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Autism spectrum disorder (ASD) is a neurodevelopmental disorder with various proposed 
environmental risk factors and a rapidly increasing prevalence. Mounting evidence suggests a 
potential role of vitamin D deficiency in ASD pathogenesis, though the causal mechanisms 
remain largely unknown. Here we investigate the impact of vitamin D on child 
neurodevelopment through an integrative network approach that combines metabolomic 
profiles, clinical traits, and neurodevelopmental data from a pediatric cohort. Our results show 
that vitamin D deficiency is associated with changes in the metabolic networks of tryptophan, 
linoleic, and fatty acid metabolism. These changes correlate with distinct ASD-related 
phenotypes, including delayed communication skills and respiratory dysfunctions. Additionally, 
our analysis suggests the kynurenine and serotonin sub-pathways may mediate the effect of 
vitamin D on early childhood communication development. Altogether, our findings provide 
metabolome-wide insights into the potential of vitamin D as a therapeutic option for ASD and 
other communication disorders. 
 
Introduction 
 
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that has increased in 
prevalence by 176% in the last 20 years1. With over 52 million cases globally, it is one of the 
most rapidly increasing conditions in the world2,3. The etiology of ASD is complex and 
multifactorial4-6. Studies on ASD heritability have identified several genetic risk factors including 
rare and common genetic variants, chromosomal anomalies, and gene defects7-9. Meta-
analyses have also identified a series of environmental risk factors, including pre-natal, peri-
natal, and post-natal elements5,6,10. Among these factors, vitamin D has been increasingly 
implicated in ASD pathogenesis11-13. 
 
Vitamin D is a fat-soluble vitamin that is produced mainly from skin exposure to UVB radiation14. 
The human body metabolizes vitamin D into a series of steroid-like hormones15. These 
hormones regulate a variety of physiological processes, from bone growth to immune response 
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to brain development and function15. Numerous studies have shown associations between ASD 
and Vitamin D deficiency11-13. Children with ASD have lower vitamin D levels in the brain and 
peripheral blood compared to neurotypical children16-18, and children living in areas with low 
solar UVB  doses exhibit three times the ASD prevalence of their peers in sunny areas19. During 
pregnancy, gestational vitamin D deficiency is associated with increased risk of ASD 
development20,21. Conversely, maternal vitamin D supplementation has been demonstrated to 
significantly associate with reduced incidence of ASD22,23. Vitamin D supplementation has also 
shown remarkable therapeutic effects, improving core behavioral and social symptoms of 
ASD24-26. 
 
Multiple modes of action have been proposed to explain the link between vitamin D and 
ASD11,13. Evidence suggests that vitamin D might be involved in the synthesis of 
neurotransmitters such as serotonin and dopamine27,28, the modulation of autoimmune 
responses29,30, and the production of pro-inflammatory cytokines and antioxidants31,32. 
However, a causal mechanism has yet to be established.  
 
In this study, we employ an innovative and integrative network approach to explore the 
neurodevelopmental impact of vitamin D on ASD risk. We analyze the metabolomic profiles of 
381 children within the Vitamin D Antenatal Asthma Reduction Trial (VDAART)33. We 
investigate how individual metabolic differences translate into differences in vitamin D levels 
and communication skills, as measured by the Ages and Stages Questionnaire (ASQ)34,35. 
Early life communication scores derived from this questionnaire are strongly correlated with 
children’s future ASD risk36,37. The novelty of our work is twofold. Firstly, we present a dataset 
that uniquely captures information on the metabolomic profile, vitamin D levels, clinical records, 
and neurobehavioral status of hundreds of children; to our knowledge, no other resources with 
this combination of information exist. Additionally, we apply network analysis to these data in a 
novel way. Using LIONESS38, a network algorithm developed in our group, we reconstruct each 
child’s individual metabolic network and integrate these networks with their phenotypic traits.  
 
Collectively, our findings shed light on the functional impact of vitamin D in early childhood 
communication skills and its association with ASD etiology. By leveraging a metabolome-wide, 
systems biology approach, this work offers new insights into the potential of vitamin D as a 
treatment for ASD. 
 
Results 
 
The study population 
 
The study population of VDAART has been described previously33. Briefly, this study recruited 
pregnant women at 10 to 18 weeks gestation and randomized them to a daily supplement of 
4,000 IU/day of vitamin D3 or placebo. All women also received a daily multivitamin containing 
400 IU of vitamin D3. Supplementation took place until delivery. Offspring were evaluated 
quarterly through questionnaires and yearly through in-person visits.  
 
This study is centered on the clinical and omics profiles of the VDAART children at age three 
(see Supplementary Table 1). Clinical and phenotypic traits of the children included: 
demographic information, including race and gender; pathological conditions, including asthma 
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and recurrent wheeze; and developmental predictors collected through the Ages and Stages 
Questionnaire (ASQ). The ASQ is a parent-completed, developmental screening test 
evaluating the communication, personal-social, problem-solving, fine motor, and gross motor 
skills of a child34,35 (see Materials and Methods). For each of these five domains, a child is given 
a score and categorized as “On Schedule for developing normally” (ASQ=0); “Requires 
Monitoring” (ASQ=1), or “Needs further evaluation” (ASQ=2). We focused our analysis on the 
ASQ scores in the communication skills domain (referred to as the ASQ-comm score). This 
score has been reported to correctly identify 95% of children defined at risk of ASD based on 
the Modified Checklist for Autism in Toddlers (M-CHAT)36. Additionally, we have previously 
shown that plasma metabolites associated with the ASQ-comm score at age 3 represent 
accurate predictors of autism diagnosis later in life37. For these reasons, we used this score as 
a proxy for ASD risk in our analyses. All these clinical characteristics were recorded during the 
annual follow-up visit of children at age three. 
 
