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Abstract
Genetic surveillance of mosquito populations is becoming increasingly relevant as
genetics-based mosquito control strategies advance from laboratory to field testing.
Especially applicable are mosquito gene drive projects, the potential scale of which
leads monitoring to be a significant cost driver. For these projects, monitoring will be
required to detect unintended spread of gene drive mosquitoes beyond field sites, and
the emergence of alternative alleles, such as drive-resistant alleles or non-functional
effector genes, within intervention sites. This entails the need to distribute mosquito
traps efficiently such that an allele of interest is detected as quickly as possible -
ideally when remediation is still viable. Additionally, insecticide-based tools such as
bednets are compromised by insecticide-resistance alleles for which there is also a need
to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene
SurveillancE): a computational framework that optimizes trap placement for genetic
surveillance of mosquito populations such that the time to detection of an allele of
interest is minimized. A key strength of MGSurvE is that it allows important
biological features of mosquitoes and the landscapes they inhabit to be accounted for,
namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding
sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes
may depend on their sex, the current state of their gonotrophic cycle (if female) and
resource attractiveness, and iii) traps may differ in their attractiveness profile.
Example MGSurvE analyses are presented to demonstrate optimal trap placement for:
i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and
ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and
Príncipe. Further documentation and use examples are provided in project’s
documentation. MGSurvE is freely available as an open-source Python package on
pypi (https://pypi.org/project/MGSurvE/). It is intended as a resource for both field
and computational researchers interested in mosquito gene surveillance.

Author summary
Mosquito-borne diseases such as malaria and dengue fever continue to pose a major
health burden throughout much of the world. The impact of currently-available tools,

June 26, 2023 1/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2023. ; https://doi.org/10.1101/2023.06.26.546301doi: bioRxiv preprint 

https://pypi.org/project/MGSurvE/
https://doi.org/10.1101/2023.06.26.546301
http://creativecommons.org/licenses/by-nc-nd/4.0/


such as insecticides and antimalarial drugs, is stagnating, and gene drive-modified
mosquitoes are considered a novel tool that could contribute to continuing reductions
in disease transmission. Gene drive approaches are unique in the field of vector control
in that they involve transgenes that could potentially spread on a wide scale, and
consequently, surveillance is expected to be a major cost driver for the technology.
This is needed to monitor for unintended spread of intact drive alleles, and the
emergence of alternative alleles such as homing-resistance alleles and non-functional
effector genes. Additionally, surveillance of insecticide-resistance alleles is of interest to
support the impact of insecticide-based tools such as bednets. Here, we present
MGSurvE, a computational framework that optimizes trap placement for genetic
surveillance of mosquito populations in order to minimize the time to detection for an
allele of interest. MGSurvE has been tailored to various features of mosquito ecology,
and is intended as a resource for researchers to optimize the efficiency of limited
surveillance resources.

Introduction 1

Mosquito-borne diseases such as malaria, dengue and yellow fever continue to pose a 2

major public health burden throughout much of the world. Gene drive-modified 3

mosquitoes have been proposed as a potentially transformative tool to complement 4

currently-available tools by biasing inheritance in favor of an introduced allele 5

intended to spread through a population [1]. Progress has been made in Anopheles 6

malaria vectors towards two general classes of gene drive strategies: i) “population 7

replacement”, whereby inheritance is biased in favor of an allele that confers 8

refractoriness to pathogen transmission [2, 3], and ii) “population suppression”, 9

whereby vector populations are suppressed by biasing inheritance in favor of an allele 10

that induces a severe fitness cost or sex bias [4, 5]. In Aedes arboviral vectors, a “split 11

drive” system has been engineered with Cas and guide RNA drive components at 12

separate loci [6]. The potential spread and scale of impact of this technology is 13

promising; however, surveillance programs present a major cost driver as they must 14

scale with the intervention [7, 8]. 15

Surveillance for gene drive projects will be required to monitor the effectiveness of 16

the strategy at field sites, as has been done for previous self-limiting genetic control 17

