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ABSTRACT

Humans are uniquely capable social learners. Our capacity to learn from others across short and long timescales is a driving
force behind the success of our species. Yet there are seemingly maladaptive patterns of human social learning, characterized
by both overreliance and underreliance on social information. Recent advances in animal research have incorporated rich
visual and spatial dynamics to study social learning in ecological contexts, showing how simple mechanisms can give rise
to intelligent group dynamics. However, similar techniques have yet to be translated into human research, which additionally
requires integrating the sophistication of human individual and social learning mechanisms. Thus, it is still largely unknown how
humans dynamically adapt social learning strategies to different environments and how group dynamics emerge under realistic
conditions. Here, we use a collective foraging experiment in an immersive Minecraft environment to provide unique insights into
how visual-spatial interactions give rise to adaptive, specialized, and selective social learning. Our analyses show how groups
adapt to the demands of the environment through specialization of learning strategies rather than homogeneity and through the
adaptive deployment of selective imitation rather than indiscriminate copying. We test these mechanisms using computational
modeling, providing a deeper understanding of the cognitive mechanisms that dynamically influence social decision-making in
ecological contexts. All results are compared against an asocial baseline, allowing us to specify specialization and selective
attention as uniquely social phenomena, which provide the adaptive foundations of human social learning.

Humans have a unique capacity for social learning that
differentiates us from other animals1, 2. We are remarkably
flexible in how we learn from others3–5, dynamically integrate
personal and social information6, 7, and selectively favor social
learning when our own capabilities seem lacking8, 9. Yet there
are seemingly maladaptive patterns of human social learn-
ing, characterized by overreliance on uninformed individuals,
leading to information cascades and herding behavior10, 11,
but also underreliance and inefficient use of beneficial social
information12. Recent advances in animal research have in-
corporated rich behavioral data from visual field analysis13,
spatial trajectories14, and network dynamics15 to show how
simple (and sometimes seemingly maladaptive) social learn-
ing mechanisms can give rise to intelligent behavior in dy-
namic and ecological environments. Yet similar approaches
have yet to be translated into human research, which addition-
ally requires incorporating the complexities of human learning
mechanisms (e.g., strategic exploration16 and model-based
social learning17, 18). Thus, a better understanding of human
social learning in dynamic and ecological contexts can reveal
the extent of our adaptivity and the specific mechanisms that
give rise to group dynamics.

Here, we use an immersive collective foraging task (Fig. 1a-
d) to study how people dynamically adapt their social learn-
ing strategies to different resource distributions (random vs.
smooth; Fig. 1e). The virtual environment imposes a limited
field of view, creating a natural trade-off between allocating
visual attention towards individual search or towards peers
for social imitation. We used a novel method for automating
the transcription of visual field data (Fig. 1c; see Methods)
in order to identify which participants and which elements of
the environment were visible at any point in time. Combining
visual field analysis with high-resolution spatial trajectories,
we show how people dynamically adapt their social learn-
ing strategies to both the environments and individual perfor-
mance, specialize their learning strategies within groups, and
selectively direct social learning towards successful individ-
uals (Fig. 2). Our behavioral analyses capture both the dy-
namics and structure of social interactions (Fig. 3), where we
directly tested different learning mechanisms using computa-
tional models predicting sequential foraging decisions (Fig. 4).
All results are compared to an asocial baseline, allowing us to
specify our findings as uniquely social phenomena.
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Figure 1. Collective foraging task implemented in the Minecraft game engine. (a) Participants foraged for hidden
rewards in a field with 20x20 resource blocks. Each round took 120 seconds, with players starting from random locations
(crosses) and gaze directions (arrows). (b) Screenshot from a player’s perspective. Rewards (blue splash) are visible to other
players, providing relevant social information for predicting nearby rewards in smooth—but not random—environments (Panel
e). (c) Automated transcription of each player’s field of view (FOV) used in visibility and model-based analyses (see Methods).
(d) Participants learned about the task in an interactive tutorial (Supplementary Video 1) before completing two practice rounds.
The main experiment consisted of 16 rounds (counterbalanced order), manipulated across condition (solo vs. group) and reward
structure (random vs. smooth) with four consecutive rounds of the same type (Supplementary Videos 2-4). (e) Random
environments had uniformly sampled rewards, smooth environments had spatially clustered rewards. Each black pixel indicates
a reward from a representative sample, with both environments having the same base rate pprewardq “ .25. The mapping to
pumpkins and watermelons were counterbalanced between sessions. (f) Agent-based simulations (see Methods) show a benefit
for success-biased social learning over asocial learning in smooth, but not random environments, whereas unbiased social
learning performs poorly in both.

