




Fig 4. Example optimal tap placement on an island landscape (���M�X �+�Q�H�m�x�x�B�B
in São Tomé, São Tomé and Príncipe). Mosquito population nodes are depicted
for São Tomé (B), an island 225 km west of the coast of Gabon. Population nodes
represent villages and suburbs of comparable size, aggregated by a clustering
algorithm [32] to maintain a minimum distance of 500 m between nodes. Daily
movement probabilities between localities are derived using an ecology-motivated
algorithm in which mosquito movement is simulated as correlated random walks
through a resistance landscape calibrated to a daily staying probability of 0.05 and
mean lifetime dispersal distance of 7.0 km [20,34,35]. The genetic algorithm of
MGSurvE distributes traps such that the mean expected time for a given mosquito to
be trapped, considering all possible origin sites on the landscape, is minimized (C). We
consider optimally placing 5 (B1), 10 (B2), 15 (B3) and 20 (B4) traps on the
landscape, each having an exponential kernel with a mean radius of attractiveness of
24 m [30] and an amplitude of 0.5 (E). See S4 Video for an animation of the iterations
of the optimization process (also viewable at https://youtu.be/7Dg8DPtzqmw).

expect this to provide a sufficiently accurate metric from which to compare relative 263

times to detection; however, simulations incorporating life history will allow the 264

limitations of this approach to be explored, and for detection times to be corrected in 265

the context of sessile juvenile forms. 266

We have proposed MGSurvE to optimize trap placement in order to minimize the 267

time to detection of gene drive and alternative alleles, and insecticide-resistant alleles 268

in spatially-explicit mosquito populations. While MGSurvE was designed with 269

mosquito species in mind, optimal trap distribution is a broad ecological problem, 270

particularly for invasive species management [14,15]. In cases where minimizing time 271

to detection is the goal for optimizing trap placement, we believe that formulating the 272

problem as an absorbing Markov chain, where traps represent the absorbing states, 273

could be widely applicable for many other species. 274
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Supporting Information 288

S1 Text. Description of the modeling framework. A description of the 289

mathematical equations that govern mosquito movement and trap attractiveness 290

implemented as an absorbing Markov chain. 291

S2 Text. Example use cases in suburban and island landscapes. Code used 292

to optimize trap placement for Ae. aegypti in Queensland, Australia and An. coluzzii 293

in São Tomé, São Tomé and Príncipe, as described in the manuscript. 294

S1 Video. Iterations of discrete optimization algorithm on suburban 295

landscape (minimizing mean detection time). Video depicting iterations of 296

genetic algorithm to optimize trap placement for Ae. aegypti in Queensland, Australia 297

(https://youtu.be/LWOph4feL6A). 298

S2 Video. Iterations of continuous optimization algorithm on suburban 299

landscape (minimizing mean detection time). Video depicting iterations of 300

genetic algorithm to optimize trap placement for Ae. aegypti in Queensland, Australia 301

(https://youtu.be/CFRuDPlfyO4). 302

S3 Video. Iterations of discrete optimization algorithm on suburban 303

landscape (minimizing maximum detection time). Video depicting iterations of 304

genetic algorithm to optimize trap placement for Ae. aegypti in Queensland, Australia 305

(https://youtu.be/uQX_dt9gCWA). 306

S4 Video. Iterations of discrete optimization algorithm on island 307

landscape (minimizing mean detection time). Video depicting interactions of 308

genetic algorithm to optimize trap placement for An. coluzzii in São Tomé, São Tomé 309

and Príncipe (https://youtu.be/7Dg8DPtzqmw). 310
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