projects [9]; however, a more demanding task will be to detect unintended spread of 18

gene drive alleles beyond field sites, and to detect the emergence of alternative alleles 19

both within and beyond field sites. One concern for these systems is the emergence of 20

drive-resistant alleles which, especially for population suppression strategies, would 21

have a significant fitness advantage over intact drive alleles, leading vector populations 22

to rebound [10,11]. This is also a concern for population replacement strategies, as 23

when the drive has spread and there are fewer cleavable wild-type alleles remaining, 24

less costly resistant alleles may replace the drive alleles, reducing their duration of 25

impact [12]. Another concern for population replacement strategies is the emergence 26

and spread of drive alleles lacking a functional effector gene [13]. 27

For spread beyond field sites, open questions relate to the optimal density and 28

placement of traps and the frequency of sampling required to detect gene drive alleles, 29

drive-resistant alleles or non-functional effector genes while they can still be effectively 30

managed. Similar questions relate to the spread of new alleles conferring resistance to 31

other interventions, such as bednets or indoor residual spraying with insecticides. 32

Lessons may be learned from studies of invasive species, a key result for which is that 33

early detection is critical to minimizing invasion impact, preserving the possibility of 34

local elimination, and maximizing the cost-effectiveness of surveillance 35

programs [14,15]. 36
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To this end, we present MGSurvE: an analytical framework that optimizes trap 37

placement for surveillance of mosquito populations such that the time to detection of 38

an allele of interest is minimized. MGSurvE takes into account biological features of 39

mosquitoes and the landscapes they inhabit - namely, resources required by 40

mosquitoes (e.g., blood and sugar-based food sources and aquatic breeding sites) and 41

movement of mosquitoes between these resources on a landscape. It also 42

accommodates traps with differing attractiveness profiles. MGSurvE may be used in 43

parallel with MGDrivE [16] or MGDrivE 2 [17] to determine the expected distribution 44

of times to detection or the number of individuals having the allele of interest at this 45

time point. We describe how to set up, run and interpret output from MGSurvE, and 46

provide examples of trap placement optimization for an Aedes aegypti population in 47

Queensland, Australia, and an Anopheles gambiae population on the tropical island of 48

São Tomé, São Tomé and Príncipe. We then conclude with a discussion of future 49

modeling needs and applications for genetic surveillance of mosquito populations. 50

Design and Implementation 51

MGSurvE provides a computational framework to distribute mosquito traps through a 52

landscape such that the time to detection of an allele of interest is minimized. To do 53

so, the MGSurvE package includes three major components, described here: i) 54

“landscape specification,” in which mosquito sites (or groups of sites) are attributed to 55

nodes, with movement rates between nodes determined by movement rules and 56

dispersal kernels, ii) “trap optimization,” in which the spatial distribution of a given 57

number of mosquito traps is optimized by minimizing the expected time for an allele 58

of interest to reach the device, as determined by an optimization routine, and iii) 59

“analysis and visualization of results,” in which optimization reports are exported, and 60

landscapes including traps may be visualized (Fig 1) These components are reflected 61

in the structure of the codebase, which is developed in Python [18]. We now describe 62

the model components here, with the mathematical representation provided in the S1 63

Text. 64

Landscape Specification Before the distribution of traps can be optimized, a 65

landscape must first be specified. In MGSurvE, the landscape is a metapopulation 66

within which discrete mosquito population nodes are distributed. The appropriate 67

scale at which populations are modeled depends on the species of interest and the 68

resolution at which optimized trap placement is desired. For instance, a household 69

scale may be adequate for Ae. aegypti populations, which are thought to be relatively 70

local dispersers [19], while a village scale may be more appropriate for An. gambiae 71

populations, which disperse over greater distances [20]. Nodes in MGSurvE may also 72

represent specific resources - e.g., blood and sugar sources for feeding, and water 73

sources for egg-laying - the inclusion of which allows traps to be distributed in relation 74

to these. Landscapes in MGSurvE may be sex-specific, which is particularly relevant if 75

specific resources are included, as only females blood-feed and lay eggs, while both 76

females and males sugar-feed. 77

Once a point set of mosquito population nodes has been defined, the next step is to 78

define the daily per-capita movement probabilities between each pair of nodes. 79