During the same year-three visit, children’s blood samples were also collected (see 
Supplementary Table 1). From these samples, plasma metabolomic profiling was performed by 
Metabolon Inc. (NC, USA) and serum levels of vitamin D were measured. Serum levels of 
vitamin D were also measured in mothers before (32 to 38 weeks gestation) and after (1 year) 
delivery. As such, this dataset provides a unique opportunity to explore the metabolic impact of 
Vitamin D on postnatal neurodevelopment. 
 
Reconstructing patient-specific metabolic networks through LIONESS 
 
Prior studies have linked ASD to Vitamin D deficiency during pregnancy and early 
childhood12,13,39. The underlying molecular mechanisms remain poorly understood, but a key 
role for neurotransmitter metabolism has been recently suggested13,39. Building upon these 
findings, we sought to investigate the metabolic processes associated with the 
neurodevelopmental actions of vitamin D. To do this, we used LIONESS38 (Linear Interpolation 
to Obtain Network Estimates for Single Samples), a method developed in our group to reverse-
engineer sample-specific networks. As opposed to other commonly used network approaches, 
such as correlation networks, the single-sample networks estimated by LIONESS can model 
the intrinsic variability across the samples in a data set. This allows us to analyze individual 
network relationships in connection with individual phenotypes and disease status. 
 
The input to LIONESS is an omics matrix (Fig.1a). LIONESS estimates the individual network 
𝑒(#) of a sample 𝑞 through the following equation38 (see also Materials and Methods): 
 

𝑒(#) = 𝑁(𝑒()) − 𝑒()+#), + 𝑒()+#),        (1) 
 
where 𝑁 is the number of samples in the data set (𝛼), and 𝑒()) and 𝑒()+#) are two aggregate 
networks, built using all samples in the data set (𝑒())) and built excluding sample 𝑞 (𝑒()+#)) 
respectively. In our application, we used the metabolomic profiles of the VDAART children at 
age 3 to build the omics matrix (Fig.1a). Metabolite levels were filtered for low counts, 
normalized, corrected for batch effects, and adjusted for covariates (see Materials and 
Methods). The resulting metabolomic matrix contained the levels of 833 metabolites for 381 
samples. We computed the Pearson correlation coefficient for each pair of metabolites to build 
the two aggregate networks, 𝑒()) and 𝑒()+#) (Fig.1b). Using Eq.(1), we then iteratively applied 
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LIONESS to reconstruct the metabolic network 𝑒(#) of each VDAART child (Fig.1c). The edge 
𝑒/0
(#) in the individual network 𝑒(#) is a weighted edge connecting two metabolites 𝑖 and 𝑗. The 

edge’s weight represents how much sample 𝑞 contributes to the co-expression between the 
metabolites 𝑖 and 𝑗. The more positive (negative) 𝑒/0

(#), the more the pair (𝑖, 𝑗) has coordinated 
(anti-coordinated) metabolic expression in the sample 𝑞. In total, LIONESS generated 381 
individual networks, each composed of 833 nodes and 346,528 edges (Supplementary Table 
2). These networks allowed us to investigate the relationship between the children’s metabolic 
profiles and their phenotypes. 
 
Tryptophan, linoleic, and fatty acid metabolism are associated with the 
neurodevelopmental role of vitamin D in early childhood 
 
Starting from the LIONESS networks, we examined the metabolic interactions associated with 
the role of vitamin D in children’s neurodevelopment. To do so, we ran a linear regression 
analysis on the children’s metabolic networks against their phenotypic traits (Fig.1d). For each 
metabolite pair, the weight of the associated LIONESS edge across the individual networks 
was regressed against multiple clinical variables (Fig.1d, see Materials and Methods). We 
selected metabolite edges that were significantly associated with 1) the interaction term 
between children’s ASQ-comm score and their Vitamin D levels, and/or 2) the interaction term 
between children’s ASQ-comm score and their mother’s Vitamin D levels at 32 to 38 gestation 
weeks (p-value < 0.01). We reasoned that these edges represent potential metabolic reactions 
affected by vitamin D in relation to communication skills at age 3. Therefore, they might highlight 
biochemical processes mediating the interaction between Vitamin D and ASD. We refer to the 
subnetwork composed of these significant edges as the Vitamin D Interaction (VDI) network 
(Fig.1e, Supplementary Table 3). 
 
To determine the metabolic pathways underlying the VDI network, we performed a pre-ranked 
Metabolic Set Enrichment Analysis (MSEA)40,41 using the Kyoto Encyclopedia of Genes and 
Genome (KEGG)42 (Fig.2a). We ranked all the metabolites based on their number of 
connections, or “degree”, in the VDI network and ran MSEA based on this pre-ranked list (see 
Materials and Methods). In this way, the MSEA was built upon the topology of the VDI network: 
enriched pathways represent molecular processes where the annotated metabolites act 
predominantly as hubs in the VDI network (nodes with a large number of edges). Among the 
most enriched metabolic pathways (Supplementary Table 4), we identified Tryptophan 
metabolism (hsa00380, FDR=0.08), Linoleic Acid Metabolism (hsa00591, FDR=0.002), and 
Biosynthesis of Unsaturated Fatty Acids (hsa01040, FDR = 10-6).  
 
