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Abstract

Computational cognitive modeling is an important tool for understanding the processes
supporting human and animal decision-making. Choice data in sequential
decision-making tasks are inherently noisy, and separating noise from signal can improve
the quality of computational modeling. Common approaches to model decision noise
often assume constant levels of noise or exploration throughout learning (e.g., the
ϵ-softmax policy). However, this assumption is not guaranteed to hold – for example, a
subject might disengage and lapse into an inattentive phase for a series of trials in the
middle of otherwise low-noise performance. Here, we introduce a new, computationally
inexpensive method to dynamically infer the levels of noise in choice behavior, under a
model assumption that agents can transition between two discrete latent states (e.g.,
fully engaged and random). Using simulations, we show that modeling noise levels
dynamically instead of statically can substantially improve model fit and parameter
estimation, especially in the presence of long periods of noisy behavior, such as
prolonged attentional lapses. We further demonstrate the empirical benefits of dynamic
noise estimation at the individual and group levels by validating it on four published
datasets featuring diverse populations, tasks, and models. Based on the theoretical and
empirical evaluation of the method reported in the current work, we expect that
dynamic noise estimation will improve modeling in many decision-making paradigms
over the static noise estimation method currently used in the modeling literature, while
keeping additional model complexity and assumptions minimal.

Author summary

In behavioral modeling, the amount of decision noise in choices is often assumed to be
constant, or “static”, for each individual or session. However, this assumption may not
hold when there are variations in noise, such as when subjects occasionally disengage
and make random choices. To address this issue, we introduce a new, computationally
inexpensive method: dynamic noise estimation. Our method estimates the levels of
decision noise in choices on a trial-by-trial basis, allowing for changes in noise levels
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throughout the experiment. We thoroughly evaluate the benefits of dynamic noise
estimation by comparing it to its static counterpart on simulated and real data from
various species, age groups, behaviors, cognitive processes, and computational models.
Our findings show that dynamic noise estimation, with only one extra parameter, can
improve model fit and parameter estimation compared to the static method. Moreover,
dynamic noise estimation is versatile: it can be applied to any sequential
decision-making models with analytical likelihoods and easily incorporated into existing
model-fitting procedures, including maximum likelihood estimation and hierarchical
Bayesian methods.

Introduction 1

Computational modeling has helped cognitive scientists, psychologists, and 2

neuroscientists to quantitatively test theories by translating them into mathematical 3

equations that yield precise predictions [1, 2]. Cognitive modeling often requires 4

computing how well a model fits to experimental data. Measuring this fit – for example, 5

in the form of model evidence [3] – enables a quantitative comparison of alternative 6

theories to explain behavior. Measuring model fit to the data as a function of model 7

parameters helps identify the best-fitting parameters for a given dataset, via an 8

optimization procedure over the fit measure (typically negative log-likelihood) in the 9

space of possible parameter values. When fitted as a function of experimental 10

conditions, model parameter estimation can help explain how task manipulations 11

modify cognitive processes [4]; when fitted at the individual level, estimated model 12

parameters can help account for individual differences in behavioral patterns [5]. 13

Moreover, recent work has applied cognitive models in the rapidly growing field of 14

computational psychiatry to quantify the functional components of psychiatric 15

disorders [6]. Importantly, cognitive modeling is particularly useful for explaining choice 16

behavior in decision-making tasks – it reveals links between subjects’ observable choices 17

and putative latent internal variables such as objective or subjective value [7], strength 18

of evidence [8], and history of past outcomes [9]. This link between internal latent 19

variables and choices is made via a policy : the probability of making a choice among 20

multiple options based on past and current information. 21

An important feature of choice behavior produced by biological agents is its inherent 22

noise, which can be attributed to multiple sources including inattention [10,11], 23

stochastic exploration [12], and internal computation noise [13]. Choice randomization 24

can be adaptive, as it encourages exploration, which is essential for learning [14]. 25

Exploration can come close to optimal performance if implemented correctly [15–17]. 26

However, the role of noise is often downplayed in computational cognitive models, which 27

usually emphasize noiseless information processing over internal latent variables – for 28

example, in reinforcement learning, how the choice values are updated with each 29

outcome [18]. A common approach to modeling noise in choice behavior is to include 30

simple parameterized noise into the model’s policy [2]. For example, a greedy policy, 31

which chooses the best option deterministically, can be “softened” by a logistic or 32

softmax function with an inverse temperature parameter, β, such that choices among 33

more similar options are more stochastic than choices among more different ones. 34

Another approach is to use an ϵ-greedy policy, where the noise level parameter, ϵ, 35

weighs a mixture of a uniformly random policy with a greedy policy. This approach is 36

motivated by a different intuition: that lapses in choice patterns can happen 37

independently of the specific internal values used to make decisions. Multiple noise 38

processes can be used jointly in a model when appropriate [19]. 39

Failure to account for a noisy choice process in modeling could lead to under- or 40

over-emphasis of certain data points, and thus inappropriate conclusions [20,21]. 41
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However, commonly used policies with noisy decision processes share strong 42

assumptions. In particular, they assume that the levels of noise in the policy are fixed, 43

or “static”, over the duration of the experiment. This assumption could hold for some 44

sources of noise, such as computation noise, but many other sources are not guaranteed 45

to generate consistent levels of noise. For instance, a subject might disengage during 46

some periods of the experiment, but not others. How much subjects explore through 47

choice randomization could also vary over time. Therefore, such models with static 48