Movement is assumed to be Markovian (i.e., the conditional distribution of future 80

states depends only on the current state), and is calculated from dispersal kernels, 81

which derive movement probabilities from the distance between each coordinates pair. 82

The base MGSurvE implementation provides functions to implement exponential 83

decay, long-tailed exponential and zero-inflated exponential kernels; which encompass 84

a basic family of short-distance flight-types for mosquitoes. The zero-inflated 85
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Fig 1. Components of the MGSurvE framework. The MGSurvE package
includes three major components, reflected in the codebase, to distribute mosquito
traps through a landscape such that the time to detection of an allele of interest is
minimized: (A) landscape specification, (B) optimization of trap distribution, and (C)
analysis and visualization of results.

exponential, for example, takes into account the Aedes’ tendency to dwell in a given 86

point only to fly to nearby locations; whereas Anopheles disperse further from their 87

immediate neighborhood, which can be characterized by a decaying-exponential kernel. 88

However, the MGSurvE framework is not limited to these, and any function that takes 89

two node coordinates and the required parameters can be defined and used. In the 90

event that specific resources are included in a landscape, movement probabilities are 91

modified by a “masking matrix,” which is determined by the resource type of the 92

mosquito’s current node. For instance, a mosquito currently in a node with 93

blood-feeding resources may be more likely to seek a node with water resources for 94

egg-laying. This type of movement is similar to that of the MBITES framework 95

(Mosquito Bout-based and Individual-based Transmission Ecology Simulator) [21]. 96

With a point set and movement probabilities defined, the final step in specifying 97

the landscape is to define and incorporate traps, the positions of which will be 98

updated through the iterations of the optimization process. MGSurvE can incorporate 99

a wide range of traps (e.g., BG Sentinel traps, CDC light traps, ovitraps, etc.), which 100

may differ in their attractiveness as defined by parameters and attributes such as 101

mean radius of attractiveness, mosquito sex, and resource type of the current mosquito 102

node. For instance, an ovitrap will be most likely to attract nearby female mosquitoes 103

that are currently in a node with a food resource and hence may soon seek an 104

egg-laying site. Of note, specific traps can be flagged as “immovable,” so the positions 105

of other traps may be optimized given the fixed trap locations. The trap 106

attractiveness profiles are used to modify the movement probabilities of the movement 107

matrix, and it is this modified matrix that is used by the optimization algorithm to 108

optimize trap placement. A demonstration of landscape specification on a six-node 109

metapopulation with resource types is provided in Fig 2. 110
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Fig 2. Demonstration of landscape specification in MGSurvE. (A) A
metapopulation consisting of six mosquito population nodes is depicted on the left,
with a corresponding movement matrix depicted on the right (shades represent daily
per-capita movement probabilities, with lighter shades representing less movement,
and darker shades representing more movement). Here, movement probabilities
depend only on distance, and are derived from a zero-inflated exponential dispersal
kernel with a staying probability of 0.75 and a mean dispersal distance, conditional
upon movement, of 1. (B) The same metapopulation is depicted with resources
attributed to nodes on the left (circles represent blood-feeding sites, and triangles
represent water/egg-laying sites). The corresponding movement matrix is depicted on
the right. A masking matrix is used to modify movement probabilities according to
the resource type of the mosquito’s current node (e.g., to account for the fact that a
recently blood-fed mosquito is more likely to seek a node with water for egg-laying,
etc.). (C) Two traps with mean radii attractiveness of 1 (red) and 0.5 (green), and
mean amplitudes of 0.5 and 0.3, respectively, are incorporated into the metapopulation
with resources attributed, depicted on the left. The coordinates and attractiveness
profiles of the traps are used to modify the movement matrix, depicted on the right.
Here, τ represents the trap-modified version of the movement matrix from panel B, ν
represents the attractiveness of the traps to mosquitoes in the metapopulation nodes,
I represents the identity matrix, and 0 represents a matrix of zeros. The structure of
the additional rows and columns reflects the fact that traps are absorbing.
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Optimization of trap distribution MGSurvE makes use of a genetic algorithm 111