Within the Tryptophan pathway, MSEA leading edge analysis43 highlighted serotonin, 
quinolinate, xanthurenate, tryptophan, and kynurenine as leading metabolites (Fig.2b and 2c). 
Interestingly, altered regulation of these neuroactive metabolites has been previously linked to 
ASD44-46. 
 
The Linoleic Acid Metabolism pathway also emerged as highly enriched in our VDI network. 
MSEA leading metabolites in this pathway included linoleate, dihomolinolenate, and 
arachidonate (Fig.2b). These metabolites represented large hubs in the VDI network, with over 
70 metabolite edges significantly associated with the interaction between vitamin D and the 
ASQ-comm score (Fig.2c). Multiple studies have reported deficiency of these metabolites in 
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individuals with ASD47-49. This suggested that vitamin D may impact lipid metabolism, which is 
known to affect brain growth and cognitive development47,48.  
 
The VDI network was enriched in pathways related to fatty acid production. This result 
supported the growing evidence of ASD as a disorder of fatty acid metabolism49-51. Leading 
metabolites annotated to the Biosynthesis of Unsaturated Fatty Acids included 
docosahexaenoate, stearate, and palmitate (Fig. 2b), whose levels have been shown to be 
reduced in individuals with ASD49. Docosahexaenoate was a major hub in our VDI network (Fig. 
2b). It's worth noting that vitamin D and docosahexaenoic acid have been proposed to act 
synergistically in modulating serotonin synthesis, which may help ASD symptoms52. In 
conjunction with aberrant metabolism of unsaturated fatty acids, a deficit in cholesterol 
biosynthesis may be involved in the pathogenesis of ASD51. Cholesterol was a leading 
metabolite in the enrichment of the Steroid Hormone Biosynthesis pathway (Fig. 2c). It follows 
that vitamin D deficiency might affect neurodevelopment by disrupting cholesterol homeostasis. 
 
Metabolic interactions of Vitamin D with children’s neurodevelopment correlate with 
different disease outcomes 
 
One of the clinical challenges of ASD’s diagnosis is the heterogeneity of its 
symptomatology53,54. Our network analysis suggested that Vitamin D may affect ASD 
development through multiple metabolic pathways. Therefore, we interrogated whether 
differences within these pathways underlie epidemiological differences among the VDAART 
children. To answer this question, we performed hierarchical clustering of the VDAART children 
based on the LIONESS weights of the VDI edges in their individual networks (see Materials 
and Methods). Our analysis identified 5 main clusters. Notably, each cluster exhibited different 
clinical, physiological, and metabolic characteristics (Supplementary Table 5).  
 
Children’s vitamin D levels were overall higher in cluster 3 and 5, with cluster 5 having 
significantly higher vitamin D levels at age 3 compared to all other clusters (Student’s T-test, P 
= 0.039; see Material and Methods for details). In contrast, children in cluster 4 exhibited 
significantly lower vitamin D (Student’s T-test, P = 0.062; Fig.3a). Interestingly, maternal vitamin 
D levels collected during and after pregnancy exhibited a behavior similar to the offspring 
(Fig.3a). On average, clusters 3 and 5 showed higher maternal vitamin D throughout all the 
measured endpoints. Mothers of the children in cluster 3 had significantly higher vitamin D both 
during late pregnancy (32-38 gestation weeks, Student’s T-test, P = 0.09) and at one year after 
delivery (Student’s T-test, P = 0.1), while children in cluster 5 had significantly higher cord blood 
vitamin D (Student’s T-test, P = 0.085). This result suggested that imbalances in maternal 
vitamin D may lead to imbalances in vitamin D during the offspring’s early childhood. Notably, 
this interdependence was not evident when looking purely at the correlation between the 
mothers’ and children’s vitamin D measurements (Supplementary Figure 1). 
 
We next analyzed the VDAART communication scores obtained from the ASQ questions 
related to child's communication skills (see Materials and Methods). These scores reflect a 
child's proficiency in different aspects of communication; the higher the score, the higher the 
child’s ability to perform communication tasks. The distribution of communication scores across 
clusters revealed a pattern opposite to that of the vitamin D levels (Fig.3b). Children in clusters 
3 and 5 exhibited higher communication scores, with cluster 3 reaching statistical significance 
(Mann-Whitney U test, P = 0.04). Children in cluster 4 showed significantly lower scores (Mann-
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Whitney U test, P = 0.015). As such, cluster 4 represent children with delayed communication 
development compared to the rest of the population. We refer to this cluster as the low-
communication cluster. The lower levels of vitamin D in this cluster supported a neuroprotective 
role of vitamin D in early childhood communication development. 
 
