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Abstract

Microbiomes mediate important ecosystem functions, yet it has proven difficult to 

determine the relationship between microbiome composition and the rate of ecosystem 

functions. This challenge remains because it is difficult to manipulate microbiome 

composition directly, we often cannot know a priori which microbiome members 

influence the rate of an ecosystem function, and microbiomes can covary strongly with 

other drivers of ecosystem function, such as the environment. To address these 

challenges, we imposed artificial selection on whole soil ecosystems over multiple 

generations to select for microbial communities with a high rate of CH4 oxidation. This 

approach is potentially powerful because it is biologically “agnostic” in that it makes few 

assumptions about which taxa are important to function, and repeated passaging with 

fresh substrate weakens the covariance between microbes and the environment. As a 

response to selection, we observed a 50.7% increase in CH4 oxidation rate per passage 
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relative to a control that experienced random selection. We estimated that 31.5% of the 

variation in CH4 oxidation rate in these soils can be attributed to microbiome variation 

(though this was not significant). We also found that selection did not enrich for known 

CH4 oxidizers; instead, 12 families not known to oxidize CH4, including 

Fimbriimonadaceae, Cytophagaceae, and Diplorickettsiaceae, were enriched by 

selection. This result is in contrast to the typical assumption that the rate of an ecosystem 

function is limited by the final step in the associated microbial pathway. Our study 

demonstrates that variation in microbiome composition can contribute to variation in the 

rate of ecosystem function independent of the environment and that this may not always 

be limited by the final step in a pathway. This suggests that manipulating microbiome 

composition directly without altering the environment could be a viable strategy for 

managing ecosystem functions.

Introduction

Microbiomes mediate a variety of important ecosystem functions relevant to human 

health, agriculture, and global change. As a result, there is great interest in understanding 

how to manipulate the microbiome to achieve desirable outcomes within these domains 

(1–3). However, for microbiome manipulations to be successful, variation in the 

microbiome must contribute directly to variation in the magnitude of the function of 

interest independent of other factors. Many studies have attempted to document such a 

relationship (4–9). However, it is difficult to isolate the direct effect of variation in 

microbiome composition from other drivers of variation in ecosystem function, such as 
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the indirect effect of the environment on function through microbiome assembly. Here, 

we overcome these limitations by using a selection approach to estimate the degree to 

which an ecosystem function varies with microbiome composition.

Altering ecosystem functions via microbiome manipulations requires that the 

microbiome contributes to variation in ecosystem function independent of other drivers 

of ecosystem variation, such as variation in environmental conditions. This is because the

drivers of variation in ecosystem functions can interact in complicated ways (Figure 1). 

Variation in the microbiome can contribute directly to variation in ecosystem function, 

for example, if a microbial population is replaced by one with a greater enzyme 

efficiency. In addition, environmental conditions can contribute indirectly to ecosystem 

function via covariance with the microbiome, for example, by providing conditions that 

select for microbial groups that in turn alter the rates of ecosystem functions. In this 

scenario, identifying the change in microbial community composition without adequately

controlling for the environmental conditions would incorrectly attribute the change in 

ecosystem function to the microbiome when it is ultimately an indirect effect of the 

environment. Determining the independent contribution of microbiome variation to 

ecosystem function is crucial because if microbiome composition is driven primarily by 

environmental conditions, then introducing a desirable taxon through microbiome 

manipulation without altering the environment will likely be unsuccessful at shifting the 

targeted ecosystem function.