(GA) to optimize trap placement, using the DEAP framework (Distributed 112

Evolutionary Algorithms in Python) [22], by default. GAs are a subset of evolutionary 113

algorithms that search solution space, encoded by “chromosomes,” using 114

biologically-inspired operators such as mutation, crossover and selection [23]. In the 115

case of MGSurvE, chromosomes consist of a list of alleles, each of which contains 116

information pertaining to a trap. MGSurvE considers two classes of optimization 117

problems: i) “discrete optimization,” in which traps may only be placed within the set 118

of currently-listed population nodes, and ii) “continuous optimization,” in which traps 119

may be placed anywhere in the landscape. Discrete optimization may be appropriate 120

for applications on a larger spatial scale - e.g., for cases where population nodes are 121

villages and traps may only be placed within villages. Continuous optimization may 122

be appropriate for applications on a finer scale - e.g., where nodes represent specific 123

resources (blood, sugar or water sources), and traps are placed relative to these. For 124

discrete optimization, the chromosomes of the GA consist of a list of trap IDs 125

(identification numbers), while for continuous optimization, the chromosomes consist 126

of a list of coordinates representing trap longitude and latitude. 127

In each iteration of the optimization, the GA applies mutation and crossover 128

operations and selects the fittest chromosomes, as defined by the “fitness function,” for 129

the next iteration. MGSurvE provides the following extensions to the base GA 130

algorithms of the DEAP framework [22], from which the user may select: 131

• Mutation: Extensions are provided to the Gaussian floating-point mutation 132

operator for the continuous-optimization case, and a replacement mutation 133

operator for the discrete optimization case. 134

• Crossover: An extension is provided to the “blend” crossover operator of the 135

base package. A “uniform” crossover operator is provided for both continuous 136

and discrete optimization cases. 137

• Selection: A default fitness function is provided that calculates the maximum 138

or average expected time for a given mosquito to reach a trap over all possible 139

origin sites on the landscape. Optimization may consider the female-only, 140

male-only or female-and-male case. In the female-and-male case, separate female 141

and male movement matrices are constructed, modified to include sex-specific 142

trap attractiveness profiles, parallel optimization takes place, and preferential 143

capture of one sex over the other may be weighted within the fitness function. 144

Other mutation and crossover operators [24,25] may be used instead of the ones 145

provided by either DEAP [22] or MGSurvE, as long as they adhere to the structural 146

requirements of both frameworks. 147

Analysis and visualization of results MGSurvE provides a number of functions 148

to analyze and visualize results from the trap placement optimization procedure. 149

Landscape and optimization reports are generated and exported to disk for 150

performance checks and further analysis. Optimal trap placement can be plotted 151

alongside the distribution of mosquito population nodes, with examples provided in 152

the following use case section and Figs 2-4. MGSurvE’s plots are fully compatible with 153

matplotlib [26], and the movement matrices generated can be exported to disk and 154

mosquito spatial simulation frameworks such as MGDrivE [16], MGDrivE 2 [21] and 155

MBITES [21] 156
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Results 157

To demonstrate how the MGSurvE framework can be used to distribute traps on a 158

landscape in order to minimize time to detection of an allele of interest, we compute 159

and visualize optimal trap placement for two example species and landscapes: i) an 160

Ae. aegypti population in the suburban landscape of Yorkeys Knob in Queensland, 161

Australia, and ii) an An. coluzzii population on the island of São Tomé, São Tomé and 162

