New Results
Optimizer’s dilemma: optimization strongly influences model selection in transcriptomic prediction
View ORCID ProfileJake Crawford, View ORCID ProfileMaria Chikina, View ORCID ProfileCasey S. Greene
doi: https://doi.org/10.1101/2023.06.26.546586
Jake Crawford
1Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Maria Chikina
2Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
Casey S. Greene
3Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
4Center for Health AI, University of Colorado School of Medicine, Aurora, CO, USA
Article usage
Posted June 26, 2023.
Optimizer’s dilemma: optimization strongly influences model selection in transcriptomic prediction
Jake Crawford, Maria Chikina, Casey S. Greene
bioRxiv 2023.06.26.546586; doi: https://doi.org/10.1101/2023.06.26.546586
Subject Area
Subject Areas
- Biochemistry (12779)
- Bioengineering (9663)
- Bioinformatics (31224)
- Biophysics (16084)
- Cancer Biology (13163)
- Cell Biology (18831)
- Clinical Trials (138)
- Developmental Biology (10196)
- Ecology (15177)
- Epidemiology (2067)
- Evolutionary Biology (19383)
- Genetics (12871)
- Genomics (17764)
- Immunology (12892)
- Microbiology (30175)
- Molecular Biology (12594)
- Neuroscience (65838)
- Paleontology (486)
- Pathology (2038)
- Pharmacology and Toxicology (3514)
- Physiology (5442)
- Plant Biology (11277)
- Synthetic Biology (3116)
- Systems Biology (7762)
- Zoology (1756)