The VDAART cohort was initially established to examine the impact of vitamin D on asthma 
and allergies33, and therefore includes information regarding children’s current and family 
history of asthma and respiratory symptoms. Considering the elevated likelihood of children 
with ASD to have asthma55,56, we investigated potential connections between our VDI network 
and the incidence of asthma. Fig.3c displays the VDAART children’s symptomatology together 
with their parental history. Comparison between clusters showed a significantly higher 
incidence of asthma and maternal asthma in cluster 2 (Chi-Squared Test, P= 0.03, 0.05 for 
child’s and maternal asthma respectively). Together with the low-communication cluster, this 
cluster also exhibited the lowest maternal vitamin D levels during late pregnancy (Student’s T-
test, P = 0.148). At age three, 70% of children in cluster 2 had Vitamin D concentrations below 
the deficiency threshold of 20 ng/ml57. As such, cluster 2 (referred to as the asthma cluster) 
reflect a different phenotypic outcome associated with vitamin D deficiency. This result can be 
interpreted within the context of the immunomodulatory and anti-inflammatory effects of vitamin 
D. Vitamin D might alter the metabolic regulation of the immune response, leading to the 
respiratory abnormalities often encountered in individuals with ASD. In support of this, children 
in cluster 3 had lower incidence of asthma (Chi-Squared Test, P=0.14). 
 
We further examined if the different disease phenotypes of the low-communication and asthma 
clusters coincided with different metabolic endotypes. To do so, we compared the clusters’ 
individual metabolic networks and identified their marker metabolic edges (see Materials and 
Methods). For each cluster, a marker edge is defined as an edge whose LIONESS weights 
significantly differ in that cluster compared to the rest of the population. In agreement with our 
enrichment analysis, marker edges of the low-communication cluster involved interactions with 
serotonin and its breakdown product 5-hydroxyindoleacetate (5HIAA) (Fig.4a). Top significant 
edges connected 5HIAA to ester derivatives of L-carnitine, including 3-Hydroxybutyrylcarnitine, 
acetyl-L-carnitine, and palmitoleoylcarnitine. This hinted at a role of vitamin D in the crosstalk 
between serotonin synthesis and the carnitine shuttle system58. Of note, ASD patients often 
present with carnitine deficiency59,60. Marker edges of the low-communication cluster also 
involved interactions between 5HIAA and members of the linoleate metabolism pathway, 
suggesting perturbations in fatty acid production. Additionally, this cluster exhibited altered 
connection with the amino acid proline (Fig.4a). In support of this result, abnormal proline levels 
have been associated with the catechol-O-methyltransferase genotype, a gene variant affecting 
the brain dopaminergic system in individuals with ASD61. Finally, marker edges involved 
interactions with palmitic and stearic acids, which are both ASD biomarkers48,49. 
 
Analysis of marker edges of the asthma cluster revealed a different pattern. Several edges 
involved the amino-acids isoleucine and valine (Fig.4b). This result was noteworthy; previous 
reports have listed these metabolites as differentially expressed in the plasma metabolome of 
asthma and asthma-COPD overlap patients62,63. The metabolic networks of the asthma cluster 
also showed perturbations in the palmitic and stearic acid metabolism pathways.  
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These findings indicated that vitamin D affects children’s neurodevelopment through multiple 
mechanisms of action, leading to the development of distinct metabolic endotypes and 
phenotypes. 
 
 
The VDI network highlights a role of the kynurenine and serotonin sub-pathways in the 
interaction between vitamin D and ASD 
 
Our MSEA analysis revealed tryptophan metabolism as one of the most enriched pathways 
within the VDI network (Fig.2a and Supplementary Table 4). Our previous studies37 have also 
identified strong associations between tryptophan metabolites and the ASQ-comm score in 
both the plasma and stool metabolome of VDAART children. Given this evidence, we 
investigated the biochemical reactions underlying these associations. We selected metabolic 
edges that were 1) statistically associated with the interaction between children’s and maternal 
vitamin D and ASQ-comm score (p-value<0.05) and 2) connecting pairs of metabolites that are 
both annotated to the KEGG tryptophan metabolism pathway. We identified only one edge 
connecting 5HIAA and L-kynurenine. This edge was also significantly associated with children’s 
vitamin D levels in our regression model (p-value = 6.4 ´ 10-3). By definition, the metabolites of 
this edges exhibited co-expression changes in association with the interaction between vitamin 
D and the ASQ-comm score. To identify the molecular mechanisms subtending these changes, 
we mapped 5HIAA and L-kynurenine onto the KEGG tryptophan reaction network (see 
Materials and Methods). The nodes of this network represent all chemical compounds listed in 
the KEGG tryptophan metabolism pathway. The edges represent chemical reactions between 
two metabolites, a substrate and a product.  
 
