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Interacting many-body physical systems ranging from neural networks in the brain to folding
proteins to self-modifying electrical circuits can learn to perform specific tasks. This learning, both
in nature and in engineered systems, can occur through evolutionary selection or through dynamical
rules that drive active learning from experience. Here, we show that learning leaves architectural
imprints on the Hessian of a physical system. Compared to a generic organization of the system
components, (a) the effective physical dimension of the response to inputs (the participation ratio
of low-eigenvalue modes) decreases, (b) the response of physical degrees of freedom to random
perturbations (or system “susceptibility”) increases, and (c) the low-eigenvalue eigenvectors of the
Hessian align with the task. Overall, these effects suggest a method for discovering the task that a
physical network may have been trained for.

I. INTRODUCTION

Nature is replete with systems that learn. For ex-
ample, animals learn new behaviors, the immune sys-
tems of vertebrates and bacteria learn pathogenic en-
vironments, and, over evolutionary time, proteins learn
structures that fold just right to achieve precise and spe-
cific molecular functions. In supervised computational
machine learning [1, 2], the learning process is formu-
lated as minimization of a cost function on a system’s
input-output behavior. More generally, this formulation
provides a powerful paradigm for solving difficult inverse
problems [3, 4]. The same paradigm has also been ex-
ploited to describe biological learning in various forms,
e.g., in neural [5] and immune systems [6].

Biological systems are necessarily physical in nature
and therefore, like any physical system, must obey cer-
tain constraints that cause their learning processes to
differ from those of computers. In particular, while com-
puter algorithms often seek to globally descend cost func-
tion gradients with respect to learning degrees of freedom
(e.g., neural network weights), physical systems without
external processors cannot generally implement such op-
timization processes, even though learning by natural se-
lection can be sometimes be cast in this way. Typical
biological learning, e.g., by an animal learning a new be-
havior, operates on time scales far shorter than evolu-
tionary ones, and must proceed by dynamical processes
(learning rules) that modify internal (learning) degrees
of freedom in response to examples [7]. Such learning
rules are generally local in space and time and cannot
be informed about the functionality of the whole system.
In other words, learning in physical systems on shorter-
than-evolutionary time scales differs from computational
machine learning in that the learning is emergent. It is a
collective behavior of many elementary units, each imple-
menting simple rules based on its own local environment.

The Hebb rule in neuroscience (“neurons that fire to-

gether, wire together”) is an example of a local rule –
synaptic plasticity is based on local information, lead-
ing to debates about whether and how such dynamics
propagate information about the training task to indi-
vidual neurons and synapses. Local rules have also been
exploited to train laboratory non-biological mechanical
networks to exhibit auxetic behavior [8, 9] or protein-
inspired functions [10–12]. Other local rules have been
proposed for associative memory [13–17]; one of them
has even been demonstrated in the lab [18]. Here we will
focus on a powerful set of local rules based on the frame-
work of Contrastive Hebbian Learning, which perform
approximate gradient descent of a cost function [19–26].
Such contrastive learning was recently realized experi-
mentally for tasks including regression and classification
in electronic resistor networks [27, 28].

Here, we focus on physical systems such as ather-
mal mechanical, flow or electrical networks, in which
the learning rate is slow compared to the rate of phys-
ical relaxation. In this limit, mechanical networks re-
main in equilibrium during the learning process, while
flow/electrical networks remain in steady state. As a re-
sult, forces on nodes of a mechanical network must add
to zero, while all the currents through nodes of a flow or
electrical network must add to zero. These constraints
arise because the system must typically be at a minimum
of a physical cost function (e.g., the energy in a mechan-
ical network or the dissipated power in a flow/electrical
network) with respect to the physical degrees of freedom
(e.g., node positions in mechanical networks, or currents
through edges of flow/electrical networks). These phys-
ical degrees of freedom couple the learning degrees of
freedom (e.g., spring constants in mechanical networks or
conductances for each edge in flow/electrical networks).
Note that systems that operate at a minimum of a phys-
ical cost function are naturally recurrent in the sense
that information flows in all directions, not only from ‘in-
puts’ to ‘outputs.’ Thus, they differ fundamentally from

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.23.546243doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546243
http://creativecommons.org/licenses/by-nd/4.0/


2

computational learning algorithms based on optimizing
a feed-forward functional map.

In such equilibrium or steady-state systems, learning
involves a double gradient descent – at every step of
minimization of the learning cost function, the physi-
cal cost function must also be minimized with respect
to the physical degrees of freedom. Therefore there are
two landscapes of interest: the learning cost function in
the high-dimensional space spanned by the learning de-
grees of freedom, and the physical cost function in the
high-dimensional space spanned by the physical degrees
of freedom. These two landscapes are coupled together.
As a system learns, either directly by double gradient de-
scent or by using local rules that approximate gradient
descent in the learning landscape, changes in the learn-
ing degrees of freedom sculpt the physical landscape. We
examine the effects of learning on this physical landscape
and the properties of the learning system.

We are inspired by recent efforts in the fields of pro-
tein allostery and computational neuroscience that sug-
gest learning has a set of typical effects on the physical
structure of a network and its response to external forces.
Some folded proteins, often modeled as mechanical net-
works [29, 30], have evolved allosteric function, where
binding of a regulatory molecule at a “source” site trig-
gers a conformational change in the protein that either
enables or inhibits binding of another molecule at a dis-
tant “target” site. Model networks, as well as networks
derived from folded proteins, that display allosteric be-
havior have been shown to exhibit low-dimensional re-
sponses to strains applied at the source [31–40]. In par-
ticular, the allosteric response is well-captured by low-
energy (soft) normal modes of vibration [36, 37, 41, 42].
Similar observations have been made in neural circuits
and model systems [43–47], in particular for unsuper-
vised learning tasks such as predictive coding [48]. Our
goal is to understand how such effects arise.

In this paper, we study the effects of learning on the
physical landscapes of mechanical and flow networks, as
they use local rules to learn tasks by effectively perform-
ing double gradient descent in the physical and learning
landscapes. We show in detail how the structure of the
physical landscape changes to accommodate the learned
tasks, how it develops features observed in protein al-
lostery studies [36, 37, 41, 42], and how it is affected by
loading multiple concurrent tasks on the network, up to
and beyond its capacity [49]. We find that, generically,
when physical networks learn tasks in the linear response
regime, they become soft as learning proceeds, and the
responses become low-dimensional, aligning with direc-
tions of low curvature in the physical landscape. The
tasks that can be learned in this way include not only al-
lostery, as in proteins, but typical computer science tasks
such as regression and classification. In a sense, we are
showing that things become what they learn. The impli-
cation is that learning imprints signatures on a physical
system, allowing an external observer to gain insight into
whether a network has been trained, and for what tasks.

FIG. 1. Learning modifies the physical network. a) Input
forces (black) are applied to the physical degrees of freedom
(green, e.g. node positions) of a physical network (e.g. me-
chanical spring network), whose interactions correspond to
learning degrees of freedom (blue, e.g. spring constants). b)
In the physical configuration space, this input force causes the
system to respond, equilibrating in a free state (red dot). To
train the system, a further ‘output force’ is applied, nudging
the system to a clamped state (green dot). The blue arrows
describe the inherent physical coordinate system, with direc-
tion corresponding to eigenmodes vab of the physical Hessian
Hab, and lengths correspond to the associated inverse eigen-
values λ−1

a . c) A local learning rule is applied, modifying the
learning degrees of freedom. On top of improving the sys-
tem free state response, learning tends to rotate the Hessian
coordinate system such that the eigenmode corresponding to
the lower eigenvalues align with the free state response, and
decrease these eigenvalues. d) Training results in a physical
system whose lower eigenvalues are reduced, and eigenmodes
aligned with the trained task(s). The system responds con-
siderably more strongly to random forces, shown by the area
spanned by the trained inverse eigenvalues (blue ellipse) com-
pared to the untrained ones (red ellipse). Training makes the
physical system more conductive and lower dimensional.

II. TRAINING A PHYSICAL NETWORK

Consider a network (Fig. 1a) with physical degrees of
freedom xa, a = 1 · · ·N collected into a vector ~x, and
learning degrees of freedom wi, i = 1 · · ·Nw collected
into a vector ~w. We apply inputs to one subset of the
physical degrees of freedom, and designate another sub-
set as outputs. Learning modifies the learning degrees
of freedom to improve the physical responses of the out-
puts, driving them closer to the desired responses. For
an athermal mechanical spring network, we will designate
the positions of the nodes as physical degrees of freedom
{xa} that adjust to minimize the elastic energy, which
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is the physical cost function E. The learning degrees of
freedom wi are spring stiffnesses [10, 49]. The inputs
are forces on nodes and outputs are node displacements.
For a flow network, {xa} represent the node pressures,
which adjust to minimize the power dissipated, which is
the physical cost function E. The learning degrees of
freedom {wi} are the conductances of the edges of the
network while the inputs are externally applied currents
at the nodes [49] and outputs are node pressures. In
an electric resistor network, {xa} may correspond to the
node voltage values while {wi} correspond to the edge
resistances [23, 27].

Protocols for deriving physically realizable learning
rules for such systems can be constructed based on
the ideas of Contrastive Hebbian Learning [19]. These
approaches include Equilibrium Propagation [20], Cou-
pled Learning [21] and Hamiltonian Echo Backpropaga-
tion [22]. All of these local learning rules are based on
the comparison of two states of the system: (a) a free
state where only inputs are applied, and (b) a clamped
state where the outputs are nudged toward the desired
values (Fig. 1b). Below, we show how such learning rules
change the physical system (Fig. 1c), aligning its response
eigenspace with the learned task, and increasing its re-
sponses to random forces (Fig. 1d).

More precisely, consider a noiseless physical network
with fixed learning degrees of freedom ~w. The network
dynamics and responses to external inputs are fully deter-
mined by the physical cost function E(~x; ~w) which con-
trols how the physical degrees of freedom ~x respond to
external inputs. In the absence of such inputs the system
equilibrates, locally minimizing the physical cost function
to settle into a native state ~x0(~w) in which forces (for
mechanical networks) or currents (for flow or electrical

networks) are balanced ~∇~xE(~x, ~w)|~w = 0, or, in compo-
nents, ∂E/∂xa|~w = 0 for all a. Below we will consider
small perturbations around such native states; that is, we
discuss learning in the limit of linear response. In fact,
such learning approaches are practical and successful well
beyond linearity [21]. However, in the linear regime we
will show that learning is dominated by characteristic
network phenomenology including reduction of the effec-
tive dimension of responses, softening of the system, and
alignment of dynamics with the learned task. Beyond
linear response, other mechanisms, such as multi-state
learning [16, 42, 50], also become relevant.