There have been two general categories of approaches that investigators have used 

to estimate the degree to which an ecosystem function varies with microbiome 

composition: comparative and manipulative. Comparative studies sample natural 
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variation in an ecosystem function across different habitats and simultaneously measure 

variation in community composition. Investigators can then correlate ecosystem function 

with aspects of community composition while attempting to control for environmental 

variation. These approaches have documented important relationships between 

microbiomes and ecosystem functions. For example, a meta-analysis of these studies 

observed a small but significant contribution of the microbiome to variation in ecosystem 

function after controlling for environmental variation (10). In addition, studies focusing 

on the correlation between the rate of an ecosystem function and the abundance of an 

associated marker gene (i.e., a gene that codes for a protein assumed to be involved in the

ecosystem function) sometimes observe a significant correlation, though this relationship 

is rare and contingent upon both the function and the ecosystem sampled (11). However, 

comparative studies come with unique challenges and limitations. One issue is that 

microbiome attributes tend to covary with the abiotic conditions within an environment, 

and it is difficult to control for these abiotic variables in order to identify the unique 

contribution of the microbiome to ecosystem function. In addition, it is difficult to know 

a priori which environmental variables or community attributes to measure. Finally, 

while these approaches can establish a potential magnitude and direction for these 

relationships, it is often difficult to identify the taxa or genes that explain the connection 

between composition and function.

The other broad category of approaches used to address this question are 

manipulative approaches. Manipulative experiments try to alter microbial community 

composition and observe the effect on function. For example, reciprocal transplant and 

common garden experiments have shown that microbiomes originating from different 
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ecosystems inoculated into the same substrate or introduced into a common environment 

display distinct functional rates (4–7). In addition, manipulating diversity by filtering 

communities by cell size or through dilution has been shown to alter the rate of 

ecosystem functions (8,9,12). However, manipulating the microbiome directly is 

challenging, and manipulative approaches often confound community composition with 

other factors. For example, reciprocal transplant and common garden experiments can 

confound community composition with the abiotic conditions introduced with the 

inoculum, while manipulating composition through dilution may confound composition 

with biomass (13).

In this study, we sought to build on the observations of comparative and 

manipulative studies by applying a different approach to the question of whether 

microbiome variation contributes to variation in the rate of an ecosystem function. We 

used artificial ecosystem selection to select for microbiomes that performed a greater rate 

of ecosystem function (14–16). We then tested whether variation in the microbiome 

contributed to variation in the rate of ecosystem function and identified microbiome 

attributes that might explain this relationship. There are several potential advantages to 

this approach for documenting the direct contribution of the microbiome to variation in 

ecosystem function and for investigating the mechanisms underlying those relationships. 

Through repeated passaging of microbiomes in a common environment, we can weaken 

the covariance between microbes and the environment by repeatedly diluting the 

influence of variation in abiotic conditions. In addition, our approach eliminates the need 

to generate microbiome variation through methods that are confounded with biomass or 

cell size. Lastly, by comparing our artificially selected community to a control 
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community resulting from random selection, we can both control for changes in the 

environment over time and identify genes or taxa that are associated with the ecosystem 

function under selection.

We applied artificial ecosystem selection to soil microbiomes by selecting on soil 

methane (CH4) oxidation rate. We chose this function because CH4 is a globally 

important greenhouse gas and CH4 oxidation by soil bacteria is the primary biological 

sink for atmospheric CH4 (17). In addition, there is evidence that soil CH4 oxidation rate 

may vary with microbiome composition based on comparative studies in a variety of 

arctic and tropical ecosystems (18–21) as well as studies that manipulate methanotroph 

richness (22). Finally, methanotrophy is one of the most deeply conserved microbial 

physiologies and is represented in a narrow range of taxa, which suggests that the 

taxonomic composition of the microbiome is more likely to be associated with the rate of 

CH4 oxidation than other broader or more shallowly conserved functions (2,23).