noise estimation might fail to capture the variance in noise levels, which can impact the 49

quality of computational modeling. 50

To resolve this issue, we introduce a dynamic noise estimation method that 51

estimates the probability of noise contamination in choice behavior trial-by-trial, 52

allowing it to vary over time. Fig 1A illustrates examples of static and dynamic noise 53

estimation on human choice behavioral data from [4]. The probabilities of noise inferred 54

by the static and dynamic methods are shown in conjunction with choice accuracy. In 55

this example, choice accuracy drops steeply to a random level (0.33) around Trial 350, 56

indicating an increased probability of noise contamination. This change is captured by 57

dynamic noise estimation but not the static method. 58
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Fig 1. Dynamic noise estimation computes the noise levels in choices
trial-by-trial. A: Example noise levels in choice behavioral data estimated by static
and dynamic noise estimation methods. Background shading indicates the block design
of the experiment; black line is smoothed accuracy. Data is an example subject from [4].
B: Static noise estimation is a special case of dynamic noise estimation subject to an
additional constraint. C: Hidden Markov models representing static and dynamic noise
estimation with transition probabilities between latent states.

Our dynamic noise estimation method makes looser assumptions than static noise 59

estimation, making it suitable to solve a broader range of problems (Fig 1B). 60

Specifically, a policy with dynamic noise estimation models the presence of random 61

noise as the result of switching between two latent states – the random state and the 62

engaged state – that correspond to a uniformly random, noisy policy and some other 63

decision policy assuming full task engagement (e.g., an attentive, softmax policy). We 64

assume that a hidden Markov process governs transitions between the two latent states 65
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with two transition probability parameters, T 1
0 and T 0

1 , from the random to engaged 66

state and vice versa. Note that static noise estimation can be formulated under the 67

same binary latent state assumption, with the additional constraint that the transition 68

probabilities must sum to one, making it a special case of dynamic noise estimation (see 69

Materials and methods for proof). The hidden Markov model of dynamic noise 70

estimation captures the observation that noise levels in decision-making tend to be 71

temporally autocorrelated, which may be a reflection of an evolved expectation of 72

temporally autocorrelated environments [22]. 73

We show that noise levels can be inferred dynamically trial-by-trial in sequential 74

decision-making. On each trial, the model infers the probability of the agent being in 75

each latent state using observation, choice, and reward (if applicable) data. It estimates 76

the choice probability as a weighted average of decisions generated by the random policy 77

and the engaged policy, which is then used to estimate the likelihood. Therefore, 78

dynamic noise estimation can be incorporated into any decision-making models with 79

analytical likelihoods. Model parameters can be estimated using procedures that 80

optimize the likelihood or its posterior distribution, including maximum likelihood 81

estimation [23] and hierarchical Bayesian methods [24]. 82

Results 83

Theoretical benefits of dynamic noise estimation 84

We first performed a simulation study to illustrate the benefits of our dynamic noise 85

estimation approach. By definition, we expected dynamic noise estimation to explain 86

choice data better than static noise estimation when noise levels are highly variable 87

across trials. To demonstrate it, we compared models implemented with static and 88

dynamic noise estimation mechanisms on simulated data in a two-alternative, 89

probabilistic reversal learning task widely used to assess cognitive flexibility [25], in 90

which the correct action switched every 50 trials (Fig 2). In the simulations, we used 91

the static model to generate choice data, in which we included periods of lapses into 92

random behavior (e.g., due to inattention) by making the agent choose randomly 93

between the actions. 94

After fitting the models to the data, we simulated behavior using the best fit 95

parameters of both models and compared their learning curves to the data as a 96

validation step. Fig 2A shows the learning curves of two example subjects and their 97

best fit models. In both cases, the subjects performed at chance level (accuracy = 0.5) 98

during lapses and better than chance otherwise. The phasic fluctuations of choice 99

accuracy were synchronized to the reversals. The learning curves generated by the 100

dynamic model matched the data substantially better than the learning curves of the 101

static model. Critically, this is true both during and outside of lapses: having to 102

account for the lapse periods, the static noise model inferred too much noise overall, 103

which contaminated the engaged periods. Thus, the static noise model overestimates 104

performance in disengaged periods, and underestimates it in engaged ones; by contrast, 105

the dynamic noise model accurately captures the behavior in both situations. 106

To further understand how the duration of lapse interacted with the effectiveness of 107

static and dynamic noise estimation, we varied the lapse duration in the simulations. 108

Fig 2B shows how the amounts of deviation between the learning curves of the models 109

and data (measured by the mean squared error between the curves per trial) changed as 110

the duration of lapse increased. Overall, the model with dynamic noise estimation was 111

able to replicate behavior better than the static model, as the learning curves of the 112

former matched the data more closely. Although lapses only weakly affected the fit of 113

the dynamic noise model, the static model fitted worse in the presence of lapses, 114
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Fig 2. Dynamic noise estimation outperforms static noise estimation when
subjects lapse into random behavior. A: Example learning curves of two simulated
subjects and their best fit static and dynamic noise estimation models; since the noise
levels are fixed in the static model, the model overestimates performance in disengaged
periods, and underestimates it in engaged ones. B: The deviations of the best fit models’
learning curves from the data quantified by the mean squared error per trial, as a
function of lapse duration. C,D: The absolute differences between the true and inferred
model parameters, over true parameter value (C) and lapse duration (D).

especially when lapse and non-lapse periods were intermixed in the learning trajectory. 115