To gain insights on the cascade of biochemical reactions affecting the relative proportion of 
5HIAA and L-kynurenine, we computed all the shortest paths connecting these two metabolites 
within the tryptophan reaction network. We identified one path (Fig.5), involving two main 
subprocesses: 1) the biosynthesis of serotonin from L-tryptophan and 2) the degradation of L-
tryptophan via the kynurenine pathway. Biochemical reactions mediating serotonin 
biosynthesis included hydroxylation of L-tryptophan into L-5-hydroxytryptophan (5-HTP) 
(KEGG reaction R01814), subsequent decarboxylation of 5-HTP to produce serotonin (KEGG 
R02701), serotonin degradation into 5-hydroxyindoleacetaldehyde(5-HIAL) (KEGG R02908), 
and the final oxidation of 5-HIAL to 5HIAA (KEGG R04903) (Fig.5). Our shortest path also 
contained metabolic reactions involved in the kynurenine pathway, including the oxidation of L-
tryptophan to N-formylkynurenine (NFK) (KEGG R00678) and subsequent hydrolysis of NFK 
to L-kynurenine (KEGG R01959). For each of these biochemical reactions, we analyzed their 
substrate-to-product expression ratio in association with the children’s ASQ-comm score (see 
Materials and Methods). The ratio between serotonin and 5HIAA levels increased significantly 
with increasing ASQ-comm score (p-value= 0.038), suggesting dysregulated activation of 
serotonin biosynthesis in children with impaired communication skills. This result was 
consistent with previous observations of blood hyper-serotoninemia in children with ASD27,64. 
 
 
Discussion 
 
This work investigates the impact of vitamin D on the human metabolic network in association 
with children’s communication development. Language and communication deficits represent 
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a characterizing feature of ASD4-6, and the assessment of communication impairments has 
been proposed as an effective screening for ASD risk36,37,65. By using early childhood 
communication skills as a proxy for ASD, our analysis sheds light on the potential 
neuroprotective effect of vitamin D against ASD. 
 
We integrated the metabolomic profiles, clinical traits, and communication screening data of 
hundreds of children through a unique network framework. This is the first instance where our 
LIONESS method has been applied in the context of paired metabolomics and phenotypic data, 
illustrating the novelty of our approach. Our results suggest that the neurodevelopmental action 
of vitamin D operates through several metabolic pathways, altering interactions within the 
tryptophan metabolism, lipid metabolism, and unsaturated fatty acid metabolism pathways. 
Closer analysis of the tryptophan pathway highlights a key role of the kynurenine and serotonin 
sub-pathways. These findings provide new mechanistic insights in support of known statistical 
associations between vitamin D and ASD. 
 
A substantial body of literature has linked ASD to disrupted levels of neuroactive 
metabolites27,64,66-69: blood hyper-serotoninemia is one of the most consistent biomarkers of 
ASD27,64; overproduction of quinolinic, xanthurenic, and kynurenic acid has been observed in 
individuals with ASD and has been linked to enhanced kynurenine and glutamatergic 
activity68,69; finally, vitamin D has been proposed to differentially regulate the transcription of 
the serotonin-synthesizing genes TPH1 and TPH227. In support of these findings, our network 
analysis suggests that vitamin D might play a role by altering metabolic interactions between 
serotonin and other members of the tryptophan metabolism pathway, including xanthurenate, 
L-tryptophan, N-formylanthranilic acid, and quinolinate. Additionally, ASD has been associated 
with fatty acid deficiencies49-51,70. Here we show that differences in vitamin D levels correspond 
to perturbations in fatty acid metabolism, including the metabolic interactions between 
docosahexaenoate, stearate, and palmitate. Interestingly, these metabolites are major 
constituents of membrane phospholipids. This supports recent mechanistic theories about 
dysregulation of phospholipid metabolism in patients affected by neurodevelopmental 
disorders, including ASD and attention-deficit/hyperactivity disorder71,72. Finally, ASD 
manifestations are often accompanied by other comorbid pathologies55,56. Our findings suggest 
that vitamin D deficiency can impact different components of children’s metabolic networks. 
These components are associated with different disease outcomes, including impaired 
communications skills and asthma.  
 
There are at least three postulated mechanisms by which vitamin D might be related to ASD. 
Firstly, vitamin D might be critically involved in serotonin metabolism and vitamin D deficiency 
could result in reduced brain serotonin levels, as observed in ASD patients11,13,27,66. Secondly, 
the anti-inflammatory properties of vitamin D3 may serve as a neuroprotective mechanism 
against ASD by directly reducing neurotoxin levels in the brain11,13,73. Thirdly, vitamin D 
deficiency combined with excess androgens may contribute to ASD development through 
potential interactions with sex hormones11,74-77. These theories are not mutually exclusive. Our 
data speak only to the first hypothesis and not to the other two possibilities.   
 
Our work has some limitations. We recognize that the ASQ communication score does not 
represent a clinical diagnosis of ASD. Indeed, there are intrinsic biases when estimating 
children’s developmental status from indirect caregiver reports such as the ASQ36,78. However, 
our dataset represents one of the first instances where paired information on the metabolic 
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profile, vitamin D levels, and neurobehavioral status of hundreds of children has been captured. 
As such, this study is only the first step towards determining the role of vitamin D on 
neurodevelopment in early childhood. Further clinical and translational assessments will be 
crucial for establishing a definite link between vitamin D and ASD. 
 
Our findings provide a comprehensive metabolome-wide, systems-biology perspective on the 
molecular effects of vitamin D on children's neurodevelopment. Nevertheless, questions remain 
regarding the reproducibility of our biological findings. Future experiments and cross-validation 
analyses are needed to address these questions, laying the groundwork for the implementation 
of clinical trials investigating the potential of vitamin D in ASD treatment. 
 