In this study, we used artificial ecosystem selection on CH4 oxidation rate to 

address the following questions: Does variation in the relative abundance of microbial 

taxa contribute to variation in soil CH4 oxidation rate independent of the environment in 

our system? Which attributes of the microbiome are associated with variation in CH4 

oxidation rate, and do these attributes match our assumptions about the factors that 

regulate CH4 oxidation rate in nature?
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Materials and Methods

Experimental design

We performed an artificial ecosystem selection experiment (sensu (14)) by passaging 

replicate soil microbiomes. The trait we selected on was soil CH4 oxidation rate. Soil 

microcosms were incubated at room temperature in sealed 500 mL glass jars with a 

rubber septum for gas sampling. Each jar was sterilized with 70% ethanol and was 

composed of 45 g of autoclaved artificial potting mix, 5 g of living soil inoculum, and 3.5

mL of sterile deionized water to bring the soil to 60% of field capacity. The potting mix 

consisted of bark fines, peat moss, pumice, sand, composted manure, and biochar (Lane 

Potting Mix, Lane Forest Products, Eugene, OR). The initial soil microbiome inoculum 

was sampled from the top 10 cm of an upland mineral soil under a deciduous forest 

ecosystem near the University of Oregon campus in Eugene, OR, USA. Each jar was 

capped and injected with 4.3 mL of 99% CH4, which produced a mean headspace 

concentration of 763.9 ppm (SD = 183.1). Twice per week, jars were flushed in a 

biosafety cabinet (to avoid contamination) and respiked with CH4 to maintain aerobic 

conditions and elevated CH4 concentrations.

For the selection experiment, we created two lines of soil microcosms with 12 jars 

each: a control line with random selection and an experimental line with directional 

selection for greater soil CH4 oxidation rate. The selection line underwent positive 

selection where the two or three jars with the highest CH4 oxidation rate were 

homogenized to inoculate the next set of jars. The control line underwent random 
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selection where an equal number of jars as the selection line were chosen at random to 

inoculate the next set of jars. The number of jars chosen was based on the distribution of 

fluxes among the positive jars: three jars were chosen in all generations except for 

passage 3 where two jars were selected. The experiment was carried out over five 

passages with an average incubation time per generation of four weeks. Methane 

oxidation rates were determined at the end of the incubation period and selection was 

performed. For each treatment, the selected jars were homogenized and 5 g of the 

homogenized soil was used as the living soil inoculum for the next generation. The next 

set of jars were created in an identical manner to the first generation with fresh 

autoclaved potting mix and the same moisture and CH4 content.

Methane oxidation rate

Methane oxidation rates were determined after flushing and spiking jars to 1000 ppm 

CH4. Headspace samples of 1 mL were collected from each jar immediately after spiking 

and then at time points 3, 6, 24, and 48 hours for a 5-point curve. Samples were 

immediately injected into a SRI model 8610C gas chromatograph equipped with a flame 

ionization detector (SRI Instruments, Torrance, CA, USA) to determine the headspace 

CH4 concentration. We applied a first-order exponential decay function to determine the 

rate constant (k, units = d−1; i.e., dCH4/dt = k[CH4]) of the exponential decrease in CH4. 

Oxidation rates are presented as the additive inverse of k  (i.e., −k) so that a more positive

value represents a greater oxidation rate. The jars selected to inoculate passage three for 
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the positive selection treatment had the lowest CH4 oxidation rate of the twelve jars due 

to a calculation error in the rate constant.

Soil DNA extraction and sequencing

A subsample of soil from the starting inoculum and from every jar in passages 2 and 5 

was collected and stored at −80∘C. Soil DNA was extracted from 0.25 g soil. Negative 

controls were extracted from autoclaved potting mix and DNase-free water. Extractions 

were performed using the DNeasy PowerSoil kit (QIAGEN, Düsseldorf, Germany) and 

quantified using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Inc., Waltham, 

MA, USA). To estimate the diversity and relative abundance of the bacterial and archaeal

taxa in our soil ecosystems, we sequenced the V4 region of the 16S rRNA gene using the 

515F - 806R primer combination (24). PCR mixtures were: 10 μl NEBNext Q5 Hot Start 

HiFi PCR master mix, 9.2 μl primer mixture (1.09 μM concentration), and 0.8 μl of DNA

template. Reaction conditions were: 98∘C for 30 s (initialization); 35 cycles of 98∘C for 

10 s (denaturation), 61∘C for 20 s (annealing), and 72∘C for 20 s (extension); and 72∘C for

2 m (final extension). Reactions were performed in triplicate and then combined. 