Príncipe. Code for these examples is available at the MGSurvE repository 163

(https://github.com/Chipdelmal/MGSurvE). 164

Discrete and continuous optimization on a suburban landscape 165

(Ae. aegypti in Queensland, Australia) 166

Here, we demonstrate the application of MGSurvE to distribute traps in order to 167

minimize time to detection of an allele of interest for Ae. aegypti populations in the 168

suburb of Yorkeys Knob 17 km northwest of Cairns, Queensland, Australia. Yorkeys 169

Knob was a trial site for a successful release of Wolbachia-infected mosquitoes in 170

2011 [27] (Fig 3B). Ae. aegypti is a relatively local disperser [28], and so households 171

serve as an appropriate population node for the landscape. Resource types do not 172

need to be specified, as a household provides all the feeding and breeding resources 173

required by Ae. aegypti. Household coordinates in Yorkeys Knob were sourced from 174

OpenStreetMap (https://www.openstreetmap.org/), and daily movement probabilities 175

between households were derived from a zero-inflated exponential kernel with a daily 176

staying probability of 72% [19,29], and a mean dispersal distance conditional upon 177

movement of 54 m [28]. 178

In optimizing trap placement, we consider two types of traps with distinct 179

attractiveness profiles represented by: i) an exponential kernel with a mean radius of 180

attractiveness of 16 m [30], and ii) a sigmoidal kernel with an inflection radius of 16 m 181

and shape parameter of 0.25 (Fig 3A). Both traps have an amplitude of 0.5, meaning 182

that, for a trap placed within a population node, the ratio of mosquitoes that enter 183

the trap to those that do not per time-step is 0.5:1 (i.e., in this case, a third of 184

mosquitoes in the same node as the trap enter the trap per day). In Yorkeys Knob, 16 185

traps were assigned, to reflect the number of traps used to monitor the Wolbachia trial 186

at this site [27]. Half were assigned the exponential kernel, and half were assigned the 187

sigmoidal kernel, to demonstrate the simultaneous placement of two trap types. We 188

considered both discrete and continuous optimization cases to compare their results, 189

although using the discrete case is preferred due to the fact that traps would likely be 190

assigned to households without a more precise location being specified. The placement 191

of each trap was then optimized according to two fitness functions - minimizing the 192

mean and maximum expected times for a given mosquito to be trapped, considering 193

all possible origin sites on the landscape. The GA implemented default mutation and 194

crossover operators. The code for this analysis is available in the S2 Text and at 195

https://github.com/Chipdelmal/MGSurvE/tree/main/MGSurvE/demos/YKN, and 196

the resulting trap distributions are depicted in Fig 3B1-B2 (for the case of the mean 197

expected time for a mosquito to be trapped) and Fig 3B3 (for the case of maximum 198

expected time for a mosquito to be trapped). From this output, we see that the GA 199

distributes traps throughout the landscape, often placing them within concentrations 200

of nodes, and sometimes in regions where sub-networks connect to the main section of 201

the landscape, all of which are consistent with faster trapping times. 202
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Fig 3. Example optimal trap placement on a suburban landscape (Ae.
aegypti in Queensland, Australia). Household-based mosquito population nodes
are depicted for Yorkeys Knob (B), a suburb 17 km northwest of Cairns in
Queensland, Australia. Daily movement probabilities between households are derived
from a zero-inflated exponential kernel with a daily staying probability of 72% [19,29],
and a mean dispersal distance conditional upon movement of 54 m [28]. The genetic
algorithm of MGSurvE distributes traps such that the mean (B1-2) and maximum
(B3) expected times for a given mosquito to be trapped, considering all possible origin
sites on the landscape, is minimized (C). (A) We consider two types of traps with
distinct attractiveness profiles represented by: i) an exponential kernel (green) with an
amplitude of 0.5 and a mean radius of attractiveness of 15.88 m, and ii) a sigmoidal
kernel (magenta) with an amplitude of 0.5, an inflection radius of 16 m and a shape
parameter of 0.25. See S1 Video, S2 Video and S3 Video for animations of the
iterations of the optimization process (also viewable at
https://youtube.com/playlist?list=PLRzY6w7pvIWpVx-Zh9x9IoeMwlfFMH8yo)

.