Next, we tested how well the true parameters used to generate the data could be 116

recovered by the static and dynamic models (Fig 2C). Both learning parameters shared 117

by the models (learning rate and choice stickiness) were better recovered by the 118

dynamic model, as measured by the absolute amounts of differences between the true 119

and recovered (best fit) parameters. The advantage of the dynamic model in parameter 120

recovery persisted over the whole range of parameter values sampled in the simulations 121

and various lengths of lapses, with weaker effects when lapses were short relative to the 122

duration of the experiment (less than 20%). 123

To verify that including dynamic noise estimation would not undermine a model’s 124

robustness, we performed validation and recovery analyses on data simulated with the 125

dynamic noise model in the same probabilistic reversal task environment used in the 126

previous simulations. In model validation, the dynamic model reproduced behavior 127

more closely than the static model in both the engaged state and the random state: the 128

dynamic noise model showed much more sensitivity to the latent state than the static 129

noise model. (Fig 3A). This suggests that fitting a model with static noise estimation 130

when the underlying noise mechanism of the data is dynamic could lead to inaccurate 131

interpretations of the behavior and model. 132

Furthermore, we confirmed that the prediction probabilities of the latent states and 133

model parameters were recoverable by fitting the dynamic model to the simulated data 134

to infer the quantities of interest. The prediction probability of the engaged state, λ(1), 135

was perfectly recovered across its range of values (Fig 3B). The inferred or recovered 136

values of λ(1) formed a symmetric, bimodal distribution with peaks near 0 and 1, 137
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Fig 3. The dynamic noise estimation model validates and recovers robustly.
A: Validation of best fit static and dynamic noise models against simulated data using
learning curves around switches for both engaged and random trials. B: The recovered
prediction probability of the engaged state, λ(1), over the true prediction probability
used to simulate the data. C: The distribution of the recovered prediction probability.
D: Recovered model parameters against their true values. In each plot, the black line is
the least squares fit of the points and the grey line is the identity line for reference.

suggesting that both latent states were visited equally frequently and that the model 138

was confident, for the majority of the time, that the agent was in either latent state (Fig 139

3C). The true values of all model parameters were recoverable through fitting (Fig 3D). 140

Empirical evaluation of dynamic noise estimation 141

The above analyses based on controlled simulations showed that, theoretically, dynamic 142

noise estimation could substantially improve model fit and parameter estimation, 143

especially in the presence of prolonged lapses. We next tested the method on empirical 144

datasets to verify whether and to what extent this conclusion stands when the data is 145

collected from real animal and human subjects while the true generative model is 146

unknown. To help set fair expectations for the applications of dynamic noise estimation 147

in practice, we thoroughly evaluated the method on four published datasets featuring 148

diverse species, age groups, task designs, behaviors, cognitive processes, and 149

computational models. Table 1 summarizes the population, task, and model information 150

about these datasets. 151

For each dataset, we used either the winning model in the original research article or 152

an improved model from later work. We implemented and compared two versions of 153

each model: one with static noise estimation and one with dynamic noise estimation. 154

The models were fitted on each individual’s choice data using maximum likelihood 155

estimation for simplicity, although the noise estimation methods are also compatible 156

with more complex likelihood-based fitting procedures. The fitted models were 157

compared using the Akaike Information Criterion (AIC) [31], since it yielded better 158

model identification than the Bayesian Information Criterion (BIC; S1 Fig). Fig 4 159

shows the model-fitting results at both the individual and group levels. To compare the 160

models at the group level, we report the p-values of one-tailed Wilcoxon signed-rank 161

tests with the alternative hypothesis that the AIC values of the dynamic model were 162
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Table 1. Summary of empirical datasets.

Dataset Population Task Model
Dynamic Foraging [26] Mice Two-armed bandits with

probabilistic reversal
Reinforcement learning with dy-
namic learning rates

IGT [27] Young and old
adult humans

Iowa gambling task A hybrid of exploitation and ex-
ploration processes [28]

RLWM [29] Adult humans Reinforcement learning
and working memory

A hybrid of reinforcement learning
and working memory processes

2-step [30] Developing and
adult humans

Two-step task A hybrid of model-based and
model-free learning processes

lower than the AIC values of the static model. Additionally, we report the protected 163

exceedance probability (pxp) [32] of the dynamic model. At the group level, dynamic 164

noise estimation significantly improved model fit compared to static noise estimation on 165

the Dynamic Foraging (∆AIC = −8.31, p = 0.0002, pxp = 0.96) and IGT 166

(∆AIC = −2.79, p = 3.48× 10−12, pxp = 1.00) datasets. This populational difference 167

was present but not statistically significant on the RLWM (∆AIC = −1.43, p = 0.83, 168

pxp = 0.38) and 2-step (∆AIC = −3.04, p = 0.47, pxp = 0.44) datasets. 169
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plot shows the difference in AIC for each individual between the models with static and
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As detailed in Materials and methods, the likelihood of the dynamic noise estimation 170

model should not be worse than that of the static model, since the latter is equivalent 171

to a special case of the former. This relationship was confirmed by the fitting results on 172
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all four empirical datasets: for individuals whose data were best explained by the static 173

model, the ∆AIC values were upper-bounded by 2, which corresponded to the penalty 174

incurred by the extra parameter in the dynamic model. In other words, the dynamic 175

model did not impair likelihood estimation in practice, which aligned with our 176

prediction. 177

We additionally validated both models against behavior and found no significant 178

differences between the static and dynamic noise models (S2 Fig). We verified that the 179

quantities specific to dynamic noise estimation, including the prediction probability and 180

noise parameters, were recoverable (S3 Fig). The distributions of the inferred prediction 181

probability of the engaged state, λ(1), were heavily right-skewed and long-tailed. This 182

indicates a scarcity of data in the random state, which likely led to a lack of transitions 183

from the random state to the engaged state and, thus, underpowered the recovery of T 1
0 , 184

causing it to be noisier than the recovery of T 0
1 . 185

Knowing that likelihood favors the dynamic model over the static model, the 186

remaining questions are: how does this improvement manifest, and does it impact the 187

insights we can gain from computational modeling? To address these questions, we 188

compared the values of best fit parameters between both models (Fig 5). On the 189