Amplicons were purified twice using 0.8x ratio Mag-Bind RxnPure Plus isolation beads 

(Omega Bio-Tek, Norcross, GA, USA). Sequencing libraries were prepared using a dual-

indexing approach (25,26). Amplicon concentrations were quantified using Qubit and 

multiplexed at equimolar concentration. Sequencing was performed at the University of 

Oregon Genomics Core Facility on the Illumina NovaSeq 6000 with paired-end 150 bp 

reads (Illumina, Inc., San Diego, CA, USA).

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.23.546315doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546315
http://creativecommons.org/licenses/by/4.0/


Bioinformatics

Bioinformatics processing was performed in ‘R’ (27). Demultiplexed sequencing reads 

were denoised using ‘DADA2’ to generate a table of amplicon sequence variants (ASVs) 

(28). Taxonomic assignment was performed using the Ribosomal Database Project naive 

Bayesian classifier (29). The presence of contaminants was evaluated using both the 

prevalence and frequency methods from ‘DECONTAM’ by comparing samples to 

extraction controls of water (30). Decontam identified 16 potential contaminants based on

prevalence and frequency. Visual inspection of abundance-concentration plots indicated 

that 9 of these were likely contaminants and these ASVs were removed. Amplicon 

sequence variants that were assigned chloroplast or mitochondria taxonomy were 

removed prior to analysis.

Statistical Analysis

Statistical analyses were performed in ‘R’ (27). To determine whether there was a 

significant change in CH4 oxidation rate as a response to selection, we tested a difference 

in slopes between the selection and control lines. Residuals did not meet the assumptions 

of constant variance and normal distribution. Therefore, CH4 oxidation rates were log10 

transformed prior to analysis. Following transformation, these assumptions were met. 

First, we tested if there was a difference of slopes between the selection line and the 

control based on the interaction between passage and treatment. To test the interaction, 

we fit two nested models with and without the interaction term and compared them using 
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an F-test with the ‘anova’ function. We then present the slopes for each treatment, which 

represented the change in CH4 oxidation rate per passage as a response to selection.

We estimated the proportion of variation in CH4 oxidation rate due to variation in 

the microbiome as the regression of divergence between the positive line and the control 

on the cumulative selection differential (31). This estimate is analogous to estimates of 

“microbiability” from the animal breeding literature, which quantifies the variation in a 

host trait that is due to microbiome variation (32). The slope of the regression of 

divergence on cumulative selection differential provides an estimate of realized 

microbiability (h2 ± SE). Divergence was calculated as the mean CH4 oxidation rate of 

the positive treatment minus the mean CH4 oxidation rate of the control in each passage. 

The selection differential was calculated as the difference between the mean of the three 

selected jars and the mean of all twelve jars in a passage. Cumulative selection 

differential was calculated as the sum of the selection differential from all preceding 

selection events. We then regressed cumulative divergence on cumulative selection 

differential using the ‘lm’ function. We report the slope as percent change by back-

calculating the percent change from the log-transformed data into the original units using 

the formula (10β−1 ) ∗100 where β is the slope.

Richness was estimated using the method from (33) with a subsample size of 

176,545 calculated via the ‘rarefy’ function in ‘vegan’ (34). We tested a difference in 

richness by both passage and treatment with a Kruskal-Wallace test followed by a 

pairwise Wilcoxon test. Next, we estimated beta-diversity as the Bray-Curtis dissimilarity

by averaging 100 random subsets with a subsample size of 176,545 using the ‘avgdist’ 
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function in ‘vegan’ (34,35). We tested a difference in centroid and dispersion of beta 

diversity by passage and treatment using a permutational analysis of variance 

(PERMANOVA) with 999 permutations using the ‘adonis2’ function from ‘vegan’ and 

tested a difference of group dispersions using ‘betadisper’ and ‘anova’ with 999 

permutations (34,36). Lastly, we tested the correlation between CH4 oxidation rate and 