In linear response it suffices to consider an expansion
of the physical cost function around the native state up
to the first non-vanishing, i.e., second, order:

E(~x, ~w) ≈ E(~x0, ~w) +
1

2
(~x− ~x0)TH(~w)(~x− ~x0) (1)

where the superscript T denotes the transpose, andH is a
(symmetric) physical Hessian matrix, the components of
which are Hab(~w) = ∂2E(~x, ~w)/∂xa∂xb|~x=~x0 . In the fol-
lowing we name this matrix the Hessian as a shorthand.
The first order term in the Taylor expansion vanishes,
since the native state ~x0(~w) is a minimum of the phys-

ical cost function. The Hessian is a function of ~w both
explicitly, and implicitly through the dependence of ~x0

on the learning degrees of freedom ~w.
To simplify the language in the remainder of this pa-

per, we will use “force” to denote forces in the case of
a mechanical network or currents in the case of a flow
network.

A. Training physical responses at network nodes

Consider a generalized external input force ~F applied
to the physical degrees of freedom, namely tensile forces
in a mechanical network, or a set of currents in a flow
network, applied to specific nodes. This force could be
applied locally (at a subset of nodes) or globally, e.g.,
a “compression” applying forces to all the ~x toward a
certain point. These input forces will affect the physical
cost function, prompting the system to equilibrate in a
new free state ~xF which minimizes the free state physical
cost function:

EF (~x, ~w) = E(~x, ~w)− ~F · ~x

∇~xEF (~x, ~w) = 0 =⇒ ∇~xE(~x, ~w) = ~F
(2)

In the linearized approximation (1), this gives

~xF − ~x0 = H−1 ~F (3)

where we used the fact that the Hessian matrix is sym-
metric. In other words, the system responds by shifting
the native state by the inverse Hessian applied to the
input force. Note that ~xF depends on the learning de-
grees of freedom ~w explicitly through the Hessian, and
implicitly through the native state ~x0(~w).

Thus, deformations around the native state with small
Hessian eigenvalues are “soft” – they exhibit a larger re-
sponse to applied forces. Note also that the entries of
the inverse Hessian depend globally on all the learning
parameters. So the change produced by an external force
on a given physical degree of freedom can depend non-
locally on the values of all the learning degrees of free-
dom, and not just on, say, the weights of edges connected
to the network node in question.

In order to proceed, we must define a task in terms
of desired outputs in response to the inputs, which we
can express in terms of physical constraints that must
be satisfied. The constraints can be local, applying to
a subset of nodes designated as output nodes, or global,
applying to all of the nodes. Because the response is
expressed in terms of the physical degrees of freedom,
the constraints can be defined by demanding that the
free state response ~xF −~x0 satisfies a desired relationship
encoded in a functional f(~xF − ~x0) = 0. For example, if
one desires ~xF − ~x0 = c at a given output node o, then
the functional is simply xFo −x0

o−c. This can be thought
of as a single basic task. More complicated tasks can be
defined by adding functionals for many such tasks. For
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example, a classification task may be posed such that all
members of each class (each set of inputs in the class)
prompt a response that satisfies a particular constraint
for that class.

Suppose we have multiple tasks, i.e., pairs of input

forces and output constraints: (~Fr, f
(r)(~xFr − ~x0)) in-

dexed by r = 1 · · ·nT . We can quantify how well the sys-
tem performs the tasks, i.e., implements these response
constraints, in terms of a learning cost function C. For
example, we can use a Mean Squared Error (MSE) cost:

C({~xr}, ~x0(~w)) ≡ 1

2
n−1
T

∑
r

[f (r)(~xr − ~x0)]2 (4)

evaluated at the free state responses ~xr = ~xFr . For a ran-
dom, untrained physical system, the free state responses
are completely independent from the desired responses,
so the learning cost function C will tend to be high.
Learning is the process of modifying the system, chang-
ing its learning degrees of freedom such that the cost
function is reduced. How can this be done?

Computational machine learning algorithms generally
minimize the learning cost function by performing gra-
dient descent on C. Typically, this means that global
information is required to determine local changes in the
network. By contrast, a physical learning system must
use local learning rules to achieve the same goal. We take
the approach of Contrastive Learning in its incarnation
as Equilibrium Propagation [20].

First consider training a system for a single task de-
fined by the target constraint f(~x−~x0) = 0. Suppose we

apply the input force ~F and the system equilibrates at
some free state ~xF . To train the system we could nudge
it towards the desired output by applying an additional
weak output force

η ~FO = −η∇~xC(~x, ~w)|~x=~xF = −η f∇~xf |~x=~xF−~x0 , (5)

where η is a small parameter that we have explicitly sep-
arated out, and the last equation applies to a quadratic
cost function (Eq. 4). The linearized system responds to
the nudge by settling into a clamped state ~xC satisfying

~xC − ~xF = η H−1 ~FO . (6)

The clamped state depends on the learning degrees of
freedom ~w explicitly through the Hessian and implicitly
through the additional dependencies in the free state ~xF .
We can describe this equivalently by saying that the sys-
tem minimizes a clamped physical cost function

EC(~x, ~w) = EF (~x, ~w) + ηC(~x, ~x0(~w)) (7)

Thus the clamped state is the free state, nudged slightly
by an extra output force related to a learning cost that
arises if the system does not satisfy the desired con-
straints.

The contrastive learning [19] approach, later refined by
equilibrium propagation [20] and coupled learning [21],

compares the free and clamped states to derive an ap-
proximation to the gradient of the learning cost function
that can be minimized more readily via local learning
rules. Define the contrastive function:

F ≡ η−1[EC(~xC , ~w)− EF (~xF , ~w)] (8)

Previous work has showed that the partial derivative
of the contrastive function with respect to the learning
degrees of freedom ~w approximates the gradient of the
learning cost function C in the limit η → 0 [20]:

dC

d~w
= lim
η→0
∇~wF (9)

On the right hand side we differentiate only the explicit
~w dependencies in the contrastive function, and not the
implicit dependencies via the solutions for the free and
clamped states. We will also assume that the MSE cost
function C does not depend directly on ~w, as it is a com-
bination of physical constraints. The only explicit de-
pendence of the physical cost function on the learning
degrees of freedom then appears in the physical Hessian
H = H(~w).

Using (2) and (7) for EF and EC in F , the Taylor
expansion of the physical cost function in (1), and the
linearized approximations for xF and xC in (3) and (6)
gives

∇~wF = η−1∇~w[EC(~xC ; ~w)− EF (~xF ; ~w)]

≈ ~FT H−1(∇~wH)H−1 ~FO
(10)

where we kept only the term that survives the η → 0
limit in the second line, and used the fact that H and
H−1 are symmetric matrices.

Learning now proceeds by following this derivative of
the contrastive function with a learning rate α

δ ~w = −α∇~wF . (11)

This learning rule has two key properties. First, learning
is local. Every learning degree of freedom is modified
according to the local difference between the free and
clamped values of the physical cost, spatially localized at
that edge of the network [20, 21]. This locality is a direct
consequence of the property F ≥ 0 so that it does not
have to be squared as in the learning cost function C in
order to guarantee that the global minimum is at F = 0.
Second, the rule for modifying ~w is proportional to the

alignment of the input force ~F and the output force ~FO

in an inner product determined by the symmetric matrix
H−1∇~wHH

−1. Each learning degree of freedom tends to
decrease if the input and output forces align, and increase
otherwise. We will see later how this property causes a
realignment of the inherent physical coordinate system.

To illustrate, consider a model where ~x are physical
variables at N nodes, while the Nw = 1

2N(N−1) learning
parameters are at edges linking each pair of nodes. In this
fully connected case, the learning parameters are natu-
rally represented as a symmetric matrix W with entries
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Wab, where a, b = 1 · · ·N (Fig. 2a). The energy (physical
cost) function for such a node network is a function of the
node variables:

E(~x; ~w) =
1

2
~xW~x. (12)

The Hessian of the energy is H = W , and is thus linear
in the learning degrees of freedom. For sufficiently small
forces compared to the scale set by the Hessian, any clas-
sical Hamiltonian system can be written in this way, and
learning is the process of modifying the edge weights to
amplify desired responses around rest, while suppressing
unwanted responses to inputs. For this model the learn-
ing rule for a given edge weight Wab is

δWab = −α
2
~FTW−1 ∂Wab

W W−1 ~FO =

= −α
2

(W−1 ~F )a(W−1 ~FO)b + transpose
(13)

Here, we used the fact that the a, b and b, a entries of
the matrix ∂Wab

W equal 1, while all the other entries
are 0. So in the second line we are multiplying the ath

component of the vector W−1 ~F by the bth component of

W−1 ~FO and adding the transpose.
To show that the physically realizable learning rule

Eq. 13 can converge, we first tested it on a relatively easy
task. We initialized networks with N = 20 nodes with
energy functions of the form (12) and weights Wij drawn
randomly from a standard Gaussian N (0, 1). To ensure a
positive semi-definite Hessian, we explicitly symmetrized
the weights and added a term proportional to the identity
δab, Wab ← 1

2 (Wab + WT
ab) + 3

√
2Nδab. Then H = W

(since W is already symmetric) and all its eigenvalues are
positive. The resulting random Hessians initially have
eigenvalues in the range ∼ (10, 27). We then defined a
random learning task by picking an input force with each
component drawn from a standard Gaussian, and a linear

output constraint f(~x − ~x0) = ~A(~x − ~x0) + B with the

entries of ~A and B also drawn from standard Gaussians
(see Appendix A). The local learning rule was effective
in training such networks, reducing the error in Eq. 4 by
many orders of magnitude (Fig. 2b). Appendix A gives
examples of other tasks such as allostery, regression and
classification that can be trained in this way.