Dynamic Foraging dataset, the values of the positive learning rate and forgetting rate 190

parameters increased at the group level (two-tailed Wilcoxon signed-rank test 191

p = 7.56× 10−7 for positive learning rate and p = 2.66× 10−5 for forgetting rate). This 192

suggests that dynamic noise estimation helped the model capture faster learning 193

dynamics in the task, which may have led to the improved fit. On the RLWM dataset, 194

the distributions of the bias (p = 0.0016) and stickiness (p = 0.0022) parameters both 195

shifted in the positive direction. On the 2-step dataset, the softmax inverse temperature 196

parameter for the second-stage choice was also estimated to increase after incorporating 197

dynamic noise estimation into the model (p = 8.8× 10−6). Similarly, on the IGT 198

dataset, the softmax inverse temperature parameter increased significantly 199

(p = 2.78× 10−7). An increase in the inverse temperature parameter can be interpreted 200

as capturing a policy that is less noisy and more sensitive to internal variables; these 201

results highlight the success of the dynamic noise model in identifying noisy time 202

periods, and decontaminating on-task periods from their influence. 203

Besides the policy parameters, the noise parameters also showed distributional 204

differences that were correlated with improved fit. Fig 6 illustrates the relationship 205

between the static noise parameter, ϵ, and the dynamic noise parameter, T 0
1 , on all four 206

empirical datasets. For individuals whose data were better explained by the static noise 207

model according to the AIC, T 0
1 and ϵ were estimated to take on comparable and highly 208

correlated values (Dynamic Foraging: Kendall’s τ = 0.84, p = 5.67× 10−5; IGT: 209

τ = 0.82, p = 1.23× 10−67; RLWM: τ = 0.89, p = 6.78× 10−23; 2-step: τ = 0.84, 210

p = 1.42× 10−26). This observation was in line with our expectation: when the static 211

model was favored by the AIC, the difference in likelihoods between both models must 212

be smaller than the penalty incurred by the extra parameter in the dynamic model (2 213

for AIC), which means both models fitted similarly to the data. On the other hand, 214

when the dynamic model outperformed the static model, T 0
1 was estimated to be lower 215

than ϵ (Dynamic Foraging: one-tailed Wilcoxon signed-rank test p = 0.031; IGT: 216

p = 4.90× 10−8; RLWM: p = 0.0072; 2-step: p = 0.0017). A similar, though noisier, 217

relationship between T 1
0 and 1− ϵ was also observed on all empirical datasets (S4 Fig). 218

The lower values of the dynamic noise parameters than the static averages of noise levels 219

indicate that the dynamic model successfully separated noisy trials from engaged trials. 220
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Fig 5. Dynamic noise estimation can lead to shifted parameter fit. Changes in
best fit parameter values between the models with static and dynamic noise estimation
mechanisms for each individual. Individual data points are color-coded according to the
winning model by AIC: orange if the static model fitted better and green if the dynamic
model fitted better.

Discussion 221

Our results show that dynamic noise estimation can improve model fit and parameter 222

estimation both theoretically and empirically, qualifying it as a candidate alternative to 223

static noise estimation, despite one additional model parameter. Our approach is 224

especially powerful and effective in the presence of lapses, since it provides a better 225

account for the variance in the noise levels of choice behavior. Additionally, it is 226

generalizable and versatile: it can be applied to any decision policies with tractable 227

likelihoods and be incorporated into any likelihood-based parameter estimation 228

procedures, making it an accessible and computationally lightweight extension to many 229

decision-making models. 230

Another benefit of dynamic noise estimation is that it could help avoid excluding 231

whole individuals or sessions due to poor performance, thus improving data efficiency. 232

Dynamic noise estimation takes effect by identifying periods of choice behavior that are 233

better explained by random noise than the learned policy (e.g., lapses). The likelihoods 234

of these noisy periods are lower-bounded by that of the random policy, which limits the 235

impacts of these trials on the estimation of the overall likelihood and model parameters. 236

Thus, dynamic noise estimation can mitigate the effects of noise contamination on 237

model-fitting. On the contrary, static noise estimation does not provide a meaningful 238
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lower bound to the likelihood of noisy data, such that relatively noisy parts of the 239

behavior may heavily bias parameter estimation. Thus, using dynamic instead of static 240

noise estimation could allow fewer individuals to be excluded due to noisy behavior. For 241

example, without dynamic noise estimation, the last two blocks in Fig 1A might lead to 242

the exclusion of this subject by some performance-based criterion. However, dynamic 243

noise estimation might allow fitting of the whole individual’s data with minimal 244

contamination due to the noisy blocks. This outcome can be particularly desirable when 245

data collection is challenging or expensive, such as in clinical populations, neuroimaging 246

experiments, and time-consuming tasks. 247

Compared to other recent work identifying discrete latent policy states, namely the 248

