantly (DESeq2 adjusted p-values ≤ 0.05, n=3) decreased by at least 50% (while still having
an average normalized expression level greater than 10) when comparing persister cells to control cells.
b Ratio of the intracellular concentration of Lys, Glu, Asp, Asn, Gln, and Arg in persister cells (PC) compared to control
cells (CTRL). *P< 0.05 (two-tailed paired t-test, n=3).
c Relative frequency (%) of Lys, Glu, Asp and Asn (left panel) computed from proteins encoded by mRNAs
downregulated in both MAPKi treatment and persister cells when compared to proteins encoded by all other
expressed mRNAs. Relative Frequency (%) of the AAA, GAA, GAT, and AAT codons (right panel) of mRNAs
downregulated in both MAPKi treatment and persister cells when compared to all other expressed mRNAs.
***FDR<0.001, **FDR≤0.01, *FDR≤0.05 (beta regression analysis followed by a Tukey’s test (pairwise comparison)).
d Number and functional term analysis of genes whose i) mRNAs were downregulated in response to MAPKi, ii)
mRNAs were downregulated in response to MAPKi and whose TDD was increased, and iii) mRNAs were
downregulated in response to MAPKi and whose TDD was increased and that were downregulated in persister cells.
e Percentage of genes that are associated with the proliferation and/or DNA repair cellular functions. The black line
indicates the % obtained from the MAPKi-downregulated mRNA population.
f RT-qPCR and western blot analysis in control cells (CC), cells treated for three days with MAPKi (TC), cells treated for
three days with MAPKi before being cultured in drug-free medium for two days (PC) or for 9 days (RC). * P< 0.05 (two-
tailed paired t-test, n=3).
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Figure 6
a Heat map representing the amino acid relative frequency in proteins involved in different cellular functions as
indicated when compared to amino acid average frequency in the human proteome.
b Frequency of amino acids (left panel) and codons (right panel) computed from control genes (CTRL) or genes
involved in proliferation or in DNA repair. The black line indicates the CTRL mean value. ***FDR<0.001 and
**FDR≤0.01 (beta regression analysis followed by a Tukey’s test (pairwise comparison). NS: not statistically significant.
c Frequency of codons computed from control (CTRL) mRNAs, MAPKi-downregulated mRNAs encoding proteins not
involved in proliferation or replication (MAPKi-downregulated mRNAs#), MAPKi-downregulated mRNAs encoding
proteins involved in proliferation (MAPKi-downregulated mRNA_Proliferation), or MAPKi-downregulated mRNAs
encoding proteins involved in DNA repair (MAPKi-downregulated mRNA_DNA Repair). The black line indicates the
CTRL mean value. ***FDR <0.001, **FDR≤0.01, *FDR≤0.05 (beta regression analysis followed by a Tukey’s test
(pairwise comparison)). NS: not statistically significant.
d RT-qPCR and western blot analysis in control cells (CC), cells treated for 3 days with MAPKi (TC), cells treated for 3
days with MAPKi before to be grown in drug-free medium for 2 days (PC) or for 9 days (RC). *P<0.05 (two-tailed
paired t-test, n=3).
e The schematic representation on the left describes how DNA damages (grey asterisk, e.g. DNA chemical
modifications) can lead, in the absence of DNA repair, to transcriptional mutations (grey triangle) owing to nucleotide
mispairing. Transcriptional mutations were quantified by comparing at the nucleotide level the transcriptome of
control cells to the transcriptome of MAPKi-treated cells (TC) or persister cells (PC). The top panel represents the
relative % of A, C, G, and T nucleotides that are more frequently mutated to another nucleotide in MAPKi-treated
cells (TC) or persister cells (PCs) compared to control cells. The bottom panel represents the relative % of G
nucleotides that are more frequently mutated to another nucleotide in MAPKi-treated cells (TC) or in persister cells
(PC) when compared to control cells. *** Logistic regression analysis FDR < 0.001 (n=3).
f The schematic representation on the left describes how DNA damages (grey asterisk, e.g. DNA chemical
modifications induced by ENU) can lead, in the absence of DNA repair, to nucleotide mispairing that transforms a stop
codon (preventing mCherry synthesis) into a tryptophan codon (allowing mCherry synthesis). The top panel
represents the quantification of the number of cells expressing mCherry either under control conditions (CTRL), after
exposure to ENU (+ENU), or after exposure to ENU in the presence of MAPKi (+ENU+MAPKi) (n=4). The bottom panel
represents the quantification of the number of cells expressing mCherry either under control conditions (CTRL), after
exposure to ENU (+ENU), or after exposure to MAPKi for 72h before being exposed to ENU (+MAPKi+ENU) (n=5). Low,
high, and very high correspond to different filters used in cytometric analysis to detect positive cells (i.e. cells
expressing mCherry). *P<0.05 and **P<0.01 (one-tailed paired t-test).
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Figure 7
By switching the cell metabolism and decreasing the bioavailability of certain amino acids such as
glutamate and aspartate, MAPKi could trigger ribosome pause sites on some mRNA regions enriched for
codons corresponding to glutamate and aspartate, which in turn could trigger the selective degradation
of a subset of mRNAs according to their compositional biases in certain codons and corresponding
amino acids. Since the biological functions of proteins depend on their composition in certain amino
acids, the selective degradation of mRNAs according to their compositional bias would affect a selective
set of functions such as proliferation and DNA repair. Since, the downregulation of compositionally-
biased gene products persists in cells after MAPKi withdrawal, the selective degradation of
compositionally-biased mRNAs could simultaneously contribute to the appearance of slow-proliferative
cells that would have a higher probability to generate mutated daughter cells.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.19.544800doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.19.544800


