Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

MGSurvE: A framework to optimize trap placement for genetic surveillance of mosquito population

View ORCID ProfileHéctor M. Sánchez C., View ORCID ProfileDavid L. Smith, John M. Marshall
doi: https://doi.org/10.1101/2023.06.26.546301
Héctor M. Sánchez C.
1Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Héctor M. Sánchez C.
  • For correspondence: sanchez.hmsc@berkeley.edu
David L. Smith
2Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
3Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David L. Smith
John M. Marshall
1Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible - ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii)an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project’s documentation. MGSurvE is freely available as an open-source Python package on pypi (https://pypi.org/project/MGSurvE/). It is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.

Author summary Mosquito-borne diseases such as malaria and dengue fever continue to pose a major health burden throughout much of the world. The impact of currently-available tools, such as insecticides and antimalarial drugs, is stagnating, and gene drive-modified mosquitoes are considered a novel tool that could contribute to continuing reductions in disease transmission. Gene drive approaches are unique in the field of vector control in that they involve transgenes that could potentially spread on a wide scale, and consequently, surveillance is expected to be a major cost driver for the technology. This is needed to monitor for unintended spread of intact drive alleles, and the emergence of alternative alleles such as homing-resistance alleles and non-functional effector genes. Additionally, surveillance of insecticide-resistance alleles is of interest to support the impact of insecticide-based tools such as bednets. Here, we present MGSurvE, a computational framework that optimizes trap placement for genetic surveillance of mosquito populations in order to minimize the time to detection for an allele of interest. MGSurvE has been tailored to various features of mosquito ecology, and is intended as a resource for researchers to optimize the efficiency of limited surveillance resources.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 27, 2023.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
MGSurvE: A framework to optimize trap placement for genetic surveillance of mosquito population
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
MGSurvE: A framework to optimize trap placement for genetic surveillance of mosquito population
Héctor M. Sánchez C., David L. Smith, John M. Marshall
bioRxiv 2023.06.26.546301; doi: https://doi.org/10.1101/2023.06.26.546301
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
MGSurvE: A framework to optimize trap placement for genetic surveillance of mosquito population
Héctor M. Sánchez C., David L. Smith, John M. Marshall
bioRxiv 2023.06.26.546301; doi: https://doi.org/10.1101/2023.06.26.546301

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4857)
  • Biochemistry (10802)
  • Bioengineering (8046)
  • Bioinformatics (27314)
  • Biophysics (13987)
  • Cancer Biology (11130)
  • Cell Biology (16062)
  • Clinical Trials (138)
  • Developmental Biology (8788)
  • Ecology (13298)
  • Epidemiology (2067)
  • Evolutionary Biology (17364)
  • Genetics (11689)
  • Genomics (15926)
  • Immunology (11034)
  • Microbiology (26114)
  • Molecular Biology (10655)
  • Neuroscience (56596)
  • Paleontology (418)
  • Pathology (1733)
  • Pharmacology and Toxicology (3005)
  • Physiology (4551)
  • Plant Biology (9644)
  • Scientific Communication and Education (1615)
  • Synthetic Biology (2690)
  • Systems Biology (6979)
  • Zoology (1510)