GLM-HMM model [33], our method has the advantages of simplicity, accessibility, and 249

versatility. Although GLM-HMM encompasses a larger model space and makes more 250

flexible assumptions about latent states than our approach, it additionally assumes that 251

all decision policies can be described as generalized linear models, which limits its 252

applications to descriptive models rather than cognitive process models. The parameter 253

inference procedure for GLM-HMM does not generalize trivially when this assumption 254

is challenged (e.g., with process models such as reinforcement learning). On the other 255

hand, our likelihood estimation procedure for dynamic noise estimation can be readily 256

plugged into any existing likelihood-based optimization procedure to fit both descriptive 257

models and process models. 258

Dynamic noise estimation assumes that making choices randomly and according to 259

the learned policy are distinct, binary latent states. Biologically, this assumption aligns 260

with an established literature on how norepinephrine modulates attention, a major 261

contributor to varying noise levels: the phasic or tonic mode of activity of the 262

noradrenergic locus coeruleus system closely correlates to good or poor task 263
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performance [34,35]. It is worth noting that the binary assumption of the latent states 264

may not always be accurate. Nonetheless, it is a less strict assumption than that of 265

static noise estimation, which additionally assumes that the probability of transitioning 266

into each latent state is independent of the current state. Thus, although dynamic noise 267

estimation may be limited by its binary latent state assumption, it is still more suitable 268

to solve a broader range of problems than static noise estimation. 269

A potential extension to the likelihood estimation procedure derived in the current 270

work is to apply it on policy mixtures in a broader sense – i.e., hidden Markov models 271

that involve two or more latent states of any eligible policies – rather than a fixed 272

random policy and some other decision policy (e.g., softmax) as presented in the current 273

work. Although this approach might lead to applications beyond noise estimation, users 274

should carefully check that the assumptions of our method are satisfied by the data and 275

model. Specifically, the hidden Markov over two latent states assumption in our method 276

assumes that the agent can only occupy one latent state at any given time, and that 277

they tend to remain in a state for some trials, which may not be appropriate for all 278

policy mixture models. For example, the RLWM model [36] is a mixture of a 279

reinforcement learning process and a working memory process, which could technically 280

be modeled as two latent policy states. However, the latent state occupancy assumption 281

is biologically implausible here, since reinforcement learning and working memory are 282

likely to operate concurrently, and participants are not likely to transition from one 283

policy to the other across sequences of trials. 284

A limitation to our approach is that we assume that the latent state only affects the 285

policy, but not the underlying process: in the random state, information is still being 286

processed (e.g., action value updating), but not used for decision-making. Removing 287

this assumption can significantly complicate the inference process over the latent state 288

by making the likelihood intractable, and thus making the inference process much less 289

accessible. Addressing this limitation will be an important direction for future work. 290

Future work should also further validate dynamic noise estimation experimentally, 291

for example, by comparing estimated prediction probabilities to an independent 292

measure of attention or task-engagement and testing whether inferred latent states 293

capture this measure. Possible approaches include to measure task-engagement based 294

on choice behavior [37], reaction time [38], pupil size [39], and event-related brain 295

potentials [40]. If the prediction probability can indeed serve as an objective measure of 296

attention to the task, it could be applied to behaviorally characterize attentional 297

mechanisms in computational psychiatry [41], especially for patients with 298

attention-deficit/hyperactivity disorder (ADHD) [42]. Another potential future 299

direction is to explore whether dynamic noise estimation changes the interpretations of 300

behaviors and models when applied to other decision policies than the softmax policy, 301

such as Thompson sampling [16] and the upper confidence bound algorithm [43]. 302

In conclusion, our dynamic noise estimation method promises potential 303

improvements over the static noise estimation method currently used in the modeling 304

literature of decision-making behavior. Dynamic noise estimation enables us to capture 305

different degrees of task-engagement in different task periods, limiting contamination of 306

model-fitting by noisy periods, without requiring ad-hoc data curating. Based on the 307

theoretical and empirical evaluation of the method reported in the current work, we 308

expect that dynamic noise estimation in modeling choice behavior will strengthen 309

modeling in many decision-making paradigms, while keeping additional model 310

complexity and assumptions minimal. 311
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Materials and methods 312

Mathematical and algorithmic formulations of static and 313

dynamic noise estimation 314

In a sequential decision-making task, the data collected include observation-action pairs 315

(ot, at) over the learning trajectory for time t = 1, 2, ..., T . In a reinforcement learning 316

task, reward rt is additionally collected. We assume that choices are generated by a 317

Markov decision process [44]. The decision-making model leads to a policy π(a|o) that 318

the agent uses to choose between discrete actions given the observation. The policy may 319

include noise mechanisms, such as using the softmax function for action selection, and it 320

is conditional on the model’s latent variables and parameters (e.g., learned values and 321

learning rates for reinforcement learning models). We describe two extensions of such a 322

decision model: the static noise estimation method that implements the classic 323

ϵ-mechanism [20] and the new dynamic noise estimation method. The parameters, θ, of 324

both extended models can be optimized by maximizing the likelihood of the data given 325

the model parameters, denoted as L(θ). In this section, we focus only on the policy part 326

of the models; all other model equations (such as reinforcement learning value updates) 327

are taken from the published models and reported in S1 Appendix. 328

Static noise estimation 329

Static noise policies assume that decision noise is at a constant level ϵ throughout the 330

learning trajectory. At any time t, from the set of available actions A, the agent 331

samples an action uniformly at random (with probability ϵ) or based on the learned 332

policy (with probability 1− ϵ). Static noise estimation can be incorporated into 333

likelihood estimation according to Algorithm 1. Thus, any model that can be fitted 334

with likelihood-dependent methods can incorporate static noise into its policy. 335