 
Materials and Methods 
 
Calculation of the ASQ-comm score 
Primary caregivers of VDAART children submitted the Ages and Stages Questionnaire35 (3rd 
Edition, https://agesandstages.com/; Paul H. Brookes Publishing Co., Inc.) during the children’s 
annual three year visit. In the ASQ, caregivers were asked a series of questions about the ability 
of their children to perform a particular task. Answers to each question were scored with 10 
points if the answer was “Yes”, 5 points if the answer was “Sometimes”, and 0 points if the 
answer was “Not yet”. Questions pertained to five main developmental domains: gross motor 
skills, fine motor skills, problem solving ability, personal/social skills, and communication. Six 
questions per domain were assigned, resulting in a domain specific score. In this work, we 
focused on the scores from the communication skills domain. We referred to this score as the 
“communication score”.  
 
The communication score was compared to the expected mean score of a reference distribution 
within age-groups. Scores were then categorized as follows: “On Schedule for developing 
normally”; “Requires Monitoring” (1–2 standard deviations below the mean); and “Needs further 
evaluation” (>2 standard deviations below the mean). We referred to this categorization as the 
ASQ-comm score. 
 
Metabolomic profiling and preprocessing 
We analyzed previously generated and preprocessed metabolomic data37. Briefly, blood 
samples were obtained from participating children in VDAART at age three years. Metabolites 
were analyzed as measured LC-MS peak areas and identified by their mass-to-charge ratio, 
retention time, and through a comparison to library entries of purified known standards. The 
blood samples were processed in two batches sent six months apart (batch one n = 245; batch 
two n = 688) then merged and scaled together based on equivalence of the control groups. If a 
metabolite was missing in 50% or more of the samples from either dataset, it was excluded 
from further analysis. All remaining missing values were imputed with half the minimum peak 
intensity for that metabolite across the whole population. Data were pareto scaled to account 
for the differences in the scales of measurements across the metabolome. Metabolites were 
log-transformed to create approximately Gaussian distributions and to stabilize variance. See 
our previous paper37 for extensive description of data extraction and processing. 
 
LIONESS 
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Correlation networks have been successful in aggregating and summarizing multidimensional 
biological data79,80, but they do not account for the intrinsic variability across the samples of a 
population. To fill this gap, our group developed LIONESS38, a method to reverse-engineer 
sample-specific networks starting from the aggregate network of an entire population.  
 
The founding principle of LIONESS is that an aggregate network, summarizing information from 
a set (𝛼) of 𝑁 samples, can be conceptualized as the average of individual component 
networks, representing the contributions from each member within the input sample set. This 
principle can be formalized mathematically through the following equation: 

𝑒/0
()) = 5𝑤#

())
7

#89

𝑒/0
(#)	,	 

where 𝑒/0
()) and 𝑒/0

(#) represent a weighted edge between two nodes 𝑖 and 𝑗 in the set-wide 
aggregate network and in the individual network of sample 𝑞, respectively. 𝑤#

()) represents the 
contributing weight of sample 𝑞 to the set (𝛼). If all samples have equal weight, 𝑤#

()) = 1/𝑁.  
Starting from the above equation, the individual network 𝑒(#) of sample 𝑞 can be reconstructed 
as (see original paper38 for derivations): 
 

𝑒(#) = 𝑁(𝑒()) − 𝑒()+#), + 𝑒()+#), 
 
where	𝑒()) is the aggregate network estimated using all 𝑁 samples in the set (𝛼) and 𝑒()+#) is 
the aggregate network estimated using all samples except for sample q. In these aggregate 
networks, nodes may represent individual omics entities (e.g. metabolites) and edges may 
represent relationships summarizing biological information from the population-based omics 
matrix (e.g. the correlation between two metabolites). Intuitively, this equation expresses an 
individual network as the sum of two contributions: one that accounts for biological patterns that 
are specific to the individual 𝑞, and a second that accounts for biological patterns that are 
shared across all the samples in the population. 
 
In our application, we employed Pearson correlation to build the two aggregate metabolic 
networks 𝑒()) and 𝑒()+#) for the VDAART study sample (𝛼). In these correlation networks, each 
metabolite pair (𝑖, 𝑗) is connected through a weighted edge. The edge’s weight represents the 
co-expression coefficient between 𝑖 and 𝑗 calculated across the VDAART study sample before 
(𝑒())) and after (𝑒()+#)) removing individual 𝑞. Using Eq.(1), we reconstructed the individual 
weighted network of each VDAART child. 
 
Linear regression model to generate the VDI network 
LIONESS generated 381 fully connected, individual, weighted networks. For each edge in those 
networks, we regressed the distribution of edge weights across the VDAART children against 
their phenotypic traits and family history. We used the following multivariable regression model: 
 

𝑤𝑒𝑖𝑔ℎ𝑡@AB7~	𝐴𝑆𝑄 + 	𝑣𝑖𝑡𝐷 + 	𝑣𝑖𝑡𝐷IJK + 𝑣𝑖𝑡𝐷:𝐴𝑆𝑄 + 𝑣𝑖𝑡𝐷IJK: 𝐴𝑆𝑄 
 
The terms 𝐴𝑆𝑄 and	𝑣𝑖𝑡𝐷 represent children’s ASQ-comm score and vitamin D levels at age 
three years, respectively; 𝑣𝑖𝑡𝐷IJK represents maternal Vitamin D levels during late pregnancy 
(within 32-38 weeks); and 𝑣𝑖𝑡𝐷: 𝐴𝑆𝑄 and 𝑣𝑖𝑡𝐷IJK: 𝐴𝑆𝑄 represent interaction terms between the 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.06.23.546277doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546277


ASQ-comm score and children’s and maternal vitamin D levels, respectively. This model allows 
us to identify the metabolic edges associated with the interaction between maternal and early 
childhood vitamin D levels and child’s communication development. The model was adjusted 
for the children’s race and sex, maternal education level and marital status, treatment group, 
and clinical site of plasma collection (see Supplementary Table 1). Linear regression was 
performed using the function lmfit in the R package LIMMA81. P-value statistics were obtained 
from the LIMMA function eBayes. This analysis provided a list of linear regression coefficients 
and p-values for each edge (metabolite pairs). 
 