B. Training mechanical and resistor networks

In the mechanical/flow/electrical-resistor networks of
interest to us, the physical cost function minimized by
the network is defined via differences in the physical de-
grees of freedom ~x between nodes connected by edges
whose non-negative learning degrees of freedom are ~w.
Each element xa of ~x can itself be an element of some
d-dimensional vector space describing the physical at-
tributes of nodes. For example, we will consider mechan-
ical networks where the node variables xa correspond
to positions (y1

a, y
2
a, · · · yda) in a d-dimensional physical

space, while the weights wi are spring constants (stiff-
nesses). We will use the notation that the product of
two node variables xaxb should be understood as an
inner product in the physical space. For example, if
the physical space is d-dimensional Euclidean space then

xaxb =
∑d
k=1 y

k
ay
k
b . Likewise in resistor/flow networks,

the xa describe node voltages/pressures (Va), which we
will regard as one-dimensional vectors, and the wi de-
scribe conductances on edges. The energy (power) in
these networks is a weighted sum over edges of the
squared strains for springs, or squared voltage drops for
resistors. In view of this, it is more convenient to work
with the differences between physical node variables con-
nected by edges (Fig. 2a) rather than the node values
themselves.

To this end, we arbitrarily assign an orientation to ev-
ery edge and define ∆ia to take the values ±1 depending
on whether the node a is at the incoming or outgoing
end of edge i, and 0 otherwise. The Nw × N quantities
∆ia form the incidence matrix ∆, such that ∆~x is an Nw
dimensional vector, with entries that are the differences
between the node variables on either side of each edge. In
terms of this incidence matrix, we can write the physical
cost function minimized by such difference networks as

E(~x, ~w) ≈ E(~x0, ~w) +
1

2
(~x− ~x0)T∆Tdiag(~w)∆(~x− ~x0)

(14)
where diag(~w) is a diagonal matrix with entries wi which
measure the conductances (for resistance/flow networks)
or stiffness (for central-force spring networks) of the Nw
edges. Here, if the edge i is incident on nodes a and

b, then the ith component of ~δ ≡ ∆(~x − ~x0) is (xa −
x0
a)− (xb − x0

b). In terms of these differences the second
term in the physical cost function (14) is

∑
i wiδi · δi.

Since the δi are differences of d-dimensional physical node
variables, as described above, their product is defined by
an inner product in the physical space. We can map the
difference network (14) to the node network (12) by the
identification

∆Tdiag(~w)∆←→W . (15)

We can thus identify the physical Hessian as
Hab(~w) = ∂2E(~x, ~w)/∂~xa∂~xb|~x=~x0 = ∆T

aidiag(w)ij∆jb,
with ∂Hab/∂wi = ∆T

aj(δ
ii)jk∆kb where δii is a Nw ×Nw

matrix with a 1 in the ith diagonal entry, and zeros else-
where. We similarly define the learning task as the sat-
isfaction of a linear constraint, f(~xF − ~x0) = 0. In terms
of these constraints we define a learning cost function

C = 0.5f2. Similarly to Eq. 3, given an input ~F , the free

state response is ~xF − ~x0 = H−1 ~F . The clamped state

response is also the same as before, ~xC−~xF = ηH−1 ~FO,

with an output effective force ~FO ≡ −∇~xC. In mechani-
cal spring networks, such forces cause the displacement of
network nodes, while in flow or resistor nets, these forces
may be understood as injecting currents to nodes. Using
these definitions and Eq. 11, we find that the learning

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.23.546243doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546243
http://creativecommons.org/licenses/by-nd/4.0/


6

degrees of freedom ~w change in a training step by

δwi = −α(∆H−1 ~F )i(∆H
−1 ~FO)i (16)

where on the right side we are simply multiplying the ith

component of the vectors ∆H−1 ~F and ∆H−1 ~FO. Over-
all, learning in such physical networks where the rele-
vant degrees of freedom are differences of node variables
is similar to the networks discussed above in which the
physical variables are the node variables themselves. In
particular, (16) could be rendered in matrix form like
(13) if desired, except that the entries of the W matrix
in this case would be linear combinations of the network
edge weights dictated by the incidence matrix. We also
see that δwi in (16) can be written as minus the prod-
uct of the ith components of the free and clamped state
displacement difference at the ith edge. This means that
the conductance/stiffness elements ~w tend to decrease if
the response to the input and output forces at an edge
align and increase otherwise.

In Fig. 2b, we show that Eq. 16 successfully trains
N = 40 flow networks and elastic spring networks for
allosteric tasks (see appendix A), reducing their error
by multiple orders of magnitude. These networks were
derived from Erdős–Rényi graphs with mean coordina-
tion number Z = 3 for flow networks and Z = 4 for
2-dimensional mechanical networks.

In summary, in the remainder of the paper we will
focus on these three example types of networks. (1) A
fully-connected network whose physical cost function has
the form of Eq. 12, where xa is the physical degree of free-
dom for node a and the learning degrees of freedom wi
are organized in the Hessian Hab = Wab. These learning
degrees of freedom evolve by Eq. 13. (2) A flow or re-
sistor network where the physical degrees of freedom are
the node pressures or voltages and the learning degrees
are the edge conductances. The physical cost function is
described by Eq. 14 and the learning rule is described by
Eq. 16. (3) A mechanical central-force spring network,
where the physical degrees of freedom xa are the node po-
sitions and the learning degrees of freedom are the spring
constants of the edges. Again, the physical cost function
is Eq. 14 and the learning rule is Eq. 16.

III. TRAINED NETWORKS ARE PHYSICALLY
MODIFIED BY LEARNING

Above, we demonstrated a method for training phys-
ical networks to perform arbitrary functions in response
to small inputs. We will show next that training modi-
fies the physical properties of the network, changing the
effective conductances, the dimension of the physical re-
sponses, and the alignment of the inherent coordinates
of the physical response and the learned behaviors.
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linear network
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FIG. 2. Training physical networks. a) We train several types
of physical networks in the linear response regime, in partic-
ular fully connected linear networks (where physical degrees
of freedom are node values), Flow networks and mechanical
spring networks (where physical responses are naturally rep-
resented as difference over edges). b) Training these systems
on single tasks, we generally find that local learning rules
succeed, reducing the mean squared error by many orders of
magnitude (geometric mean over 50 realizations of networks
trained with single tasks).

A. Changes to the Hessian and its eigenspace

Above we discussed how to change the learning de-
grees of freedom to minimize a learning cost function in
the response of a physical system. Suppose the system
implements these learning dynamics. Then the changes
to its responses to external forces are all manifested in
modifications to the Hessian at the native state and its
eigenspace. The Hessian changes for two reasons: (a)
it is a function of the network weights ~w which are
changing, and (b) it is evaluated at the native state ~x0

which minimizes the physical cost function of the net-
work, and hence is implicitly a function of the chang-
ing weights ~w. To evaluate these changes we first de-
fine the physical Hessian at a general network state ~x as
H̃(~w, ~x) = ∂2E(~x, ~w)/∂xa∂xb|~w. Evaluating H̃ at the
native state ~x = ~x0(~w), which minimizes the physical
cost function, gives the Hessian H(~w) in (1).

In terms of H̃ the change in the Hessian can now be
written as

δH = δ ~w · dH̃
d~w

∣∣∣∣∣
~x=~x0

=
∑
i

δwi

[
∂H̃

∂wi
+
∑
a

∂H̃

∂xa

∂x0
a

∂wi

]
~x=~x0

(17)
In the right hand expression the sum on i in the second
term gives ∇~wx

0
a · δ ~w, which is the change in the na-

tive state variable x0
a driven by learning. The expression

(∂H̃/∂xa)(∂x0
a/∂wi) contains an implicit inner product

in the physical space if the node variables xa are regarded
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as d-dimensional vectors (see Sec. II B.)
If the physical cost function is quadratic in the node

variables ~x like in (12) or (14), or we are in the linearized
regime of small forces with a good quadratic approxi-
mation to the physical cost function (1), then H̃ is by
construction independent of ~x, and ~x0 is independent of
~w. In these cases, which we will mostly study, the sec-
ond term in (17) vanishes (or is small relative to the
first term), and can be dropped. Such physical systems
are in fact common: for example, electrical resistor net-
works, as in Ref. [27] always remain in the linear regime.
Flow networks remain linear in the low Reynolds num-
ber regime, while initially unstrained spring networks are
also linear over a reasonable range of strain when learn-
ing is performed on spring stiffness. In such systems the
native state ~x0 does not depend on the learning degrees
of freedom at all, and stays fixed throughout the learning
process.

As before, let us first discuss fully connected linear
node networks – physical systems where the node degrees
of freedom are trained to show desired responses. The
change in the Hessian of such learning systems is given
by Eq. 13:

δHab = −1

2
α(H−1 ~F )a(H−1 ~FO)b + transpose (18)

where we used the fact that the Hessian in this case equals
the edge weight matrix W .

We see that the change in the components of the Hes-
sian is given by a rank-1 symmetric matrix. This is the
modification of the Hessian given a single task, i.e., input
force - output constraint pair. Each additional task that
the network is trained for contributes such a modifica-
tion, and therefore the total change in the Hessian due
to a learning step consisting of r = 1 · · ·nT tasks is

δHab =
∑
r

δH
(r)
ab =

= −α
2

∑
r

(H−1 ~Fr)a(H−1 ~FOr )b + transpose .
(19)

Recalling that H−1 ~Fr = (~xFr − x0) and H−1 ~FOr =
η−1(~xCr −~xFr ), we see that Eq. 19 is a symmetrized outer
product of the input response and the output nudge:

δHab = − α

2 η

∑
r

(~xCr − ~xFr )a(~xFr − ~x0)b + transpose

(20)
Thus, elements of the Hessian where the directions of the
input and output responses agree tend to be reduced, and
otherwise tend to increase. In particular, if the two re-
sponses are parallel (anti-parallel), the effect of learning
will soften (stiffen) the Hessian. Note that δH is a sym-
metric matrix, preserving the symmetry of the Hessian.
However, this learning rule does not guarantee that the
Hessian remains positive semi-definite.