Algorithm 1: Static noise estimation likelihood computation

Initialize L(θ) = 0;
for t = 1, 2, ..., T do

Calculate the action probability πt(at|ot) ;
L(θ)← L(θ) + log[ϵ · 1

|A| + (1− ϵ) · πt(at|ot)] ;
Update the policy with (ot, at, rt).

end

Dynamic noise estimation 336

The dynamic noise estimation method models decision noise by assuming that the agent 337

is in one of two latent states at any given time: the random state in which the agent 338

chooses actions uniformly at random or the engaged state in which decisions are made 339

according to the true model policy. The transitions between both states are governed by 340

two parameters: T 1
0 and T 0

1 , the probabilities of transitioning from the random state to 341

the engaged state and vice versa. From these transition probabilities, we can calculate 342

the stay probability for each latent state: 1− T 1
0 for the random state and 1− T 0

1 for 343

the engaged state. 344

The state is composed of an observation ot, often encoding the stimulus, and 345

unobserved, latent variables including the learned policy and ht, where ht ∈ {0, 1} 346

indicates whether the agent is in the random state or engaged state at time t. It is 347

further assumed that rt and ot are conditionally independent of the latent states up to 348
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time t given the observed data history, since rewards and future observations in 349

behavioral experiments do not depend on subjects’ unobserved mental states. 350

Our goal is to maximize the following log-likelihood: 351

L(θ) =
T∑

t=1

log IP(at|ot, ōt−1; θ)

=
T∑

t=1

log IP
(∑

i

IP(at|ot, ht = i; θ)IP(ht = i|ōt−1; θ)
)
,

(1)

where ōt−1 denotes the observation-action-reward triplets up to time t− 1. The 352

probability on the right of Eq 1, the prediction probability of being in the latent state 353

i ∈ {0, 1} at time t, is not trivial to compute. Denoting it as λt(i), we have 354

λt(i) = IP(ht = i|ōt−1; θ)

=
∑
j

IP(ht = i|ht−1 = j, ōt−1; θ)IP(ht−1 = j|ōt−1; θ),
(2)

where j ∈ {0, 1} and 355

IP(ht−1 = j|ōt−1; θ) =
IP(ht−1 = j, at−1, rt−1|ot−1, ōt−2; θ)∑
k IP(ht−1 = k, at−1, rt−1|ot−1, ōt−2; θ)

. (3)

Notice that for any given k, each term in the denominator of the right-hand side of 356

Eq 3, as well as the nominator with k = j, is equal to 357

IP(rt−1|ot−1, at−1, ht−1 = k, ōt−2; θ)× IP(at−1, ht−1 = k|ot−1, ōt−2; θ),

the first term of which is independent of ht−1 and is, therefore, canceled out between 358

the nominator and denominator in Eq 3. Thus, 359

IP(ht−1 = j|ōt−1; θ) =
IP(at−1|ht−1 = j, ot−1, ōt−2; θ)IP(ht−1 = j|ōt−2; θ)∑
k IP(at−1|ht−1 = k, ot−1, ōt−2; θ)IP(ht−1 = k|ōt−2; θ)

. (4)

We can now compute λt(i) by plugging Eq 4 into Eq 2, which then allows us to 360

calculate L(θ) by plugging Eq 2 into Eq 1. The probabilities needed to infer λt(i) and 361

L(θ) can be iteratively updated according to Algorithm 2 over the learning trajectory. 362

These calculations can be easily incorporated into fitting procedures based on 363

optimizing the model’s likelihood, including maximum likelihood estimation and 364

hierarchical Bayesian modeling. 365

Algorithm 2: Dynamic noise estimation likelihood computation

Initialize L(θ) = 0 and λ0(i) for i ∈ {0, 1} ;
for t = 1, 2, ..., T do

Calculate the action probability πt(at|ot) ;
lt(θ) = log[ 1

|A| · λt−1(0) + πt(at|ot) · λt−1(1)] ;

L(θ)← L(θ) + lt(θ) ;

λt(h)←
1

|A| ·λt−1(0)·Th
0 +πt(at|ot)·λt−1(1)·Th

1

exp(lt(θ))
for h ∈ {0, 1} ;

Update the policy with (ot, at, rt).

end
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The relationship between static and dynamic noise estimation 366

Static noise estimation can be formulated under the binary latent state assumption of 367

dynamic noise estimation (Fig 1B), with the additional constraint that the probability 368

of transitioning into each latent state is independent from the current state: 369

T 1
0 + T 0

1 = 1. (5)

In other words, the probabilities of transitioning to the random state from the engaged 370

state must be equal to the probability of transitioning to the random state from the 371

random state: 372

T 0
1 = ϵ = 1− T 1

0 .

Similarly, the probabilities of transitioning into the engaged state from the random state 373

and the engaged state must be equal: 374

T 1
0 = 1− ϵ = 1− T 0

1 .