Results
Participants (n“ 128) foraged for hidden rewards either alone
or in groups of four, where we manipulated the resource dis-
tribution (random vs. smooth) to modify the value of social
learning (Fig. 1e). Smooth environments had clustered re-
wards, making social observations of successful individuals
(visible as a blue splash; Fig. 1b) predictive of other rewards
nearby. In contrast, unpredictable rewards in random environ-
ments offered no benefits for social learning. Agent-based
simulations (see Methods) demonstrate this intuition, with un-
biased social learners performing poorly due to maladaptive
herding, whereas selective, success-biased social learners per-
formed better than purely asocial learners in smooth but not
random environments (Fig. 1f). Thus, peers can be valuable
sources of social information (in smooth environments) but
also competitors for the same limited resources3, 19 (Fig. S1-
S2), creating similar real-world dynamics as developing mar-
ketplace innovations or engaging in scientific research20.

We start with behavioral analyses examining the temporal

dynamics (Fig. 2a-c) and network structure (Fig. 2d-f) of
social interactions, followed by detecting social influence
events (“pulls”) from spatial trajectories to describe leader-
follower dynamics (Fig. 3). Finally, we use computational
models predicting sequential foraging decisions to directly test
for different combinations of individual and social learning
mechanisms (Fig. 4), incorporating the rich spatial and visual
dynamics of the task.

Temporal dynamics
To analyze the dynamics of visual-spatial interactions, we
leveraged the high-temporal resolution of reward, spatial prox-
imity, and visibility data (both seeing others and being seen)
to search for temporally predictive clusters (Fig. 2a-c; see
Methods). More precisely, we computed correlations between
time-series at different temporal offsets (with multiple forms
of chance correction), where significant clusters (bold lines)
at negative offsets indicate that reward predicts future prox-
imity/visibility and clusters at positive offsets indicate that
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Figure 2. Behavioral results. (a-c) Temporal dynamics of reward rate and proximity/visibility in group rounds (see Fig. S3
for comparison to solo rounds; see Methods for details). Bold lines indicate significant clusters that survived a permutation
analysis. Effects with offset t ă 0 indicate that reward predicts future proximity/visibility, while effects at t ą 0 indicate that
proximity/visibility predicts future rewards. (d) Examples of proximity and visibility networks. (e) Average reward as a
function of Eigenvector centrality computed on the proximity network. Each dot represents one participant; lines and ribbons
show the fixed effect of a hierarchical Bayesian regression (reported above; group rounds in bold). Reliable effects (not
overlapping with zero) are underlined. f) Correspondence between in- and out-degree of the visibility network. Each dot
represents one participant; the regression line is the fixed effect of a hierarchical Bayesian regression (Fig. S4).

proximity/visibility predicts future rewards.

First, the dynamics of reward (i.e., foraging success) and
spatial proximity (to other players) revealed a unique pattern
of performance-adaptive spatial cycling in smooth (but not
random) environments (Fig. 2a). The negative correlation
at offset -20s to -9s (bold line) indicates that poor rewards
predicted increased future proximity, whereas high rewards
predicted increased social distance. Subsequently, this creates
a cyclical pattern, where the positive correlation at offset 2s to
19s indicates that high spatial proximity predicts high future
rewards. Crucially, this pattern is distinct from solo rounds
(unimodal positive correlations centered at 0s; see Fig. S3),
where we computed the same analysis “as-if” participants
were on the same field, allowing us to rule out the role of the
environment. Thus, participants closed their social distance
when unsuccessful, which then translated into higher future
rewards. In turn, higher reward rate predicted reduced prox-
imity, creating a cyclical pattern that was absent in random
environments.