Now that we know how learning modifies the Hessian,
we can track its evolution and predict the important fea-
tures of the system in the neighborhood of the native

state. To do so, we first discuss how the eigenspace of
the Hessian changes in response to learning. Using first
order perturbation theory, the changes in the eigenvalues
λn and eigenmodes ~vn of the Hessian (n = 1 · · ·N) due
to one task (labeled r) in a learning step are:

δλ(r)
n = ~vTn δH

(r)~vn

= − α

2λ2
n

~vTn [~Fr ⊗ ~FOr + transpose]~vn (21)

δ~v(r)
n =

∑
m6=n

~vTm δH
(r) ~vn

λn − λm
~vm

= −α
2

∑
m6=n

~vTm [~Fr ⊗ ~FOr + transpose]~vn
(λn − λm)λnλm

~vm(22)

where the outer product ⊗ means that ~Fr ⊗ ~FOr is a ma-
trix with components FraF

O
rb, and we assume a generic

starting network with non-degenerate eigenvalues. If the
network is fine tuned to have some identical eigenvalues
we will have to employ the techniques of degenerate per-
turbation theory, at least in the first learning step. The
λ2 and λnλm in the denominators of (21) and (22) arise
from the action of the H−1 factors in δH (see Eq. 19)
on the eigenvectors ~vn and ~vm in the numerators. Note
that the second order correction to the eigenvalues is

δλ
(2)
n ∼ α2

∑
m6=n(λn − λm)−1 [51], and is thus neglible

compared to the first order term (∼ α) in the limit of
slow learning rate α � 1, except when two eigenvalues
nearly cross. At that point an effective “repulsion” pre-
vents eigenvalue crossing.

Two key points about the eigenvalue correction are: (1)
Changes occur predominantly in the smaller eigenvalues
because of the λ−2

n scaling, and (2) A fully trained system
no longer changes its eigenvalues because, while the input

force ~F remains constant over training, the output force
~FO = −∇~xC diminishes and vanishes together with the
learning cost function.

We can also understand the eigenvalue shift geomet-
rically. The projections of the input and output forces
on the eigenspace tells us how these forces align with
the different eigenmodes ~vn. The contributions of the

outer product ~F ⊗ ~FO to the change in an eigenvalue
are positive if both input and output forces align (or
anti-align) with the associated eigenmode, and negative
otherwise. Therefore, if the directions of the input and
output forces both agree (or both disagree) with the di-
rection of an eigenmode, its associated eigenvalue will
decrease. Eigenvectors that lie (or have large projections
in) the plane defined by the input and output forces are
thus associated to strongly affected eigenvalues.

The correction to an eigenmode in Eq. 22 is a linear
combination of the other eigenmodes. Note that eigen-
modes corresponding to lower eigenvalues have a larger
correction, and that close eigenvalues contribute larger
corrections as well. For eigenmodes with the lowest eigen-
values the denominator of the sum in (22) will tend to
be negative. Thus, the overall sign will be positive if the
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eigenvector has a positive projection onto both the input
and output forces. Geometrically, this means that these
eigenvectors will change by increasing their projection
within the plane of the input and output forces. In other
words, training effectively rotates the eigenspace so that
the eigenmodes corresponding to low eigenvalues tend to
align with the manifold spanning the input and output
forces. This also suggests that the low eigenmodes rotate
so that their associated eigenvalues are effectively reduced
by the learning process, since (21) implies that eigenvec-
tors aligned (or anti-aligned) with the forces reduce their
eigenvalues during learning. Therefore, we expect that
training the system for any task reduces the lower lying
eigenvalues [36, 37].

For the upper eigenvalues of the Hessian the denom-
inators of the sum in (22) tends to be positive, making
the overall sign negative for eigenvectors with a positive
projection onto the input and output forces. Thus, learn-
ing will cause these eigenvectors to rotate to align with
either the input or output force, and anti-align with the
other. In turn, this implies through (21) that the upper
eigenvalues will tend to increase during training.

These considerations are verified in Fig. 3a, where we
simulate the Hessian dynamics of fully connected linear
networks with physical cost function (12) during learning
of one task. We see that the bottom eigenvalue is signif-
icantly decreased, while the top eigenvalue increases in
networks, here with N = 20 nodes, averaged over 50
realizations of networks and tasks. Moreover, by calcu-
lating the absolute value of the dot product between the

eigenmodes and the input force ~F , we find that the bot-
tom and top eigenmodes align (or anti-align) with the
input force, and hence with the trained task (Fig. 3b).
Note that the eigenvectors are only defined up to sign
anyway, so that alignment or anti-alignment is a matter
of convention, and has no physical significance.

In mechanical and flow/resistor networks, where input
and output forces are more naturally trained in terms of
differences between values at connected nodes, we have
seen how the edge weights (conductances or stiffnesses)
change in Eq. 16. In such difference networks, the Hes-
sian is modified by a training step as

δH = ∆Tdiag[δwi]∆

= −α∆Tdiag[(∆H−1 ~F )i(∆H
−1 ~FO)i]∆

(23)

where we used the identification (15) between the weight
matrix of node network and the edge weights of a differ-
ence network.

Here we wrote the change in the Hessian in terms of
the product of responses of the network to the input
and output forces. While more complicated than the
result for node networks, this allows us to compute the
change to the eigenvalues and eigenmodes of the Hes-
sian similarly to Eqs. 21-22. Define the alignment matrix

A
(r)
ab ≡ λ−1

a λ−1
b (~va · ~Fr)(~vb · ~FOr ) in terms of eigenvectors

~va of the Hessian. This matrix captures the correlations
in the alignments of the eigenvectors with the input and

output forces, scaled by the eigenvalues. In terms of the
aligment matrix, the change in the eigenvalues and eigen-
modes of the Hessian, to first order in perturbation the-
ory, is

δλ(r)
n = ~vTn δH

(r)~vn

= −α
∑
ab

A
(r)
ab

∑
i

(∆~va)i(∆~vb)i(∆~vn)2
i

(24)

δ~v(r)
n =

∑
m6=n

~vTm δH
(r) ~vn

λn − λm
~vm

= −α
∑
i,m 6=n

∑
abA

(r)
ab (∆~va∆~vb ∆~vm∆~vn)i

λn − λm
~vm

(25)

While this result is more complicated than the case of
the node networks, the phenomenology associated with
the low lying eigenmodes is similar. An eigenvalue λn
is reduced if its associated eigenmode, after action by
the difference operator, ∆~vn, aligns with low lying eigen-
modes that themselves align with the input and output
forces. This causes the set of aligned eigenmodes with
low lying eigenvalues to decrease their eigenvalues fur-
ther. Similarly to node networks, the associated eigen-
modes ∆~vn rotate to better align with the input and
output forces. We conclude that physical difference net-
works such as mechanical and flow/resistor networks will
respond to learning similarly to the node networks. One
difference with the node networks is that all of the eigen-
values tend to decrease during learning. This is because
the ∆ operators in Eq. 24 causes all the shifts to carry
contributions from the dominating low eigenvalues, which
tend to decrease during learning. This is unlike the node
networks where the alignment of each eigenmode with
the input and output forces determines its own shift.

We verify these considerations for flow and mechanical
networks with N = 40 nodes in Fig. 3c-f. The bottom
eigenvalue is effectively reduced by learning and the asso-
ciated eigenmode aligns significantly with the input force
(results averaged over 50 realizations).

We note that machine learning algorithms do not typ-
ically have an analog for the physical Hessian, but are
often concerned with a cost Hessian [52, 53] (the sec-
ond derivative of the learning cost function with respect
to the learning variables HC = ∂wi∂wjC). For trained
learning models, this cost Hessian is typically low-rank,
and has a number of stiff (non-zero) eigenvalues equal
to the number of tasks the model was trained for. We
discuss the cost Hessian HC and its relation to the phys-
ical Hessian H studied here in Appendix B, where we
also show how the low-rank property of the cost Hessian
arises in a physical learning setting.

Below we will discuss the consequences of the changes
in the physical Hessian for physical properties of the
learning system. For simplicity of notation, we will
analyze node networks but the results will apply to
flow/mechanical networks as well.
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FIG. 3. Hessian changes during learning. a) Hessian eigen-
value flow during training of fully connected linear networks
(N = 20) for a single task. The lowest eigenvalue tends to
be significantly reduced, showing that learning creates a soft
mode. b) The lowest (blue) and highest (orange) eigenmodes
of the Hessian significantly align with the input force defined
by the task (measured by dot product). (c-f) Similar results
are found for flow and mechanical networks (N = 40), ex-
cept that the higher eigenmodes do not align with the task.
Results averaged over 50 realization of networks and tasks.

B. Effective conductance

The properties of a physical system are often char-
acterized by its responses to generic forces (e.g., finite
temperature fluctuations), quantified below by an effec-
tive inverse-stiffness/conductance ḡ. Suppose we com-

pute the responses to M random forces {~FRm} sampled
from some distribution and indexed by m. In each case

we have the free state response (~xR − ~x0)m = H−1 ~FRm .
The effective conductance is the average amplitude of
these responses:

ḡ = M−1
∑
m

|~xRm − ~x0|
|~FRm |

= M−1
∑
m

√
|H−1 ~FRm |2

|~FRm |2
(26)

Now suppose that the random forces are drawn
component-by-component independently from a Gaus-

sian distribution and normalized to amplitude |~FRm |2 = 1.
Decompose the Hessian as H−1 = vΛ−1vT (v is a matrix
of eigenmodes and Λ a diagonal matrix of eigenvalues
λ). The eigenmodes v are a set of orthonormal vectors
completely uncorrelated with the random forces. Thus

the components of the vector R = vT ~FR are inner prod-
ucts between random vectors on the unit sphere. In high
dimension N , these inner products are approximately
drawn from a normal distribution N (0, N−1) with zero
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FIG. 4. Training increases the effective conductance and re-
duces response dimension in physical networks. a) Effective
conductance is increased during training in all systems consid-
ered, suggesting that trained systems are softer, with stronger
responses to random forces. b) The physical response dimen-
sion is decreased in all systems during learning, so that the
response of these systems to random forces is concentrated
in low-dimensional manifolds. Results averaged over 50 net-
works and tasks.

mean and variance 1/N . Now, note that

H−1 ~FR = vΛ−1vT ~FR

|H−1 ~FR|2 ∼ RTΛ−2R
(27)

where in the second line we used the fact that vT v is the
identity. The second line in (27) equals the sum squared
of the components of R scaled by the inverse square of
the eigenvalues. Thus its expectation value is a scaled
sum of the variances of the components of R, each of
which equals 1/N . Putting everything together, we find

that the expected value of |H−1 ~FR|2 is a sum over the
square inverse eigenvalues

∑
a λ
−2
a .