Both the above relationships can be summarized by Eq 5. 375

Therefore, static noise estimation is a special case of dynamic noise estimation with 376

an additional assumption described by Eq 5, as illustrated in Fig 1C. It can also be 377

experimentally verified that dynamic noise estimation converges to static noise 378

estimation once this constraint is added to the model-fitting procedure (results not 379

included). 380

Theoretically, with optimal parameters, the likelihood estimates made by the 381

dynamic noise estimation model must be no worse than those made by the static noise 382

estimation model. In practice, this relationship may not hold if the optimizer fails to 383

converge to the global minimum when fitting the dynamic model. However, this issue 384

can be circumvented by initializing the parameter values of the dynamic model to the 385

best fit parameters of the static model (e.g., T 0
1 as ϵ̂ and T 1

0 as 1− ϵ̂). 386

Analysis methods 387

Simulation setup 388

The task environment in which the data were simulated for the theoretical analyses had 389

two alternative choices with asymmetrical reward probabilities (80% and 20%) that 390

reversed every episode. Each agent was simulated for 10 episodes with 50 trials per 391

episode. The simulations with lapses included data from 3,000 individuals generated by 392

the model with the static noise mechanism (Fig 2). Model parameters were sampled 393

uniformly between reasonable bounds: learning rate ∼ Uniform(0, 0.6), stickiness 394

∼ Uniform(−0.3, 0.3), and ϵ ∼ Uniform(0, 0.2). For each individual, we simulated a 395

lapse into random choice behavior whose duration was sampled uniformly at random 396

between 0 and the length of the experiment (500 trials). During the lapse, the agent 397

was forced to randomly choose between the two available actions. In the analyses shown 398

in Fig 3, we simulated data of 1,000 individuals using the model with the dynamic noise 399

mechanism. The parameters were sampled from the following distributions: learning 400

rate ∼ Beta(3, 10), stickiness ∼ Normal(0, 0.1), T 0
1 ∼ Beta(1, 15), and T 1

0 ∼ Beta(1, 15). 401

Both models were fitted to the simulated data per individual. 402

Empirical datasets and models 403

All empirical data were downloaded from sources made publicly available by the authors 404

of the corresponding research articles. The data of all individuals were included except 405
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that for the IGT dataset [27], we selected for the studies that used the 100-trial versions 406

of the task. For the Dynamic Foraging (n=48) [26] and 2-step (n=151) [30] datasets, 407

the winning models from the original papers were used in our analyses. Since the article 408

containing the IGT dataset (n=504) [27] did not report modeling results, we tested the 409

winning model from later work [28] on the data from the same individuals included in 410

the current work. For the RLWM dataset (n=91) [29], we implemented the best known 411

version of the RLWM model [36] with an additional stickiness parameter, which 412

improved model fit significantly. The mathematical formulation of the models can be 413

found in S1 Appendix. 414

Model-fitting 415

All models were fitted using the maximum likelihood estimation procedure at the 416

individual level using the MATLAB global optimization toolbox with the fmincon 417

function. Although hierarchical Bayesian methods may have yielded better model fit, we 418

chose to use maximum likelihood estimation because it is simple, efficient, and suffices 419

for our purpose of demonstrating the comparison between the static and dynamic noise 420

models. In practice, we advise users of our dynamic noise estimation method to apply 421

the fitting procedure with the most appropriate assumptions for the model and data. 422

Model validation and recovery 423

In model validation, we simulated choice behavior for each subject repeatedly (e.g., for 424

100 times) using the maximum likelihood parameters obtained from model-fitting. For 425

simulations with dynamic noise estimation, we used the latent state probability – λ(0) 426

and λ(1) – trajectories inferred from real data to simulate latent state occupancy. To 427

validate how well the models captured behavior, we compared behavioral signatures 428

(e.g., learning curves) between these model simulations and the data (real or simulated) 429

that the models were fitted to. 430

The recovery of the prediction probabilities of model latent states was performed by 431

simulating data 30 times per individual using best fit parameters and inferring 432

prediction probabilities from these data. Model parameters were recovered by first 433

simulating behavior using best fit parameters and re-fitting the model to the simulated 434

behavior to estimate parameter values. All recovery was performed at the individual 435

level. 436

Data and code availability 437

All data and code will be made publicly available upon publication. 438
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Model validation results on the empirical datasets. Dynamic noise estimation
did not alter the qualitative behavioral predictions made by the models.

S3 Fig.
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S4 Fig.
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S1 Appendix. Model equations. The mathematical formulations of all models
used on the datasets presented in the current work.

Probabilistic Reversal

The model for the Probabilistic Reversal environment consists of 2 free parameters: α
(learning rate) and ϕ (choice stickiness). The softmax inverse temperature is fixed at
β = 8.

On trial t, the choice is made according to action probabilities computed through the
softmax function. For example, the probability of choosing the left action is:

Pt(l) =
1

1 + exp
(
β ·

(
Qt(r)−Qt(l)− ϕ · 1at−1

[l]
)) ,

where 1at−1 [l] takes on the value of 1 if at−1 = l and -1 otherwise.
Once the reward rt has been observed, the action values are updated:

Qt+1(at) = Qt(at) + α · (rt −Qt(at)).

Dynamic Foraging

The meta-learning model in the original paper was implemented [26]. The model has 7
parameters: β (softmax inverse temperature), bias (for the right action), α(+) (positive
learning rate), α(−)0 (baseline negative learning rate), αv (rate of RPE magnitude
integration), ψ (meta-learning rate for unexpected uncertainty), and ξ (forgetting rate).

On trial t, a decision is sampled from choice probabilities obtained through a
softmax decision function applied to the action values of the left and right actions:

Pt(l) =
1

1 + exp
(
β ·

(
Qt(r)−Qt(l) + bias

))
and

Pt(r) = 1− Pt(l).