Discrete optimization on an island landscape (An. coluzzii in 203

São Tomé, São Tomé and Príncipe) 204

In the second example, we use MGSurvE to distribute traps in order to minimize time 205

to detection of an allele of interest for An. coluzzii populations on the island of São 206

Tomé, São Tomé and Príncipe. São Tomé has been identified as a suitable candidate 207

for field trials of gene drive mosquitoes due to the presence of a single dominant 208

malaria vector species (An. coluzzii), relative isolation from mainland Africa, and a 209

history of ecological studies of mosquitoes on the island [31] (Fig 4B). An. coluzzii can 210

disperse relatively large distances [28], and so villages and suburbs of comparable size 211

serve as appropriate population nodes. Due to the scale of these localities, resource 212
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types do not need to be specified. Locality coordinates in São Tomé were sourced by 213

aligning locations in the São Tomé and Príncipe census 214

(https://projectsportal.afdb.org/dataportal/VProject/show/P-ST-KF0-001) with 215

locations in Google Maps (https://www.google.com/maps), and the DBSCAN 216

algorithm (Density-Based Spatial Clustering of Applications with Noise) [32] was used 217

to aggregate nearby localities in order to maintain a minimum distance of 500 m 218

between nodes. Daily movement probabilities between localities were derived using an 219

ecology-motivated algorithm in which mosquito movement is simulated as correlated 220

random walks through a resistance landscape, with resistance being provided by 221

elevation and land use [33]. Data from mark-release-recapture experiments on An. 222

gambiae sensu lato [20,30,34] were used to calibrate the movement model according to 223

a daily staying probability of 0.05 and mean lifetime dispersal distance of 7.0 km. 224

In optimizing trap placement, this time we consider a variable number (5-20) of a 225

single type of trap with an attractiveness profile represented by an exponential kernel 226

with a mean radius of attractiveness of 24 m [30] and an amplitude of 0.5 (Fig 4A). 227

We used discrete optimization due to the spatial scale, at which traps are most likely 228

to be placed within localities. The placement of each trap was optimized according to 229

a fitness function corresponding to minimizing the mean expected time for a given 230

mosquito to be trapped, considering all possible origins on the landscape. The GA 231

again implemented default mutation and crossover operators. The code for this 232

analysis is available in the S2 Text and at 233

https://github.com/Chipdelmal/MGSurvE/tree/main/MGSurvE/demos/STP, and 234

the resulting trap distribution is depicted in Fig 4B1-B4 for the cases of 5, 10, 15 and 235

20 traps, respectively. From this output, we see that the GA distributes traps 236

throughout the landscape while emphasizing its least accessible regions (west and 237

south) - a result of the fitness function representing the maximum time to detection 238

beginning anywhere on the landscape, and hence prioritizing the least connected 239

nodes. 240

Availability and Future Directions 241

MGSurvE is installable through PyPI and is available at 242

https://pypi.org/project/MGSurvE/. The software has been tested to work on Python 243

3.9 and above and the source code is under the GPL3 License and free for other groups 244

to use and extend as needed. Mathematical details of the model formulation are 245

available in the S1 Text, and documentation for all MGSurvE functions are available 246

at the project’s website at https://chipdelmal.github.io/MGSurvE/. For examples of 247

how to set up scripts, including several use case demonstrations, we encourage readers 248

to visit https://chipdelmal.github.io/MGSurvE/build/html/demos.html. 249

Visualizations of several use case examples are also available on our YouTube playlist 250

at https://youtube.com/playlist?list=PLRzY6w7pvIWrOSwOlu_MXbOr14wx9xuwT. 251

We are continuing to develop the MGSurvE software package and welcome 252

suggestions and requests from the research community regarding future directions. 253