Pre-ranked MSEA Enrichment analysis 
MSEA enrichment analysis was performed using the python package GSEApy82. First, we 
ranked all metabolites in the VDI network based on their degree. If two nodes had the same 
degree, the one having the highest “Interaction Coefficient” (IC) was ranked higher. We defined 
the IC of a node as the mean absolute interaction coefficient 𝑚𝑒𝑎𝑛(𝑣𝑖𝑡𝐷: 𝐴𝑆𝑄, 𝑣𝑖𝑡𝐷IJK: 𝐴𝑆𝑄) 
averaged across all the VDI edges connected to the node, as calculated from the linear 
regression analysis. Nodes with high IC exhibit connections highly associated with the 
interaction terms between maternal and children’s vitamin D and the ASQ-comm score. As 
such, they likely represent key regulators of these interactions. Nodes that were not included in 
the VDI network were assigned degree zero. To break ties between zero-degree nodes, we 
ranked them based on their IC. We downloaded all the human metabolic pathways within the 
KEGG42 database using the functions process_kegg and process_gmt of the python package 
ssPA40. Based on these KEGG pathways, we performed pre-ranked Metabolic Set Enrichment 
Analysis (MSEA) on our pre-ranked list of VDI metabolites using the function prerank of 
GSEApy. P-values were adjusted using the Benjamini-Hochberg (BH)-FDR correction, and an 
FDR < 0.15 was used to identify significantly enriched pathways. 
 
Hierarchical clustering analysis of the individual metabolic networks 
To identify similarities in the metabolic networks of the VDAART children, we selected the 
subgraph of VDI edges in each LIONESS network. We then z-score normalized the weights of 
each edge across the individual VDI networks and performed hierarchical clustering on the z-
scores using Spearman correlation as similarity distance and the complete-linkage metrics. 
Based on the hierarchical structure of the cluster dendrogram, the optimal number of clusters 
was obtained by cutting the tree such that all the descendent links in each cluster are shorter 
than a cut-off distance of 1.15. We obtained five clusters (see Supplementary Figure 2). We 
compared the phenotypic and molecular characteristics of these clusters. 
 
In each cluster, we analyzed 1) children’s communication scores and vitamin D levels at age 
three, 2) maternal vitamin D levels during pregnancy (within 32-38 weeks), in the cord blood, 
and 1 year after delivery, and 3) children’s history of asthma/wheeze, and 4) maternal asthma.  
For each of these variables, we compared its distribution in each cluster versus all other 
clusters. P-value statistics were obtained using the Mann-Whitney u test for the communication 
score, T-test for the other numerical variables, and chi-squared for binary variables. A cluster 
was considered significantly different from the others in a given variable if its p-value was less 
than 0.1. For reference, in the main text we reported p-values trends lower than 0.15. 
 
Additionally, we identified marker metabolic edges for each cluster. For each edge connecting 
a pair of metabolites, we used a T-test to compare the distribution of that edge’s LIONESS 
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weight in the cluster versus the rest of the population. An edge was considered a marker edge 
in the cluster if its p-value was less than 0.1. 
 
KEGG tryptophan reaction network 
To build the tryptophan reaction network, we used the Biopython83 package Bio.Kegg. We 
downloaded the KEGG Markup Language42 (KGML) associated with the tryptophan 
metabolism pathway (hsa00380). We then selected the chemical network from the KGML graph 
object. In this network, nodes represent chemical compounds and edges represent chemical 
reactions between a substrate and a product (as defined in the KEGG documentation42). The 
resulting reaction network was composed of 41 nodes and 39 edges. We mapped all the 
metabolites of our VDI networks on to the KEGG reaction network and computed the shortest 
paths between pairs of metabolites connected by a VDI edge. We identified one shortest path 
connecting L-kynurenine with 5HIAA. For each metabolite pair (𝐴, 𝐵) in this path, we 
investigated if its expression ratio was statistically associated with the children’s ASQ-comm 
scores. Specifically, we used the linear regression model 𝐴𝑆𝑄~𝑒𝑥𝑝𝑟T +