Sup Fig S1A

0 20 40 60 80 100
Bins

Hy
dr

op
ho

bi
ci

ty
 in

de
x

(K
yt

e
an

d 
Do

ol
itt

le
) 1.5

0.5

-0.5

-1.5

Proteins encoded by downregulated mRNAs
Proteins encoded by upregulated mRNAs

B Proteins encoded by downregulated mRNAs Proteins encoded by upregulated mRNAs

Amino acid Frequency

Trp Phe Leu0.5

0.3

0.1

0.15

0.25

0.05

0.15

0.1

0.05

5 10 1502 4 601 2 30 8

Glu Asp
0.15

0.1
0.05

0.2

0.3

0.1

2 4 60 85 100

De
ns

ity

Lys0.15

0.1

0.05

4 8 120

0.2

downregulated mRNAs upregulated mRNAsC

Supplementary Figure 1
a Hydrophobicity index of proteins encoded by MAPKi-regulated mRNAs. On the left, hydrophobicity scale defined by Kyttle and 
Doolittle (“A simple method for displaying the hydropathic character of a protein” J Mol Biol. 1982 May 5;157(1):105-32.PMID: 
7108955 DOI: 10.1016/0022-2836(82)90515-0). On the right, averaged-hydrophobicity index of proteins ─ divided into 100 bins ─ 
that were either encoded by MAPKi-upregulated mRNAs (in red) or by MAPKi-downregulated mRNAs (in blue). The red- and blue-
background represent the variability (standard deviation) of the hydrophobicity index insight each of the two protein groups. The 
bottom black lines represent the statistical analysis (two-tailed t-test FDR ≤ 0.05) computed at each position.
b Distribution curves of the proportion (density) of proteins encoded by MAPKi-upregulated mRNAs (red) or by MAPKi-
downregulated mRNAs (blue) as a function of the frequency of Lys, Glu, Asp, Trp, Phe, or Leu. Shifting the curves to the right 
means that a higher proportion of mRNAs in a given mRNA population has a higher frequency of a given amino acid.
c Relative frequency of codons in MAPKi-downregulated mRNAs and MAPKi-upregulated mRNAs when compared to the 
frequency of codons in A375-expressed mRNAs. ***FDR<0.001, **FDR≤0.01, *FDR≤ 0.05 (beta regression analysis followed by a 
Tukey’s test (pairwise comparison)).
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Supplementary Figure 2
a Amino acid frequency in proteins encoded by mRNAs whose TDD index increased or 
decreased in response to MAPKi. *** and * mean that the frequency of an amino acid is 
statistically different (beta regression analysis followed by a Tukey’s test (pairwise 
comparison) FDR ≤ 0.05 (*), <0.001 (***)) between proteins encoded by mRNAs whose TDD 
increased and proteins encoded by mRNAs whose TDD decreased in response to MAPKi. 
b Codon frequency in mRNAs whose TDD index increased or decreased in response to 
MAPKi. *** means that codons are statistically different (beta regression analysis followed 
by a Tukey’s test (pairwise comparison) FDR <0.001) between mRNAs whose TDD increased 
and mRNAs whose TDD decreased in response to MAPKi.
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Supplementary Figure 3
a Principle of the computational strategy to measure CC peaks and TC peaks (see Methods).
b Amino acid (left panel) and codon (right panel) frequency in CC peaks and in TC peaks. *** means that codons or amino acids 
counts are statistically different (zero inflated negative binomial regression analysis FDR < 0.001) between TC peaks and in CC 
peaks. 
c Frequencies of codons within and around ribosome peaks. The average frequencies of codons at bin 0 was computed in ribosome 
protected mRNA regions. The same procedure was applied for other bins (windows of 10 codons) upstream and downstream 
starting from the central coordinate of each peak. The red curve corresponds to the values computed from CC peaks and the red
shadow reflects the standard deviation of the values. The blue curve corresponds to the values computed from TC peaks and the
blue shadow reflects the standard deviation of the values.
d Comparison of the TDD index of mRNAs measured in control cells to the TDD index of mRNAs that are downregulated by MAPKi 
treatment and that contain ribosomal TC peaks. The TDD index measured in control cells of each MAPKi-downregulated mRNA 
whose TDD increased (x-axis) was plotted against the TDD index measured in MAPKi-treated cells (y-axis). Grey dots represent 
mRNAs whose TDD index was not statistically different (NS) when comparing treated cells to control cells. Black dots represent 
mRNAs whose TDD index was statistically different (S, linear regression analysis t-test p-value ≤ 0.05) when comparing treated cells 
to control cells. The gray line indicates when the TDD values are identical under the compared conditions.
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Supplementary Figure 4
a Cell viability measured by the CCK8 assay after 24h of MAPKi treatment in a CTRL, Asp-free, Glu-
free or (Asp+Glu)-free medium (n=3).
b Asp and Glu intracellular concentration measured in cells grown for 24h in control or in aspartate-
free or glutamate-free media (n=3).
c RT-qPCR analysis of the expression level of the GAPDH and EPRS1 mRNAs in control cells, cells 
treated for 24h with MAPKi (MAPKi) (n=12), and cells grown for 24h in the absence of Gln (-Gln) 
(n=5). The values were normalized by the values obtained in control cells. * P≤0.05 (two-tailed paired 
t-test).
d RT-qPCR analysis of the expression level of the GAPDH and CTU2 mRNAs in control cells and cells 
treated for 24h with MAPKi (+MAPKi) (n=12). The values were normalized by the values obtained in 
control cells. * P≤0.05 (two-tailed paired t-test).
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