Bray-Curtis dissimilarity in Passage 5 with a distance-based redundancy analysis 

(dbRDA) using the ‘dbrda’ function in ‘vegan’ and estimated the p-value using a 

permutation F-test with 999 permutations (34,36)

To identify taxa that responded to selection on CH4 oxidation rate, we tested 

differential abundance between the two treatments in passage 5. We first grouped ASVs 

at the family level. We chose this level of agglomeration because CH4 oxidation is a 

relatively deeply conserved function (23) and is restricted to a handful of bacterial and 

archaeal families (37). Therefore, we are most likely to detect an enrichment of 

methanotrophs at this taxonomic scale. Any ASVs that lacked a family-level taxonomic 

assignment were grouped at a higher taxonomic level. We then subset the samples in 

Passage 5 and removed all families with a prevalence of less than 10% in either 

treatment. We used three methods for testing differential abundance: ANCOM-II, 

ALDEx2, and CORNCOB (38–41). We then identified the consensus taxa that were 

significant with all three tests and plotted their relative abundances. For ANCOM-II, we 

used the ‘ancom’ function in the ‘ANCOM-BC’ package with a cutoff of W = 0.7 

(38,39). For ALDEx2, we used the ‘aldex’ function in the ‘ALDEx2’ package with 

Welch’s t-test and we used an effect size of 1 as our significance threshold (40). Finally, 

we used CORNCOB with the ‘differentialTest’ function in the ‘corncob’ package with 
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the Wald test and without bootstrapping (41). Lastly, to test differentially abundant 

methanotrophs, we subset all ASVs within methanotrophic families and tested their 

differential abundance aggregated at the family and genus level using ‘corncob’. For each

test, p-values were adjusted for multiple testing by controlling the false discovery rate 

using the Banjamini-Hochberg procedure (42).

Results

Response to selection on methane oxidation rate

We observed a response to artificial selection on whole-ecosystem soil CH4 oxidation rate

(Figure 2; difference of slopes: F2,113 = 3.85, p = 0.02). At the start of the experiment, the 

positive selection treatment had a mean CH4 oxidation rate that was 24% lower than the 

control (difference of y-intercepts = -0.34, SE = 0.16, t = -2.14, p = 0.03). There was no 

change in CH4 oxidation rate in the control over the five passages (slope = -0.01, SE = 

0.05, t = -0.26, p = 0.80). By contrast, the selection treatment had a 50.7% increase in 

CH4 oxidation rate per passage (slope = 0.18, SE = 0.06, t = 2.76, p = 0.01).

To estimate the proportion of variation in CH4 oxidation rate due to variation in 

microbiome composition–i.e., microbiability (as described in the Methods; (32)–we 

regressed divergence between the positive selection treatment and the control against the 

cumulative selection differential. The microbiability was 0.31 ± 0.17, though this was not

significant (F1,2 = 3.44, p = 0.20).
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Taxonomic richness

Median ASV richness decreased from 3406.6 (778.5) in passage 2 to 1557.8 (157.7) in 

passage 5 (Kruskal-Wallace test: χ2 = 35.4, df = 3, p < 0.001; pairwise Wilcoxon test: p <

0.001). However, there was no difference in richness between the selection treatment and 

the control in passage 2 or 5 (pairwise Wilcoxon test; Passage 2: p = 0.66, Passage 5: p = 

0.67). In addition, there was no correlation between richness and CH4 oxidation rate 

across the two treatments in passage 5 (Spearman’s rho = -0.2, p = 0.3).

Community dissimilarity

Bray-Curtis dissimilarity of the soil microbiome varied strongly by passage and weakly 

by treatment with an interaction between passage and treatment (Figure 3). Passage 

explained 55.9% of the variation in Bray-Curtis dissimilarity (F1,44 = 73.3, p = 0.001), 

treatment explained 5.9% of the variation (F1,44 = 7.8, p = 0.001), and the interaction 

between treatment and passage explained 4.7% of the variation (F1,44 = 6.2, p = 0.003). 