Once the reward is observed, assuming the left action is chosen, its value is updated
as follows:

Qt+1(l) = Qt(l) + αt · δt · (1− Et),

where αt is α(+) if the reward-prediction error (RPE), δt = Rt −Qt(l), is positive, and
α(−)t otherwise. Et is an evolving estimate of expected uncertainty calculated from the
history of absolute RPEs:

Et+1 = Et + αv · vt,

where

vt = |δt| − Et.

When the RPE is negative, the negative learning rate is dynamically adjusted and
lower-bounded by 0:

α(−)t = max
(
0, ψ · (vt + α(−)0) + (1− ψ) · α(−)t−1

)
Finally, the unchosen action (e.g., right) is forgotten:

Qt+1(r) = ξ ·Qt(r).
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IGT

The Value plus Sequential Exploration model [28] was implemented for the IGT dataset.
The model is defined by 5 parameters: α (learning rate), β (softmax inverse
temperature), θ (value sensitivity), ∆ (decay), and ϕ (exploration bonus).

On trial t, the decision is sampled based on the probability of choosing deck d:

Pt(d) =
exp

(
β ·

(
Exploret(d) + Exploitt(d)

))
∑4

i=1 exp
(
β ·

(
Exploret(i) + Exploitt(i)

)) ,
where Exploret(d) and Exploitt(d) are the action values of deck d using the exploration
and exploitation weights. For the selected deck, their values are updated according to
the following equations:

Exploret+1(d) = 0

and

Exploitt+1(d) = ∆ · Exploitt(d) + vt,

where vt = (Gaint)
θ − (Losst)

θ. For the unselected decks, the weights are controlled by
the following equations:

Exploret+1(d) = Exploret(d) + α · (ϕ− Exploret(d))

and

Exploitt+1(d) = ∆ · Exploitt(d).

RLWM

The RLWM model is improved upon previously published versions [29,36] by the
inclusion of a choice stickiness parameter. The model has 6 parameters in total: α
(learning rate), bias (for negative learning), ϕ (stickiness), ρ (working memory weight),
γ (forgetting rate), and K (working memory capacity). The softmax inverse
temperature parameter is fixed at β = 20.

On trial t, the probability of choosing an action at in state st is given by a weighted
combination between a reinforcement learning policy and a working memory one:

P (at|st) = (1− w) · PRL(at|st) + w · PWM (at|st),

where w = ρ ·min(1, K
NS ) and NS is the set size. The action values for both policies are

computed as follows:

PRL(at|st) =
exp

(
β ·

(
Qt(st, at) + ϕ · 1at−1 [at]

))
∑

i exp
(
β ·

(
Qt(st, ai) + ϕ · 1at−1

[ai]
))

and

PWM (at|st) =
exp

(
β ·

(
WMt(st, at) + ϕ · 1at−1

[at]
))

∑
i exp

(
β ·

(
WMt(st, ai) + ϕ · 1at−1

[ai]
)) ,

where 1at−1
[ai] is an indicator that takes on the value of 1 if ai = at−1 and 0 otherwise.
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All working memory values are forgotten on each trial:

WMt+1 =WMt + γ ·
( 1

|A|
−WMt

)
,

where |A| is the total number of available actions. The values are then updated
according to the following equations:

Qt+1(st, at) = Qt(st, at) + αRL · (rt −Qt(st, at))

and

WMt+1(st, at) =WMt(st, at) + αWM · (rt −WMt(st, at)),

where if rt = 1, αRL = α and αWM = 1, and if rt = 0, αRL = bias · α and αWM = bias.

2-step

The 2-step model [30] contains 6 free parameters: α (learning rate), βMB (softmax
inverse temperature for the model-based policy), βMF (softmax inverse temperature for
the model-free policy), β (softmax inverse temperature for the second stage), λ
(stimulus stickiness), and ϕ (response stickiness).

The first-stage decision is made according to action probabilities computed using
both the model-based and model-free action values:

P (a1t ) =
exp

(
βMB ·QMB(a

1
t ) + βMF ·QMF (a

1
t ) + ϕ · 1a1

t−1
[a1t ]

)
∑

i exp
(
βMB ·QMB(a1i ) + βMF ·QMF (a1i ) + ϕ · 1a1

t−1
[a1i ]

) ,
where 1a1

t−1
[a1i ] is an indicator that takes on the value of 1 if a1i = a1t−1 and 0 otherwise.

The second-stage action probabilities are also computed through the softmax function:

P (a2t |s2t ) =
exp

(
β ·Q2(s

2
t , a

2
t )
)

∑
i exp

(
β ·Q2(s2t , a

2
i )
) .

Once the reward rt has been observed, the action values are updated as follows:

QMF (a
1
t )← QMF (a

1
t ) + α ·

(
Q2(s

2
t , a

2
t )−QMF (a

1
t )
)
+ λ · α ·

(
rt −Q2(s

2
t , a

2
t )
)

and

Q2(s
2
t , a

2
t )← Q2(s

2
t , a

2
t ) + α ·

(
rt −Q2(s

2
t , a

2
t )
)
.

Note that the model-based action values do not need to be updated and can be
computed directly:

QMB(a
1
t )←

∑
i

max
j

(
Q2(s

2
i , a

2
j )
)
· T s2i

a1
t
,

where T
s2i
a1
t
is the transition probability from the first-stage choice a1t to the second-stage

state s2i , which the agent is assumed to know.
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