Therefore, the effective conductance is a simple func-
tional of the eigenvalue spectrum:

ḡ =

√∑
a

λ−2
a . (28)

Note that the effective conductance ḡ is dominated by
the lower eigenvalues. It is expected to change during
learning, as the eigenvalues λa of the Hessian change.
In particular, we have seen that successful learning low-
ers the lowest eigenvalues, suggesting that trained sys-
tems have an increased effective conductance. Therefore,
trained systems will be ‘softer’ than random systems, ex-
hibiting larger responses on average to random applied
forces. Note that the increased effective conductance is
unrelated to the specific details of the learned task; such
physical systems trained for any task are expected to
become softer/more conductive.
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Fig. 4a shows how the effective conductance of the dif-
ferent physical networks studied generally rises during
training for a single task. These results are normalized
such that the effective conductance at the beginning of
training is ḡ(t = 0) = 1, and averaged over 50 differ-
ent realizations of the network and training task. Here,
the orange curves correspond to flow networks, the green
ones correspond to mechanical networks, and the blue
curves correspond to the fully-connected networks.

C. Physical response dimension

We can also directly study the dimension of the space
of responses to random forces. While the system has N
physical degrees of freedom, typical responses are cou-
pled, lowering the effective dimensionality, as has been
observed in, e.g., proteins [31] and neural circuits [46].
This effective dimension can be extracted by measuring
how widely the responses are spread over the different
eigenmodes of the Hessian.

To define a measure of this spread, we first consider the

response ~xRm−~x0 to a given random force ~FRm . Let Pam =
~va · (~xRm − ~x0) be the projection of the response onto the
Hessian eigenmode ~va. Then the associated participation
ratio is

Dm ≡
[∑

a(~vTa · (~xRm − ~x0))2
]2∑

a(~vTa · (~xRm − ~x0))4
=

[∑
a P

2
am

]2∑
a P

4
am

(29)

If a response ~xRm−~x0 is parallel to a particular eigenmode
~va, then it is orthogonal to the others, and so Dm = 1.
On the other hand, if all eigenmodes participate in a
given response with the same amplitude, i.e. ~vTa · (~xRm −
~x0) = ±const for every mode, then Dm = N . Thus
Dm captures the effective number of eigenmodes that

participate in the response to ~FRm .
In view of this, it is natural to define the effective di-

mension of the response as

Deff =

[
〈
∑
a P

2
am〉
]2

〈
∑
a P

4
am〉

(30)

where the angle brackets denote an expectation value in
the ensemble of random forces. In other words, we are
defining the effective dimension as the ratio of the square
of the second moment and the fourth moment of the pro-
jections of the response space onto the eigenmodes. Note
that this is similar to, but not the same as, another clas-
sic measure of response spread: the participation ratio
(PR) dimension [54–56]. The latter measure simply takes
the expectation value of (29) in the ensemble of random
forces, rather than separately taking expectation values
in the numerator and denominator.

Our effective dimension has a simple and intuitive ex-
pression in terms of the spectrum of eigenvalues of the
Hessian (details in Appendix C):

Deff =
(
∑
a λ
−2
a )2

3
∑
a λ
−4
a

(31)

Notice first that if one eigenvalue is particularly small, it
will dominate, and lead to an effective dimension of 1/3.

As we showed above, learning changes the eigenvalues
of the Hessian. To test how this changes the effective
dimension we can take a derivative of (31):

∂Deff

∂λa
=

4

3λ5
a

Deff − λ2
a(
∑
a λ
−2
a )∑

a λ
−4
a

(32)

We see that changing a large eigenvalue does not modify
the effective dimension much because of the λ−5

a sup-
pression. This makes sense because the system response
to forces is controlled by the lowest lying eigenmodes –
indeed (31) is dominated by the low eigenvalues. Con-
versely, decreasing the highest eigenvalues increases the
effective dimension because this makes more eigenmodes
active in the responses. In general, we saw that learning
tends to decrease the lower eigenvalues of the Hessian
eigenvalues, suggesting that learning reduces the physi-
cal response dimension for any learned task.

In fig. 4b, we compute the effective dimension during
training for different physical systems (averaged over 50
networks and tasks). We find that the physical dimension
generally decreases during training as the system adapts
to accommodate the learned task, as expected given the
Hessian eigenvalue dynamics seen before. There are other
ways to estimate the dimension of the physical response –
in Appendix C we discuss some of them and observe that
for such alternative definitions, the physical dimension is
still reduced by learning.

D. Physical alignment with the learned task

As discussed above, the change in eigenmodes during
learning tends to align the modes corresponding to low
eigenvalues with the manifold defined by the input and
output forces. The physical implication is that the sys-
tem encodes information about the learned task in the
eigenspace of its Hessian at the native state. In essence,
the physical system, and particularly the native state
basin, becomes the task it was trained for.

Remarkably, this allows an observer to glean informa-
tion about a novel system without prior knowledge about
whether this system was trained, and, if it was trained,
for what task. Suppose we are given such a network that
appears random to the naked eye. We can perform physi-
cal measurements, applying random forces to the network
and measuring the effective conductance and physical re-
sponse dimension described above. Comparing these val-
ues with those expected for a generic physical system of
that type, we can tell whether the system was trained.
But how can we deduce what task the system was trained
for? The Hessian of the system can be measured in ex-
periments by applying N orthogonal input forces, e.g.,
forcing each physical degree of freedom, and measuring

the response, as H−1 ~FR = (~xR−~x0). Then we can com-
pute the eigenvalues and eigenmodes of the Hessian. Our

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.23.546243doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546243
http://creativecommons.org/licenses/by-nd/4.0/


11

100 101 102 103 104

Time

5

10

15

20

25
Ei

ge
nv

al
ue

s

(a)

1 2 3 4 5
Task index

1
3
5
7
9

11
13
15
17
19

Ei
ge

nm
od

e
in

de
x

(b) Eigenmode alignment

100 101 102 103 104

Time

100

101

(c)

1 2 3 4 5
Task index

1
5
9

13
17
21
25
29
33
37

(d) Eigenmode alignment

FIG. 5. Hessian changes for systems learning several tasks.
a) Hessian eigenvalues for a fully connected linear network
trained for 5 independent tasks. A few of the bottom and
top eigenvalues are modified significantly. b) Alignment (dot
product) of the eigenvalues to the 5 tasks shows that ∼ 5 of
the bottom and top eigenmodes align with the task inputs.
c-d) Similar results observed when training flow networks for
several tasks. For such difference networks the bottom eigen-
modes tend to align with the input forces.

analysis suggests that the lowest eigenmodes should have
a large overlap with the response of the network to the
input force, (~xF − ~x0), revealing the response function
that the network was trained for.

For example, suppose that a network is trained to pro-
duce local responses at some output nodes in response
to local forces at some other input nodes. Such a net-
work is trained to strongly couple local inputs and local
outputs. Therefore, we expect the eigenmodes related
to this learned behavior to have large components in the
physical degrees of freedom corresponding to the relevant
input and output nodes. Measuring the Hessian and its
eigenspace can thus inform us of where in the network
these critical nodes are located, as well as what forces
are expected at the inputs.

IV. TRAINING FOR MULTIPLE TASKS

Above we saw how physical networks change when they
learn a desired behavior in the small input force regime,
where the physical response is described by the physical
Hessian at the minimum of the native state basin. Learn-
ing changes the Hessian and its eigenspace to accommo-
date the learned task, aligning an eigenmode with the
task induced coordinate system, lowering the associated
eigenvalue, and creating a softer mode in the physical
cost landscape. In this section we extend this reasoning
to physical learning of multiple tasks in the same sys-
tem, whereby the Hessian changes by averaging over sin-
gle task modifications, as in Eq. 19. We thus expect the

Hessian eigenspace to align with the coordinates of the
different tasks. Since these tasks are in general indepen-
dent from one another, training should result in aligning
several Hessian eigenmodes (as many as the number of
tasks). To verify this reasoning, we train fully connected
node networks with N = 20 nodes and flow networks
with N = 40 nodes to simultaneously satisfy five ran-
domly sampled tasks (Fig 5, all results averaged over 300
realizations). In all cases, the tasks were learned well,
resulting in vanishing error.

We see in Fig. 5a that several eigenmodes are sig-
nificantly shifted in these networks. In the node net-
works, three eigenvalues are significantly reduced while
two eigenvalues are increased. We also observe that five
eigenmodes align (by dot product) with the five input
forces (Fig. 5b), the bottom three and top two. In flow
networks we see that all eigenvalues are decreased, with
larger effects at the bottom of the spectrum (Fig. 5c).
Furthermore, the bottom eigenmodes tend to align with
the input forces (Fig. 5d).

It is, however, well-known that a system cannot be
trained to perform too many tasks; physical and compu-
tational learning models have a capacity MC for trained
tasks. Trying to learn beyond capacity results in fail-
ure, where the system cannot successfully perform all
of the desired tasks [7]. The capacity of simple learn-
ing models typically scales at best with the number of
learning degrees of freedom (see Appendix D, where we
argue our physical networks have a capacity that scales
linearly with Nw). This has been established for flow
networks, where the number of output nodes that can be
trained to respond to a single input is sublinear [49] in
the total number of nodes, but can be raised to linear
scaling [57] by avoiding frustration by tuning outputs in
order of increasing distance from the source. We observe
this finite capacity when training our models for multiple
tasks (Fig 6a). Thus, we studied the physical effects of
training beyond capacity.