There was no difference in dispersion between treatments or passages (F3,44 = 0.91, p = 

0.45). Finally, CH4 oxidation rate was correlated with Bray-Curtis dissimilarity across 

both treatments in passage 5 and explained 9.6% of the variation in Bray-Curtis 

dissimilarity (dbRDA: F1,22 = 2.34, p = 0.010)

Taxa that responded to selection

To identify taxa that responded to selection on soil CH4 oxidation rate, we tested the 

differential relative abundance of families in the selected jars relative to the control jars 
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within passage 5 using three methods and then plotted the taxa identified by all three 

methods. We identified 12 families that were enriched or depleted in the selection 

treatment relative to the control (Figure 4).

Overall, none of the families enriched in the selection treatment contain known 

methanotrophs. Several taxa identified had a higher taxonomic designation that contains 

methanotrophs, for example, the Gammaproteobacteria class had a large effect size. The 

Gammaproteobacteria include the type I and type X methanotrophs in the families 

Methylococcaceae and Methylothermaceae (43). However, the Gammaproteobacteria is 

among the most diverse groups in the Prokaryotes, so this is not strong evidence for a 

selection response by methanotrophs (44). In addition, the Puniceicoccaceae is a member

of the phylum Verrucomicrobia. The Verrucomicrobia is a diverse group that contain 

known methanotrophs as well as ammonia-oxidizing bacteria (45). Other than these two 

groups, none of the other taxa enriched in the selection treatment are known to be related 

to methanotrophs. Two groups in the Armatimonadales were enriched in the selection 

treatment including the family Fimbriimonadaceae and an unclassified ASV from the 

order Armatimonadales (46). Cytophagaceae was also enriched in the selection treatment

and contains a number of mainly aerobic heterotrophs that can digest a variety of 

macromolecules (47). The remaining families include the uncultured family 0319-6G20, 

Diplorickettsiaceae, Rhodospirillaceae, and an unclassified Kapabacteriales.

We did not identify any methanotrophic families in the overall differential 

abundance analysis. However, we wanted to look more closely at the known 

methanotrophs in our dataset to be sure that they did not have an effect. To do this, we 

subset the ASVs in our dataset that were in families that contained methanotrophs. Only 
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two families were represented: Methylacidiphilaceae and Beijerinckiaceae. Aggregating 

reads at the family level, neither family was differentially abundant between the two 

treatments. However, aggregated at the genus level, a group of unclassified genera in the 

Beijerinckiaceae were depleted in the selection treatment and the genus Rhodoblastus, a 

member of the Beijerinckiaceae, was enriched in the selection treatment. While many 

Beijerinckiaceae are methanotrophs, several taxa in this family have lost the ability to 

oxidize CH4 and it appears that Rhodoblastus species are not able to grow on CH4, though

they can grow on methanol (48,49). Based on this analysis, it appears that no 

methanotrophs were enriched in the positive selection treatment.

Discussion

We used artificial ecosystem selection to estimate the contribution of variation in 

microbiome composition to variation in the rate of an ecosystem function, CH4 oxidation 

in soil, independent of environmental variation. Understanding how and to what degree 

microbiome variation contributes to variation in ecosystem function is important for 

many reasons. For example, successful microbiome manipulations require that the 

manipulated microbiome contribute to variation in ecosystem function independent of 

other drivers of ecosystem variation (such as variation in environmental conditions). This

is because the drivers of variation in ecosystem functions can interact in complicated 

ways (Figure 1); for example, environmental variation can indirectly contribute by 

providing conditions that select for microbial groups that in turn alter the rates of 

ecosystem functions. Determining the independent contribution of microbiome variation 

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.23.546315doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546315
http://creativecommons.org/licenses/by/4.0/


to ecosystem function is crucial because if microbiome composition is driven primarily 

by environmental conditions, then introducing a desirable taxon through microbiome 

manipulation without altering the environment will likely be unsuccessful at shifting the 

targeted ecosystem function. The artificial selection approach is different from the 

comparative and manipulative approaches used in past attempts at answering this 

question, because it can control for both the direct effect of environment on function as 

well as the indirect effect on environment via its impact on microbiome assembly.