Next, we looked at the dynamics of reward and visual field
data, where we analyzed the number of visible peers (out-
bound social attention towards others; Fig. 2b) and the num-
ber of observers (inbound social attention; Fig. 2c) at every
timepoint. Starting with outbound visibility of peers (Fig. 2b),

we found evidence for adaptive social attention. Focusing on
smooth environments, a negative correlation at offset -2.3s to
-1.3s indicates that low reward predicted seeing more peers
in the immediate future, while high rewards predicted less
visual attention towards others. This indicates adaptive so-
cial learning, where poor individual outcomes promote the
acquisition of social information. This effect is reversed in
the asocial baseline (Fig. S3), providing evidence that it is a
distinctly social phenomenon. We also found several negative
correlation clusters at positive offsets for both environments,
indicating that the opportunity costs for social information
acquisition led to lower future rewards. These opportunity
cost clusters were different but also present in solo rounds
(Fig. S3), suggesting some generic influence of the task struc-
ture (i.e., reduced visibility when destroying a block).

Lastly, the dynamics of reward and inbound visibility (num-
ber of observers) indicate success-biased selectivity, where
participants who were the target of social attention acquired
higher rewards, both in the past and long into the future
(Fig. 2c). In smooth environments, the positive correlation at
offset -2.2s to -1.0s indicates that higher rewards predicted
more future observers within a short time period, which was
absent in random environments and inverted in the asocial
baseline (Fig. S3). The strong dip around offset = 0s is due
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to the visual dynamics of the task, since the splash anima-
tion temporarily obscured the avatar when acquiring a reward.
However, more notably, we observed two clusters with pos-
itive correlations in smooth environments (1.0s to 3.0s and
3.7s to 13.6s), which were absent in random environments
and inverted in the asocial baseline. Thus, participants were
not only selective in copying individuals who had been suc-
cessful in the past, they were also able to identify who would
be successful in the future (due to the clustered rewards in
smooth environments).

Proximity and visibility networks
We used social network analyses to examine the structure
of spatial and visual interactions (Fig. 2d). In proximity net-
works each node is a participant and the undirected edges
are weighted by the average proximity (i.e., inverse distance)
between players in each round. Visibility networks were con-
structed similarly, but with directed edges weighted propor-
tional to the duration of time that each target player was visible
to another player. The same analyses were also applied to
solo rounds “as-if” participants had been on the same field.

We first used the proximity network to compute the Eigen-
vector centrality for each participant. Higher centrality cor-
responds to participants occupying and maintaining close
proximity to others, who in turn are also proximal to oth-
ers. Whereas centrality tended to correspond to low rewards
in random environments (hierarchical Bayesian regression;
group: -7.6 [-16.6,0.6]; solo: -7.6 [-16.1,0.8]; all slopes over-
lap with 0), we found a robust inversion in smooth environ-
ments, where centrality predicted higher rewards in smooth
environments in group rounds (7.9 [1.6,14.0]; Fig. 2e). This
effect disappeared in the asocial baseline (2.6 [-5.6,10.1]),
providing evidence that the benefits of spatial centrality were
due to social dynamics, since being central afforded more
opportunities to imitate others.

Furthermore, we examined the relationship between out-
and in-degree in the visibility network. Out-degree is the
sum of all outbound edge weights, with more visible peers
and longer visibility durations both contributing to larger out-
degrees. Similarly, higher in-degree corresponds to more
observers with longer durations. This analysis revealed an
asymmetry in social attention, with a general inverse rela-
tionship between in- and out-degree (Fig. 2f). Whereas this
asymmetry was also present in random and solo rounds, it was
markedly stronger when combining group rounds and smooth
environments (-0.6 [-0.8,-0.4]). This suggests an increased
specialization of social learning strategies and asymmetry
of social attention in settings where social information was
useful (see also Fig. 4d).

Social influence and leadership
We also found behavioral evidence for changes in social influ-
ence based on the frequency of “pull” events (see Methods),
characterized by leader-follower dynamics. Inspired by meth-
ods used to study collective decision-making in baboons21,
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Figure 3. Social influence. (a) Example of a pull event,
selected from min-max-min sequences in dyadic distance and
filtered by a number of criteria (see Methods). The
trajectories at the bottom are labeled with the three time
points that define a pull, and show the state of the
environment at time t3. Note that t2 for the leader largely
overlaps with t3. (b) The average number of pull events per
round (˘95% CI). We performed the same analysis on solo
rounds “as-if” participants were on the same field to provide
an asocial baseline. (c) While leadership (nleader´nfollower)
did not predict performance, (d) leaders had higher
instantaneous rewards during pull events.

each candidate event was selected from min-max-min se-
quences in the pairwise distance between players (Fig. 3a) and
then filtered by a number of criteria including strength (change
in distance relative to absolute distance) and disparity (one
player moves more than the other). After filtering, we detected
a total of 537 pull events (see Fig. 3a for an example), where
in each event, one player is identified as a leader (moved more
during rt1, t2s) and the other as a follower (moved more during
rt2, t3s).