Consider the learning cost function for a task r,
C(r)(~xF − ~x0). We defined the MSE cost function as
a square of a constraint C(r) = 1

2 [f (r)(~xFr − ~x0)]2. Since
we are working in the small force regime, we can linearize
any constraint in terms of the free state response as

f (r) ≈ ~ATr (~xFr − ~x0) +Br

C(r) ≈ 1

2
(~xFr − ~x0)T ~Ar ~A

T
r (~xF − ~x0)+

+Br(~x
F
r − ~x0)T ~Ar +

1

2
BrBr

(33)

Next, noting that (~xFr − ~x0) = H−1 ~Fr, we can express

the output force in the clamped state ~FOr in terms of the

input force ~Fr:

~FOr = −∇~xC(r) = −( ~Ar ~A
T
r )H−1 ~Fr −Br ~Ar (34)

As discussed above, the modification of the Hessian
and its eigenvalues due to learning involves the outer
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product

~Fr(~F
O
r )T = −~Fr ~FTr H−1( ~Ar ~A

T
r )−Br ~Fr ~ATr (35)

If we sum Eq. 35 over many random independent tasks
~Fr, ~Ar, Br, the second term in this sum averages to zero.

However, as (~Fr ~F
T
r ), ( ~Ar ~A

T
r ) and H−1 are square, posi-

tive semi-definite matrices, the first term produces a non-
vanishing contribution.

Now we observe from Eq. 21 that the change in the
Hessian eigenvalues during learning is controlled by the

quantity vTa ~F (~FO)T va where we are projecting the outer
product of the input and output forces onto the eigen-
vectors. To ask how the eigenvalues change for a typical
set of tasks, we can average this quantity over an en-
semble of random forces and task constraints. We take
the components of the input forces and constraint ele-
ments to be independently sampled from zero mean, unit
variance Gaussian distributions N (0, 1). Thus, the in-
put and output forces are random relative to any given

eigenmode va. Then (~Fr ~F
T
r ), ( ~Ar ~A

T
r ) are random ma-

trices, distributed such that their diagonal elements are
drawn independently from independent chi-squared dis-
tributions χ2

1, while their off-diagonal elements are drawn
independently from N (0, 1). Thus, as 〈χ2

1〉 = 1, and
〈N (0, 1)〉 = 0, these matrices average to the identity ma-
trices. Since these two matrices are also independent, the
average of F (FO)T factorizes, and we have

vTa 〈~F (~FO)T 〉va = −vTa 〈~F ~FT 〉H−1〈 ~A ~AT 〉va
= −vTa IH−1Iva = −λ−1

a .
(36)

Using this result in Eq. 21, we see that the minus
signs cancel and all eigenvalues are expected to receive
positive adjustments that scale with the inverse eigen-
value δλa ∼ αλ−3

a . Thus, learning will make the sys-
tem less conductive (stiffer). Below capacity, the Hessian
eigenspace can align with the learned task(s), so that the
lower eigenvalues can be effectively reduced. Above ca-
pacity, the Hessian cannot align with all the tasks, such
that trying to learn some of them will tend to increase
all eigenvalues. Eq. 36 gives the limiting behavior for
averaging over an infinite number of tasks, but training
over capacity is likely to cause an upward shift for most
eigenvalues during learning.

This reasoning is supported in Fig. 6, where we train
a fully connected node networks with N = 10 nodes for
an increasing number of simultaneous tasks (all results
averaged over 100 realizations of the network and tasks).
In Fig. 6a, we plot the error after training as a function
of the task number, demonstrating the finite capacity
of the network (dashed line, nT ∼ 13), defined here as
the threshold above which some of the trained networks
are unable to reduce the error to zero on all tasks. In
other words we are defining capacity as the threshold
in the number of tasks over which the learning process
begins to fail. Fig. 6b shows the eigenvalues of the trained
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FIG. 6. Training physical networks for multiple tasks. a)
Training error remains low up until a capacity of tasks is
reached. b) Eigenvalues of a network trained beyond capacity
tend to increase. c) The bottom eigenvalues do not align with
the tasks beyond capacity, while the top eigenvalues weakly
align with them. d) Effective conductance as a function of
the number of tasks - system trained beyond capacity be-
come less conductive (stiffer), as opposed to systems success-
fully trained below capacity. e) Physical response dimension
remains low regardless of the number of tasks.

networks. As observed above, up to capacity the lowest
eigenvalues tend to be decreased by learning. However,
approaching capacity and beyond, the eigenvalues shift
up during training, as suggested by Eq. 36. Examining
the eigenmodes of systems trained beyond capacity at
nT = 30 (Fig. 6c), we see that the bottom eigenmodes
no longer align with the trained tasks, but rather the top
eigenmodes (weakly) align with them.

In Fig. 6d-e, we plot the effective conductance ḡ and
the physical response dimension for systems trained for
multiple tasks. The effective conductance is maximal (di-
mension minimal) when the number of tasks matches the
capacity for simultaneous tasks as defined above (nT ∼
13). The conductance declines if we try to train addi-
tional tasks, and reaches a minimally conductive (stiffer)
state when trained beyond capacity. In contrast, the ef-
fective dimension of the network responses remains low
even beyond capacity. These results can be explained via
Eqs. 28,31 by the observation that all eigenvalues of the
Hessian tend to increase when training beyond capacity,
not only the lower eigenvalues. The effective dimension
is controlled by the relative size of the eigenvalues, and
hence increasing all of them together does not change the
dimension much.

Finally, we note that a physical system trained for
multiple tasks can naturally be subject to noise dur-
ing training: If the system learns in response to every
observed task independently, the order in which tasks
are presented can affect the learning process. Sampling
training tasks randomly gives rise to a stochastic gra-
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dient descent-like algorithm [58], which can potentially
affect the physical properties of the trained system as
well. Moreover, physical learning is likely subject to other
sources of noise, e.g. that affect the precision of the learn-
ing rules implemented by the system. In appendix E we
study physical learning in such noisy conditions, and find
that mild noise conditions, where learning is still possible,
do not modify the physical effects discussed; the learning
networks still find noisy solutions with high conductance
and low physical dimension.

V. DISCUSSION

In artificial neural networks, learning corresponds to
traversing a path within the learning cost landscape that
descends to a minimum. In physical learning systems,
the physical cost landscape also changes as the system
descends toward a minimum of the learning cost func-
tion, affecting the trajectory in the learning landscape.
We chose to focus on the linear regime of small input
signals where we can obtain the greatest insight into how
learning restructures the physical landscape. We showed
that networks can learn complex tasks ranging from digit
recognition [21] to allostery already in this weak input
regime. The structure of the response space is character-
ized by the spectrum of the physical Hessian around the
minimum of the physical cost function, and the structure
of the Hessian eigenmodes relative to the learned tasks.

While previous works demonstrated that training low-
ers low eigenvalues in the linear regime [33, 37], we have
now traced the evolution of the eigenvalues and eigen-
vectors of the physical Hessian as learning emerges dur-
ing the physical learning process. We find that physi-
cal learning necessarily leads to distinctive physical ef-
fects including strong responses to random inputs, as
well as low-dimensional mechanical responses. This is
remarkable as there are, in principle, many possible net-
works that satisfy a desired function without having this
distinctive low-dimensional nature. If the number of
tasks networks are trained for is below capacity (See Ap-
pendix D for more details on this capacity) they can
essentially learn them all perfectly and the system can
find multiple solutions. We showed that below capacity,
networks physically evolve during training by becoming
more conductive (less stiff in the case of elastic networks),
lowering their effective response dimension, and aligning
their eigenmodes with the learned tasks. In contrast,
networks trained above capacity fail to learn and become
less conductive (stiffer), but still maintain a relatively
low effective response dimension. Thus an anomalously
low network response dimension is a signature of learn-
ing, both below and above capacity. Our finding that
training beyond capacity stiffens a physical system sug-
gests a simple method of avoiding overtraining: as the
trainer add tasks to a network, they should test its re-
sponse dynamics to random forces, stopping when the
stiffness begins to increase.

Our results suggest that low dimensionality is a generic
outcome of physical learning in networks, possibly shed-
ding light on the open question of why networks of neu-
rons in the brain manifest surprisingly low dimensional
response spaces. The generality of our approach further
suggests a tool for analysing seemingly random physi-
cal networks to discover whether, and for what purpose,
they are trained. Specifically, an experiment could mea-
sure the physical Hessian via small perturbations of the
system, and then our results suggest that the eigenmodes
corresponding to the lowest eigenvalues correlate to the
tasks that the system was trained for. In other words, our
results justify the naive intuition that the more respon-
sive dimensions of a complex system encode its learned
behaviors. Such tools can be useful in understanding
newly discovered trained or evolved networks regardless
of the specific details guiding their physical responses to
perturbations.

In this paper we focused on the Hessian of the physical
cost function around its minimum. In machine learning
the focus is often on the Hessian of the learning cost or
error function around its minimum (there is no analogy
to the physical Hessian in most machine learning algo-
rithms). In Appendix B, we show how the learning cost
function Hessian, i.e., the second derivative of the learn-
ing cost function with respect to the learning degrees
of freedom, also develops low-rank characteristics in a
physical learning model. The Appendix also relates the
learning Hessian to the physical Hessian, showing how
physics encodes important information about the target
functionality as a result of learning.

Our results were obtained in a scenario where the train-
ing data and the learning dynamics are noiseless. We
tested that our findings are robust to the addition of
Gaussian noise to the learning rule with a magnitude
small compared to the learning rate (Appendix E). We
also observe that introducing stochasticity in the selec-
tion of the order of training examples, or the order in
which edges are modified, does not change our results. It
would be interesting to extend our results to investigating
noisier conditions when learning becomes challenging.

Finally, we note that we have shown that learning in
the linear regime already has a remarkable phenomenol-
ogy that can be analyzed powerfully. It would be very
interesting to extend our results to nonlinear situations
where the input and output forces are large. In this case,
for example, the free state resulting from the application
of an input may lie in a different basin of the physical
cost function than the native state of the network in the
absence of inputs. Other learning mechanisms can then
come into play, such as the shifting of basins so that the
minima themselves align with desired behaviors. In these
cases, the learning rule may be uncorrelated with the na-
tive state, so that learning would not necessarily create
soft modes lowering the effective response dimension [42].
However, the ubiquitous appearance of low dimensional
response manifolds in systems that learn (see, e.g., [46])
suggests some of the findings might extend, perhaps in a
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different form, to physical learning with large inputs that
explore multiple basins in the physical landscape.
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Appendix A: Learning tasks (allostery, regression,
classification)

In this work we simulate learning in physical networks
with local, physically realizable learning rules, approx-
imating the gradient of a learning cost function. The
learning rules themselves are explored in the main text.
Here we discuss some cost functions the networks can op-
timize, i.e., what tasks the networks can learn to perform.
We describe the prototypical tasks used in the main text
to explore the physical effects of learning. We then show
that the physical effects are similar regardless of the type
of task the network is trained to perform.