Current developments include: i) incorporating additional trap attractiveness kernels, 254

and calibrating these to available ecological data, ii) incorporating new fitness 255

functions to capture a wider range of priorities for trap placement, and iii) including 256

optimization algorithms additional to GAs, such as particle swarm optimization [36], 257

which may have reduced risk of becoming stuck in local optima. We are also validating 258

optima obtained through MGSurvE by running parallel simulations in MGDrivE [16] 259

or MGDrivE 2 [17] to determine the expected distribution of times to detection of an 260

allele of interest. Notably, MGSurvE calculates time to detection purely from an adult 261

movement matrix, ignoring mosquito life history and intergenerational movement. We 262
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Fig 4. Example optimal tap placement on an island landscape (An. coluzzii
in São Tomé, São Tomé and Príncipe). Mosquito population nodes are depicted
for São Tomé (B), an island 225 km west of the coast of Gabon. Population nodes
represent villages and suburbs of comparable size, aggregated by a clustering
algorithm [32] to maintain a minimum distance of 500 m between nodes. Daily
movement probabilities between localities are derived using an ecology-motivated
algorithm in which mosquito movement is simulated as correlated random walks
through a resistance landscape calibrated to a daily staying probability of 0.05 and
mean lifetime dispersal distance of 7.0 km [20,34,35]. The genetic algorithm of
MGSurvE distributes traps such that the mean expected time for a given mosquito to
be trapped, considering all possible origin sites on the landscape, is minimized (C). We
consider optimally placing 5 (B1), 10 (B2), 15 (B3) and 20 (B4) traps on the
landscape, each having an exponential kernel with a mean radius of attractiveness of
24 m [30] and an amplitude of 0.5 (E). See S4 Video for an animation of the iterations
of the optimization process (also viewable at https://youtu.be/7Dg8DPtzqmw).

expect this to provide a sufficiently accurate metric from which to compare relative 263

times to detection; however, simulations incorporating life history will allow the 264

limitations of this approach to be explored, and for detection times to be corrected in 265

the context of sessile juvenile forms. 266

We have proposed MGSurvE to optimize trap placement in order to minimize the 267

time to detection of gene drive and alternative alleles, and insecticide-resistant alleles 268

in spatially-explicit mosquito populations. While MGSurvE was designed with 269

mosquito species in mind, optimal trap distribution is a broad ecological problem, 270

particularly for invasive species management [14,15]. In cases where minimizing time 271

to detection is the goal for optimizing trap placement, we believe that formulating the 272

problem as an absorbing Markov chain, where traps represent the absorbing states, 273

could be widely applicable for many other species. 274
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mathematical equations that govern mosquito movement and trap attractiveness 290

implemented as an absorbing Markov chain. 291

S2 Text. Example use cases in suburban and island landscapes. Code used 292

to optimize trap placement for Ae. aegypti in Queensland, Australia and An. coluzzii 293

in São Tomé, São Tomé and Príncipe, as described in the manuscript. 294

S1 Video. Iterations of discrete optimization algorithm on suburban 295

landscape (minimizing mean detection time). Video depicting iterations of 296

genetic algorithm to optimize trap placement for Ae. aegypti in Queensland, Australia 297

(https://youtu.be/LWOph4feL6A). 298

S2 Video. Iterations of continuous optimization algorithm on suburban 299

landscape (minimizing mean detection time). Video depicting iterations of 300

genetic algorithm to optimize trap placement for Ae. aegypti in Queensland, Australia 301

(https://youtu.be/CFRuDPlfyO4). 302

S3 Video. Iterations of discrete optimization algorithm on suburban 303

landscape (minimizing maximum detection time). Video depicting iterations of 304

genetic algorithm to optimize trap placement for Ae. aegypti in Queensland, Australia 305

(https://youtu.be/uQX_dt9gCWA). 306

S4 Video. Iterations of discrete optimization algorithm on island 307

landscape (minimizing mean detection time). Video depicting interactions of 308

genetic algorithm to optimize trap placement for An. coluzzii in São Tomé, São Tomé 309

and Príncipe (https://youtu.be/7Dg8DPtzqmw). 310
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