We analyzed both solo and group rounds, with solo rounds
providing a benchmark for the sensitivity of these analyses by
accounting for the influence of the reward structure (Fig. 3b).
While random environments saw a reduction in pull events
from solo to group rounds (hierarchical Poisson regression:
-0.7 [-1.2, -0.1]), smooth environments saw a large increase in
pull events from solo to group rounds (1.4 [0.8, 2.0]). These
results were robust to different filter thresholds (Fig. S5) and
suggest participants adapted their susceptibility to social influ-
ence depending on the relevance of social learning: following
others when adaptive (smooth environments), and actively
avoiding others when maladaptive (random environments).

Next, we computed a leadership index for each participant
based on their frequency of being a leader vs. a follower:
nleader´nfollower, using only group rounds for interpretability.
Participants with a high leadership index were observed more
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(i.e., higher in-degree) and observed others less (i.e., lower
out-degree), indicating a high correspondence between our
analysis of these non-overlapping aspects of the data (i.e.,
visual field data vs. spatial trajectories; see Fig. S6). Yet nei-
ther leadership (Fig. 3c) nor in/out-degree predicted rewards
(Fig. S7). However, when we focused on the instantaneous
reward rate during a pull event (Fig. 3d), we found that lead-
ers received more rewards than did followers (0.6 [0.3,0.9]).
Thus, social influence appears to be modulated by success
bias. However, we found no long-term benefits of different
social learning strategies or leadership.

In sum, social learning was highly adaptive (to the environ-
ment and depending on individual performance), specialized
(asymmetry of social attention), and selective (directed to-
wards successful individuals and with low out-degree). How-
ever, different phenotypes of social learning (in/out-degree
and leadership index) did not predict overall performance
(Fig. 3c; Fig. S7). Only spatial centrality predicted higher
rewards (Fig. 2h; Fig. S7f), possibly because close proximity
provides more opportunities for adaptive social information
use. We next turn to computational models and whether these
mechanisms of social proximity and selectivity of social learn-
ing predict individual foraging decisions.

Computational modeling of choices
With a computational modeling framework (Fig. 4a), we se-
quentially predicted each block participants destroy:

PpChoicek`1q9exppfk ¨wq (1)

Predictions are modeled as a softmax distribution over a linear
combination of block features f and weights w, where we
use the state of the world when the k-th block is destroyed in
order to predict the k`1-th block. Block features f capture
hypotheses about individual and social learning mechanisms
(see below), while weights w are estimated using hierarchi-
cal Bayesian methods, controlling for individual and group
variability as random effects (see Methods).

We used a set of asocial features to capture physical con-
straints of the task and individual learning through reward
generalization (Fig. 4a). BlockVis captures which blocks are
within the player’s field of view at time k, and is set to 1 if visi-
ble and 0 if not (see Methods). Locality is the inverse distance
to the player at time k, reflecting a tendency to forage locally.
GP pred uses Gaussian process regression as a psychological
model of asocial reward generalization, which has been shown
to successfully predict human search behavior in a variety of
tasks with structured rewards16, 23, 24. Here, we modified the
model for binary rewards, where based on the player’s reward
history (until time k), we predicted the probability of each
remaining block containing a reward as a logistic sigmoid of
a latent variable z, with higher values corresponding to higher
probability of reward (see Methods).

Additionally, our winning “success-biased” model uses two
social features to capture social influence, differentiated by
observations of success. Successful proximity is computed

using players who were visible and were observed acquiring a
reward (i.e., visible splash) in the span of k´1 to k. We used
the last observed location of each player to compute proximity
(inverse distance), using the centroid if there were multiple
successful players. Unsuccessful proximity is calculated the
same way, but for visible players who were not observed
acquiring a reward.