Each task explored for fully connected node networks
in the main text is chosen as follows. An input force
~Fr is randomly generated component by component
from a zero mean, unit variance Gaussian distribution

∼ N (0, 1). Then an independent linear constraint ~Ar is
also generated component by component from Gaussian
distribution ∼ N (0, 1) along with a Gaussian distributed
scale parameter Br ∼ N (0, 1). The linear constraint the
network is trained to satisfy is then

0 = f (r) = ~ArH
−1 ~Fr +Br. (A1)

The associated cost function minimized by learning is
C(r) = 1

2 (f (r))2. The results shown in the main text for
fully connected node networks are based on optimizing
such cost functions. In the linear response regime, these
tasks form a basis for any desired functionality.

For difference networks, like the flow networks and me-
chanical networks studied here, these kind of tasks are
readily learned – networks can often learn to satisfy such
constraints with small modifications of the learning de-
grees of freedom, and hence small changes in the physical
properties. To more clearly reveal the physical effects of
learning, we challenged the difference networks to learn
more difficult functions. The basic task we chose is al-
lostery, which requires large target responses far away
from source perturbations, a phenomenon previously ob-
served in biological and mechanical networks [35] (see
schematic in Fig. 7a). For each task, a random source
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FIG. 7. Training networks for different types of tasks. a)
Allosteric tasks imply desired long range source-target rela-
tions. Here we show how networks can be trained for a single
allosteric task involving one input and one output. Errors are
shown in the middle row, and the dynamics of the Hessian
eigenvalues on the bottom row. b) In regression tasks, the
output units of a network are trained to recover a particular
linear relation with the input units. Here we train networks
for a set of two equations with two variables. c) Networks
are trained to classify the Iris dataset [59] with 4 inputs and
3 classes (Iris species), using 10 out of 50 samples per flower
for training. It does so by minimizing the cross entropy er-
ror, showing full line for the training error and dashed line for
the test error. For all these tasks the physical learning phe-
nomenology is similar; learning creates physical soft modes
(results averaged over 10 networks).

node is chosen, and a force of magnitude Fr = 1 is applied
as input at that node (in the positive direction for flow
nets, and in some random direction in 2D for mechani-
cal spring networks). Then, a random target node o is
chosen, and the allosteric task is defined such that the re-
sponse at that node has a finite amplitude |(~xF−~x0)o| = c
(c = 0.3 for flow networks, c = 0.5, and a random re-
sponse direction is chosen for the 2D mechanical spring
networks). When multiple simultaneous tasks are consid-
ered, we select multiple pairs of sources and targets, and
apply such constraints to each pair. These allosteric tasks
are more challenging for difference networks to learn, so
that learning produces significant modifications to the
network, and the physical effects discussed in the paper
can be observed more readily.

To show that the physical effects of learning that we
discussed are generic in the linear response regime, not
only in terms of the physical network, but also in terms
of the task(s), we train fully connected node networks for
various types of tasks inspired by biology and computa-
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tional machine learning. First, we train N = 20 networks
on allosteric tasks similar to those defined for difference
networks, with results shown in Fig. 7a (averaged over
100 realizations of networks and allosteric tasks). We
find that training consistently reduces the error by orders
of magnitude, and that the eigenvalues behave similarly
to what we have seen earlier (Fig. 3a).

Other tasks of interest in supervised machine learning
include regression, where the output of a network learns
to recover some relation to the inputs based on training
data. We train N = 20 fully connected linear networks
to compute the results of a set of two linear equations.
To do so, we randomly choose two input nodes i1, i2 and
two output nodes o1, o2. Input forces correspond to the
independent variables in the equations Fi1 , Fi2 , and the
system is trained such that the response in the output
nodes relates to the input forces as(

0.5 0.2
−0.1 0.7

)
Fi = (xF − x0)o. (A2)

This is done by applying the learning rule of Eq. 10 for
50 random training forces, sampled from a Gaussian dis-
tribution as before. We further sample 100 test forces to
measure the regression performance on data that is not
used for training. Results are shown in Fig. 7b (averaged
over 10 networks and training/test sets). The networks
generally succeed in learning the desired input-output re-
lation, decreasing the MSE cost by many orders of mag-
nitude for both the training set (solid line) and test set
(dashed line). More importantly, we track the eigenspace
of the Hessian during learning, and find that two eigenval-
ues are strongly reduced when the network learns these
two relations. Furthermore, the bottom two eigenmodes
strongly align with the training set responses. This sug-
gests the physical effects of learning are similar to the
case of training for two tasks, discussed in the main text.

Finally, we train networks for classification, where the
system learns to assign labels to inputs. Networks with
N = 20 nodes are trained to classify the Iris dataset [59],
where the inputs correspond to 4 measurements of 3
species of Iris specimens. For each class of Iris we choose
10 specimens as a training set and the 40 others remain
for a test set. The Iris measurements are applied as forces
at four randomly chosen input nodes. A further three
output nodes are chosen to correspond to the Iris classes.
Since this is a discrete task (Iris specimens have discrete
labels), the network ‘selects’ a label by having the largest
response at the associated output node. Networks are
trained by minimizing a cross entropy cost function that
is more appropriate for discrete classification [24]. In
essence, the modified learning rule is the same as Eq. 10
for specimens that are not classified correctly, while the
output force vanishes for specimens that are classified
correctly.

The results are shown in Fig. 7c (averaged over 10 re-
alizations of networks and choices of training sets). As
before, learning generally succeeds, significantly reducing
the cross entropy error for both the training set (full line)

and test set (dashed line). In terms of classification accu-
racy, the trained networks reach 100% training accuracy
and 95% test accuracy. More importantly, the effects of
learning on the physical network itself are again similar
to the previous cases. The lowest Hessian eigenvalues
are significantly lowered by learning, reducing the phys-
ical dimension and increasing the effective conductance
of the system. We conclude that, in the linear response
regime, the effects of learning on physical systems are
generic and do not depend on the desired function.

Appendix B: The cost Hessian

In this work we mostly studied the physical Hessian
of a learning system and how it is modified by learn-
ing. Recently, the Hessian of the learning cost function

Hij ≡ ∂2C
∂wi∂wj

(i.e. the second derivative of the learning

cost function with respect to weights wi) has received
attention in the machine learning community. This Hes-
sian was originally studied as a tool in improving gradi-
ent descent based techniques by including second deriva-
tive information [52], a procedure enabled by increased
computing power. But studies have also shown that if a
model is well-trained for nT tasks, e.g., it has low train-
ing error for, say, nT different classification classes, then
the cost Hessian has nT non-vanishing eigenvalues, while
the rest of the eigenvalues vanish [53, 60].

Here we relate the physical and cost Hessians to see
the origin of this phenomenon in physical systems. Note
that the strong separation of scales in the cost Hessian
is non-trivial, specifically as the physical Hessian has in
general only soft modes and no zero modes (no vanish-
ing eigenvalues). Furthermore, the physical Hessian H
is a second derivative of the physical cost function with
respect to physical variables ~xa, so the two Hessians live
in different spaces and have different units.

Consider again the learning cost function for a network
trained to exhibit nT linear relations

C =
1

2nT

∑
r

[ ~Ar · (~xFr − ~x0) +Br]
2
. (B1)

Let us compute the cost Hessian Hij of this cost function
with respect to the learning degrees of freedom in several
steps. First we compute the Jacobian, the change in the
physical degrees of freedom (in the free state) given a
change in the learning degrees of freedom:

~J (r)
i ≡ d~xFr

dwi
= −H−1 dH

dwi
H−1 ~Fr. (B2)

Here H is the physical Hessian and we used (3) for the
free state response.

Choosing the fully connected node network as before,
with some linear relation H = Qiwi, we have

~J (r)
i = −H−1QiH

−1 ~Fr. (B3)
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Next we calculate the second derivative of the free physi-
cal variables with respect to the learning degrees of free-
dom

d2~xFr
dwjdwi

=
d ~J (r)

i

dwj
=

= H−1[QjH
−1Qi +QiH

−1Qj ]H
−1 ~Fr

(B4)

We are now in position to take derivatives of the learning
cost function. Let us first find its gradient with respect
to the learning degrees of freedom:

dC

dwi
= n−1

T

∑
r

dC

d~xFr

d~xFr
dwi

= −n−1
T

∑
r

~FOr
~J (r)
i (B5)

The cost Hessian is the second derivative:

Hij =
d2C

dwjdwi
=

= n−1
T

∑
r

{ ~J (r)
i (AAT )r ~J (r)

j − ~FOr
d2~xFr
dwjdwi

}
(B6)

We can write down the cost Hessian in full form given
our learning model, but Eq. B6 reveals its important fea-
tures. Consider a well trained system, for which the value
of the learning cost function tends to zero together with
the output forces. In this case, the second term in Eq. B6
vanishes, as the system satisfies all the desired tasks:

HTrainedij = n−1
T

∑
r

~J (r)
i (AAT )r ~J (r)

j . (B7)

Note that Eq. B7 is a sum over tasks of outer products

of the vectors P
(r)
i ≡ ~Ar · ~J (r)

i :

HTrainedij = n−1
T

∑
r

P
(r)
i P

(r)
j . (B8)

Since the matrices P
(r)
i P

(r)
j are outer products of a

vector, we know that Rank(P
(r)
i P

(r)
j ) = 1. The total

cost Hessian is thus a sum of nT rank 1 matrices. By
the sub-additivity of rank, it is guaranteed that the rank
of the cost Hessian is at most nT . In other words, we
expect the cost Hessian to have at most nT non-vanishing
eigenvalues, as observed numerically for machine learning
and physical learning.