UVWXY
UVWXZ

. The model was 
adjusted for the children’s race and sex, maternal education level and marital status, treatment 
group, and clinical site of plasma collection. 
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Fig. 1. Overall scheme of the analysis. a) The metabolomics matrix containing the metabolite 
levels of 381 VDAART children was used as the input to the LIONESS algorithm. b) Pearson 
correlation coefficients between each pair of metabolites were calculated to build the aggregate 
correlation network associated with the metabolomics matrix. Only edges with high correlation 
coefficients are shown for visualization purposes. c) LIONESS reconstructed the sample-
specific metabolic networks based on Eq. (1). d) The LIONESS edge weights for each pair of 
metabolites were regressed against the children’s phenotypic traits. e) We selected edges that 
are statistically associated with the interaction term between children’s ASQ-comm scores and 
either maternal or offspring vitamin D levels. These edges constitute the VDI network. 
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Fig. 2. Enrichment analysis of the VDI network. a) Normalized Enrichment Score of KEGG 
pathways enriched in the VDI network based on pre-ranked MSEA. Pathways are ranked based 
on their p-values. b) VDI network degree of the MSEA leading metabolites of the top three 
enriched KEGG metabolic pathways, which include Tryptophan metabolism, Linoleic acid 
metabolism, and Biosynthesis of unsaturated fatty acids. c) First neighbors’ network of the 
leading metabolites for 1) Tryptophan metabolism (top), 2) Linoleic acid metabolism (center), 
and 3) Steroid hormone biosynthesis (bottom). Node sizes are proportional to the node’s 
degree. Only edges included in the VDI network are shown. For visualization purposes, we 
highlighted nodes that were mentioned in the main text.  
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Fig. 3. Children’s phenotypic traits in the clusters extracted from the VDI network. a) 
Vitamin D levels (ng/mol) of children in each cluster at year 3, their mothers at 32 to 38 gestation 
weeks and one year after delivery, and in the cord blood. Colored boxes represent clusters with 
lower or higher Vitamin D levels compared to the individuals in all other clusters (p-value<0.15, 
see Materials and Methods) b) Stacked histogram of the communication scores for children in 
each cluster. Cluster 4 (referred as the low-communication cluster) exhibited the lowest 
distribution of communication scores. c) Stacked histogram of asthma incidence in children and 
mothers within each cluster. Cluster 2 (referred as the asthma cluster) exhibited the highest 
proportion of children and mothers with asthma. 
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Fig. 4. Marker metabolic edges identified for the low-communication and asthma 
clusters. Top marker metabolic edges identified for the a) low-communication and b) asthma 
clusters. Node sizes are proportional to the node’s degree in the marker edges’ subnetwork. 
Edges are colored based on the average LIONESS weight across the networks in the cluster. 
For visualization purposes, we highlighted nodes and edges that were mentioned in the main 
text.  
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Fig. 5. Shortest path connecting 5HIAA and L-kynurenine in the KEGG reaction network. 
The edge connecting 5HIAA and L-kynurenine was statistically associated with the interaction 
term between vitamin D and the ASQ communication score. One shortest path connected these 
two metabolites in the KEGG reaction network of tryptophan metabolism. This path involved 
two main subprocesses: 1) the biosynthesis of serotonin from L-tryptophan (orange nodes) and 
2) the degradation of L-tryptophan via the kynurenine pathway (blue nodes). The nodes in this 
network represent chemical compounds listed in the KEGG tryptophan metabolism. The edges 
represent the chemical reactions between a substrate and a product. Only the largest 
connected component is shown. 
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Supplementary Material  
 
Supplementary Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supp. Fig. 1. Correlation between maternal and children’s vitamin D levels. Heatmap of 
the Pearson correlation coefficients between children’s vitamin D levels at age three and their 
mothers during and after pregnancy. Without segregating children in separate clusters, no 
evident correlation is observed between children’s and maternal vitamin D levels across the 
entire VDAART population. 
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Supp. Fig. 2. Dendrogram of the hierarchical clustering of VDI edges in the LIONESS 
networks. The height of each link in the dendrogram (y-axis) is the distance metric, calculated 
as 1 – the Spearman correlation. The dendrogram was constructed using complete-linkage. 
Cutting the dendrogram at the height of 1.15 results in 5 clusters. 
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Supplementary Tables 
 
Supplementary Table 1. (Top) Baseline characteristics of the 381 children from the Vitamin D 
Antenatal Asthma Reduction Trial (VDAART) studied in this manuscript. (Bottom) Summary of 
plasma metabolomic profiling, serum vitamin D levels, and Ages and Stages Questionnaire 
(ASQ) scores for these children and their mothers. 
 
Supplementary Table 2. The weights of the 346,528 metabolic edges predicted by LIONESS 
for each individual network of the 318 VDAART children. 
 
Supplementary Table 3. A list of the VDI edges together with their associated coefficients and 
the p-values resulting from the linear regression model. 
 
Supplementary Table 4. A list of the KEGG metabolic pathways that are enriched in the VDI 
network based on our MSEA pre-ranked enrichment analysis. For each pathway, we included 
its KEGG ID, Enrichment Score (es), Normalized Enrichment Score (nes), nominal p-value 
(pval), FDR-adjusted p-value (fdr), number of metabolites in the pathway (set_size), number of 
metabolites in the pathway matched to the data (matched_size), metabolites in the pathway 
matched to the data (Pathway_metabolites), and leading edge metabolites 
(leading_edge_metabolites). 
 
Supplementary Table 5. The results from statistically comparing phenotypic information 
between the individuals in each cluster versus all other individuals in the VDAART study, as 
described in the main text. For each variable and each cluster, we included the type of statistical 
test performed, its associated statistic and p-value, and the type of comparison. For the vitamin 
D levels and asthma variables we report the mean value and number of True, respectively. 
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