Abstract
Microbiology and synthetic biology depend on reverse genetic approaches to manipulate bacterial genomes; however, existing methods require molecular biology to generate genomic homology, suffer from low efficiency, and are not easily scaled to high throughput applications. To overcome these limitations, we developed a system for creating kilobase-scale genomic modifications that uses DNA oligonucleotides to direct the integration of a non-replicating plasmid. This method, Oligonucleotide Recombineering followed by Bxb-1 Integrase Targeting (ORBIT) was pioneered in Mycobacteria, and here we adapt and expand it for E. coli. Our redesigned plasmid toolkit achieved nearly 1000x higher efficiency than λ Red recombination and enabled precise, stable knockouts (<134 kb) and integrations (<11 kb) of various sizes. Additionally, we constructed multi-mutants (double and triple) in a single transformation, using orthogonal attachment sites. At high throughput, we used pools of targeting oligonucleotides to knock out nearly all known transcription factor and small RNA genes, yielding accurate, genome-wide, single mutant libraries. By counting genomic barcodes, we also show ORBIT libraries can scale to thousands of unique members (>30k). This work demonstrates that ORBIT for E. coli is a flexible reverse genetic system that facilitates rapid construction of complex strains and readily scales to create sophisticated mutant libraries.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
Minor typos, supplemental files, SRA identifiers, and Addgene identifiers.