For completeness, we can also relate the physical Hes-
sian and cost Hessian. Note first that:

P
(r)
i = ~Ar ~J (r)

i = − ~ArH−1QiH
−1 ~Fr (B9)

Thus, for well trained networks for which the training
error vanishes, the cost Hessian relates to the physical
Hessian as H ∼ P 2 ∼ (H−1)4, suggesting that the low
eigenvalues of the physical Hessian H dominate the nT
large eigenvalues of the cost Hessian H.

Appendix C: Physical response dimension

In this appendix we discuss measures for the physical
response dimension, in particular the effective response
dimension defined in the main text. Define a large set of

M →∞ random forces ~FRm , each of which sampled from
the set of normalized vectors on the N -sphere, where N is
the physical dimension of the system (number of physical
degrees of freedom). The physical response of the system
to these forces is given by

~δRm ≡ ~xRm − ~x0 = H−1 ~FRm . (C1)

Applying the random forces, we obtain a set ofM phys-

ical responses ~δRm. The Hessian of the native state can
be decomposed to a set of non-negative eigenvalues λa
and associated eigenmodes ~va (whose number is equal to
the number of physical degrees of freedom N). These
eigenmodes correspond to different orthonormal ways in
which the system can respond to perturbations. Thus,
to estimate the response dimension, we can “count” the
number of eigenmodes participating in the response.

Projecting the physical response over the Hessian
eigenmodes gives the amplitude of each mode’s activa-

tion due to the external force Pam = ~vTa
~δRm. Summing

this quantity over the eigenmodes and different random
forces is self-averaging to zero because eigenmodes can
be activated both positively and negatively. The physi-
cal response dimension is defined using these projections
as an effective way to count the number of participating

eigenmodes. For a given random force ~FRm we have

Dm ≡
[∑

a P
2
am

]2∑
a P

4
am

. (C2)

As discussed in the main text, this measure for the phys-
ical dimension has reasonable limits; it is Dm = 1 if only
one mode participates, and Dm = N if all modes partic-
ipate equally.

In view of this, we propose to characterize the effective
response dimension by the quantity

Deff =

[
〈
∑
a P

2
am〉
]2

〈
∑
a P

4
am〉

, (C3)

where the angle brackets indicate an expectation value
over the ensemble of random forces. Thus Deff measures
the effective dimension as the ratio of the square of the
second moment of the projections and the fourth moment
of the projections.

We can compute Deff by recalling that the inverse Hes-
sian can be decomposed as H−1 = vΛ−1vT , where Λ−1

is a diagonal matrix of the inverse eigenvalues λ−1
a , and

v is a matrix who columns are the eigenvectors:

Pam = ~vTa
~δRm = ~vTa vΛ−1vT ~FRm = ~Λ−1

a vT ~FRm . (C4)

Here we used the fact that ~vTa v is a vector with zeros
at all components, except a single 1 at component a.
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FIG. 8. Different measures of the physical dimension. a)
While in the main text we mainly used a measure derived
from the participation ratio dimension to discuss dimensional
reduction in the physical response, multiple other measures
for the intrinsic dimension of the response manifold show the
same result. Here we train fully connected linear networks
and show how the physical dimension changes during train-
ing for several machine-learning-inspired measures. b) Similar
results are found when training flow networks - physical di-
mension is reduced for all methods used to measure it.

Therefore, only the ath component of the vector ~Λ−1
a is

nonzero, and equals λ−1
a . So, finally, we find that

Pam = λ−1
a ~va · ~FRm (C5)

Next, let us consider the inner products ~va · ~FRm . The
set of eigenvectors ~va form a fixed orthonormal basis

in N dimensions, while the forces ~FRm are random N -
dimensional unit vectors. Thus high dimensional systems

(N � 1) the inner product of ~FRm with any fixed ~va will
be distributed according to a zero mean Gaussian with
variance 1/N , N (0, N−1). Thus, over the ensemble of
random forces, the second and fourth moments of Pam
are given by

〈P 2
am〉 =

1

N
λ2
a ; 〈P 4

am〉 =
3

N2
λ4
a (C6)

where we used the definition (C5) and the standard mo-
ments of a Gaussian distribution with variance 1/N .

Thus, the effective dimension in (C3) is

Deff =
(
∑
a λ
−2
a )2

3
∑
a λ
−4
a

. (C7)

If one eigenvalue is very small and thus dominant, the
effective dimension in response to random forces is 1/3
reflecting that fact that many forces will not drive the
system much at all.

While in the main text we discussed Deff as a measure
of the physical response dimension of the system, there
are several other measures of the intrinsic dimension of
manifolds inspired by machine learning. We tested that

our key qualitative results are independent of the choice
of the measure of dimension. To do this we randomly se-
lect 500 normalized forces and applied them to systems
during training (either fully connected linear networks
or flow networks). We used the resulting responses to
estimate the physical dimension using different methods:
Manifold-adaptive dimension estimation [61], Correlation
dimension [62], Maximum likelihood estimate [63] and
the TwoNN algorithm [64]. Fig. 8 shows that the phys-
ical dimension is decreased during learning in physical
systems regardless of the chosen method for dimension
estimation.

Appendix D: Learning capacity

In the main text we discussed how physical systems are
able to learn multiple tasks up to a finite capacity. Here
we argue that for systems trained in the linear response
regime, this learning capacity is linear in the number of
learning degrees of freedom Nw, itself at most quadratic
in the system size N .

For small input forces in the linear response regime,
any learning cost function can be expressed as a sum of
linear constraints, relating response of the physical de-

grees of freedom (~xFr − ~x0) to an input force ~Fr:

f (r) = ~Ar(~x
F
r − ~x0) +Br =

= ~ArH
−1 ~Fr +Br

(D1)

Successful learning means that f (r) = 0, or that for every
task the system solves a linear equation

~ArH
−1 ~Fr = −Br. (D2)

Note that the input force ~Fr, as well as ~Ar, Br, are con-
stants defined by the task to be learned, and the learning
process only modifies element of the Hessian H. For a
system with N physical degrees of freedom, we are al-
lowed to modify the (at most) 1

2N(N + 1) independent
elements of the Hessian to find a solution to Eq. D2.

When training the system for nT simultaneous tasks,

each defined by its own set of input ~Fr and constraints
~Ar, Br, the system has to find a solution to nT inde-
pendent linear equations at the same time. Learning at-
tempts to modify the Hessian H such that all of these
equations are satisfied simultaneously. As shown, the
system has at most 1

2N(N + 1) free parameters to sat-
isfy nT equations. A feasible solution exists only if the
number of equations is at most equal to the number of
free parameters. The network can thus learn a number
of tasks which is at most equal to the number of inde-
pendently trainable components of the Hessian. We thus
expect a capacity proportional to the number of learning
degrees of freedom, i.e., network weights, scaling at most
quadratically with the system size and with a coefficient
typically less than 1. This finite capacity is visible in
Fig. 6a, where the error cannot be maintained at zero
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FIG. 9. Noise limits the system’s learning ability, but the
physical effects of learning persist. (a-b) Training fully con-
nected linear networks and mechanical spring networks for
5 independent tasks with a noisy learning rule, we find that
learning is still successful, yet is limited by an error floor. (c-
d) However, the dynamics of the eigenspectrum are weakly
affected by the noise, dominated by a reduction of the lowest
lying eigenvalues. (e-f) Therefore, the physical properties of
the networks trained with noise remain similar to the noiseless
case. In particular, we observe that training sharply decreases
the physical response dimension of the network. All results
are averaged over 100 sets of tasks.

beyond nT ≈ 13, which also marks a turning point in the
effective conductance of the network.

Realistic physical networks are typically more con-
strained in the availability of adaptive (learning) degrees
of freedom. In physical flow networks (e.g. vasculature)
and mechanical networks (e.g. proteins), edges typically
connect spatially neighboring nodes, so that the connec-
tivity between nodes is short ranged, and the number of
edges scales linearly with system size [16, 49, 57]. Thus
their learning capacity is linear in N .

Appendix E: Physical learning with noise

So far we discussed learning in pristine systems, where
the learning rule is performed perfectly without any
noise. In such cases, we found that physical learning can
reduce errors arbitrarily (Fig. 2b) as long as the num-

ber of tasks is below the network capacity. However, it
is clear that real physical systems are prone to imper-
fections and noise, and that these issues can limit learn-
ing [27]. In this appendix we discuss the effects of noise
on learning and its physical effects on learning systems.

A straightforward way to include imperfections in
learning is to introduce additive Gaussian white noise
in the learning rule (Eqs. 13, 16). We add such noise,
with a small amplitude compared to the learning rate
α, sampled from N (0, (5 · 10−3α)2), and train fully con-
nected node networks and mechanical networks for five
independent tasks (Fig. 9). The noise in the learning rule
produces a floor in the error achievable by the network
(Fig. 9ab).

However, this noise does not strongly affect the physi-
cal dynamics of the Hessian and its eigenspectrum; com-
pare Fig. 9cd to Fig. 5. In this noisy case, learning
still predominantly affects the lower eigenvalues, lower-
ing them and aligning the associated eigenmodes with
the task. We further see that the noise tends to raise the
upper eigenvalues, but as shown above, these typically
have only minor influence on the physical responses of
the system. As the eigenspectrum dynamics are largely
unaffected by this noise, we can verify that the physi-
cal effects of learning discussed previously also persist, in
particular the physical response dimension (Fig. 9e,f).

Besides noise in the learning degrees of freedom that
would exist in any physical or biological realization,
different learning protocols may introduce additional
sources of noise. For example, consider stochastic gra-
dient descent (SGD), where the system is trained at each
iteration for a subset of the tasks. Although SGD in-
troduces effective noise in the training dynamics, it is
known to perform implicit regularization and improve
generalization in computational machine learning [58].
Another plausible source of noise is the fact that in bio-
logical learning systems, the learning degrees of freedom
are not synchronized, each evolving independently from
the rest [65]. We implement both SGD and the update
desynchronization in our dynamics, letting the physical
system train on one task and update 10% of the learning
degrees of freedom at every learning iteration. While ap-
plying these protocols slows learning, we observe no qual-
itative difference in the physical properties of the trained
system. We conclude that the physical effects of learning
in the linear regime that we described in this work are
robust to noise that will likely exist in experimental real-
izations, such as recent experiments in learning resistor
networks [27].
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