In our study, we observed an increase in CH4 oxidation rate in the selection 

treatment relative to the control, which demonstrates that there was a response to 

selection. Given that we observed a response to selection, we conclude that variation in 

the microbiome contributes to variation in the CH4 oxidation rate independent of the 

environment. This suggests that microbiome manipulations could be an effective 

approach for altering the rate of CH4 oxidation in this soil, and that the artificial selection 

approach may be useful in determining the potential for microbiome manipulations for 

other functions in other ecosystems.

Given that variation in the microbiome is associated with variation in the rate of an 

ecosystem function in our system, a reasonable follow-up question is “how much 

variation in ecosystem function is associated with microbiome variation in this system?” 

One way to estimate this is to determine how much the recipient jars resemble the 

selected donor jars that were used to inoculate them (31). We can calculate the response 

to selection as the difference between two successive passages in their mean CH4 

oxidation rate. We will denote this as R. We can also calculate the strength of selection as

the difference in mean CH4 oxidation rate between the twelve jars in one generation and 
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the three jars chosen for selection in that generation, which we will call the selection 

differential and denote as S. If we plot the cumulative R against the cumulative S, the 

slope of this relationship will equal the proportion of variation explained by the 

microbiome. If the change in mean function from passage one to passage two (R) is equal

to the difference in mean function between the twelve jars in passage one and the three 

jars selected to inoculate passage two (S), then we would conclude that 100% of the 

variation is due to variation in the microbiome. Likewise, if recipients do not resemble 

the donors in their mean CH4 oxidation rate and simply wander randomly, then we would

conclude that all of the variation is due to the environment or technical variation.

The relationship between microbiome variation and ecosystem function variation is

analogous to the concept of “heritability” (50) used by quantitative geneticists, or more 

precisely the concept of “microbiability” (32) proposed by microbiome scientists who 

study host-associated microbiomes. Although rarely used in the study of environmental 

microbiomes, this concept could be very useful for understanding and manipulating 

microbially-mediated functions in a variety of ecosystems. In our experiment, variation in

microbiome taxonomic composition statistically explained (i.e., was associated with) 

31.5% of the variation we observed in the rate of CH4 oxidation, though this was not 

significant. However, we did observe a significant divergence between the positive 

selection and control lines, which suggests that the imposed selection and passaging of 

microbiomes was sufficient to generate variation in soil CH4 oxidation rate. Future studies

with greater replication could more precisely estimate the microbiability. This suggests 

that there is substantial potential for altering this ecosystem function through microbiome

manipulation in this soil. It is very likely that the “environmental microbiability” will be 
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different for other ecosystem functions in this soil and for CH4 oxidation in other soils. 

However, our experiment demonstrates that this relationship is measurable and provides 

an example of how this can be accomplished.

We next wanted to determine which aspects of the microbiome might explain the 

divergence in CH4 oxidation rate between the two treatments. There are three inter-

related ways that microbiomes could have responded to selection in this experiment: gain

or loss of taxa, changes in the relative abundances of taxa, or changes within the genomes

of the constituent taxa. We surveyed microbiome variation via 16s rRNA ribotyping in 

our experiment, which allowed us to deeply sample taxonomic diversity but did not allow

us to directly address whether taxa in this experiment evolved genomic changes as a 

result of selection. However, if such genomic changes resulted in increased persistence or

abundance of the population with these changes, this would be detectable. Therefore, we 

will focus on the first two possibilities.

Richness at the ASV level did not vary between the two treatments and there were 

relatively few taxa gained or lost in the selection treatment and none of these were 

prevalent across the 12 jars in passage 5. Therefore, the gain or loss of species is unlikely 

to explain the increase in CH4 oxidation rate. However, we found that Bray-Curtis 

dissimilarity was greater between the two treatments in Passage 5 than within each 

treatment and was correlated with CH4 oxidation rate, which suggests that changes in the 

relative abundance of taxa could explain the response to selection.

Even though we observed an increase in CH4 oxidation rate in the selection 

treatment and a difference in composition between the two treatments, we did not observe

an increase in the relative abundance of known methanotrophs. This was surprising given
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that CH4 consumption is not a common trait among microbes and that it is often assumed 

that the rate of an ecosystem function is limited by the final enzymatic step in the 

underlying metabolic pathway (11). In certain ecosystems, CH4 production and 

consumption are correlated with the abundance of methanogens and methanotrophs as 

estimated from marker genes (18,19). However, our results suggest that in this system 

ecosystem-scale CH4 oxidation rates can be altered by non-methanotrophs, perhaps 

through ecological interactions with methanotrophic species, or by unknown 

methanotrophs. This suggests that simple assumptions about how microbes contribute to 

rate variation in ecosystem function may not apply universally, and it demonstrates the 

importance of using biologically “agnostic” approaches (that make few starting 

assumptions) to linking microbial taxa to ecosystem functions (51). Artificial ecosystem 

selection is an important example of such an approach.

There is increasing interest in using artificial selection for understanding and 

manipulating the microbiomes associated with plants and animals (a.k.a., “microbiome 

breeding”; (52)). Our study demonstrates that artificial ecosystem selection can also be an

important tool for exploring the relationship between microbiome composition and 

ecosystem function in non-host systems. This approach can provide unique information 

about the independent contribution of microbiomes to ecosystem functions. Such 

information is crucial if we are to successfully manipulate environmental microbiomes to 

alter ecosystem functions, whether to improve crop productivity (53) or ameliorate the 

impacts of environmental change (54).
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Figures

Figure 1: Variation in the rate of an ecosystem function is the result of at least three 

components: variation in the abiotic environmental conditions, variation in microbiome 

composition, and the covariance between microbiomes and the environment. The arrows 

represent causal relationships between the components. It is important to isolate the direct

effect of the microbiome from the effect of the environment via covariance with the 

microbiome. Here, we attempt to isolate the effect of the microbiome through artificial 

selection on microbiome composition. For simplicity, we omitted the reverse arrows as 

well as the interactions, though these relationships may also exist.
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Figure 2: Response to selection on soil CH4 oxidation rate. The y-axis is CH4 oxidation 

rate as the log10 of the additive inverse of the first-order exponential decay constant k  

(i.e., −k) with units day-1 so that a more positive value represents a higher CH4 oxidation 

rate. Orange points and regression line are for the positive selection treatment and gray 

points and regression line are for the control. There was a significant difference of slopes 

between the positive selection treatment and the control (F2,113 = 3.85, p = 0.02).

599

600

601

602

603

604

605

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2023. ; https://doi.org/10.1101/2023.06.23.546315doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.23.546315
http://creativecommons.org/licenses/by/4.0/


Figure 3: Non-metric multidimensional scaling plot of beta diversity for all jars. 

Dissimilarities are rarefied Bray-Curtis dissimilarity averaged over 100 subsamples. 

Orange points are the positive selection treatment and gray points are the control. Circles 

are passage 2 and triangles are passage 5.
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Figure 4: Differentially abundant family-level taxa identified by ANCOM-II, ALDEx2, 

and CORNCOB. Values on the x-axis are relative abundances on a log10 scale. Taxa in 

the top panel are enriched in the positive selection treatment relative to the control and 

taxa in the bottom panel are depleted in the positive selection treatment relative to the 

control. Taxa are sorted by their effect size with taxa at the top having the largest positive

effect size and taxa at the bottom with the largest negative effect size.
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