Model comparison
In addition to the winning success-biased model, we compared
several variants (Fig. 4b), with different models defined ac-
cording to different sets of features. An asocial model omitted
the social features, while an unbiased model did not differen-
tiate between successful and unsuccessful players, combining
all visible players into a single unbiased social proximity fea-
ture. Lastly, we tested a player-specific model, where each in-
dividual player had their own hierarchically estimated proxim-
ity weight. Using protected exceedence probability (pxp) as a
hierarchical Bayesian framework for model comparison22, our
success-biased model had the highest probability of being the
best model (pxppsuccess-biasedq “ .82). The player-specific
model was the second best model (pxppplayer-specificq “
.18), with player-specific weights related to higher rewards,
higher in-degree, and higher leadership scores (Fig. S8).

Model weights
We focus here on interpreting the model weights for the win-
ning success-biased model (Fig. 4c), but all other models had
similar weights for shared features (Fig. S9). Block visibility
and locality influenced choices in all conditions, and were
typically stronger in random than in smooth environments
(i.e., in the absence of reward-predictive cues). The one ex-
ception is in solo rounds, where participants were more local
in smooth environments (0.6 [0.5, 0.7]). GP predictions of
reward were strong in smooth environments, and null (solo:
0.02 [-0.01, 0.05]) or negligible (group: 0.05 [0.02, 0.08]) in
random environments, corresponding to differences in reward
structure.

Social feature weights show that participants were strongly
influenced by successful players in smooth environments (1.1
[0.9, 1.3]), with substantially less influence in random en-
vironments (smooth - random: -0.8 [-1.0, -0.6]). However,
the effect was still reliably different from chance (0.3 [0.04,
0.5]), suggesting a persistence of success-biased imitation
even in environments where social learning was irrelevant.
In contrast, we found no effect of unsuccessful players in
either smooth (-0.01 [-0.15, 0.13]) or random environments
(0.07 [-0.08, 0.23]). We also find increased specialization of
strategies in smooth environments (Fig. 4d; similar to visual
attention asymmetry in Fig. 2f), based on larger differences
in social and individual learning weights (|wsuccess´wGP|:
tp127q “ 5.4, p ă .001, d “ 0.5, BF ą 100), and increased
variability at the group-level (var(wsuccess´wGP): tp31q “ 2.5,
p“ .018, d “ 0.4, BF “ 2.6).
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specialization of learning strategies: individual (wGP) vs. social learning (wsuccess) in smooth vs. random environments, at both
individual (top: absolute difference) and group-levels (bottom; variability). Histograms show the raw data, and the density lines
show the difference between environments compared to chance (vertical dashed line at 0).

Discussion

Collective foraging is a common metaphor for human social
learning20, 25, 26. With similar real-world dynamics as mar-
ketplace innovation or scientific research, peers can be both
useful sources of social information, but also competitors
for the same limited resources. Here, we used an immersive
virtual environment (Fig. 1) with important, yet previously ig-
nored, real-world visual-spatial constraints. Each individual’s
limited field of view imposes a trade-off between allocating
attention to individual or social learning, while spatial prox-
imity to others directly shapes opportunities (and also costs)

for social interactions. With unprecedented access to visual
field data and spatial trajectories, our analyses provide unique
insights into the temporal and structural dynamics of social
interactions, where we study how people adapt to both differ-
ent reward environments (smooth vs. random; Fig. 1e) and to
a dynamically changing social landscape.

Our results shed light on the mechanisms driving adap-
tive human social learning, where we observe specialization
of strategies rather than homogeneity, and both performance
and environment-dependent deployment of selective imita-
tion rather than indiscriminate copying. When rewards were
smoothly clustered (offering traction for social learning), par-
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ticipants adaptively sought out social information depending
on individual performance (Fig. 2a-b), selectively directed
their social learning towards successful individuals (Fig. 2c),
and specialized more strongly with greater asymmetry of so-
cial attention (Fig. 2f). Participants were also more suscepti-
ble to social influence (“pull” events) in smooth environments
(Fig. 3b), which were selectively directed towards individuals
with higher instantaneous reward rates (Fig. 3d). Our compu-
tational models (Fig. 4) combined spatial and visibility data
to account for both asocial and social learning mechanisms,
confirming that success-biased selectivity and specialization
are key drivers of adaptive social learning.

The asymmetry of social attention (amplified in smooth
environments; Fig. 2f) may act as a safeguard against mal-
adaptive herding10, 11, where instead of copiers copying other
copiers, social learning is selectively directed towards individ-
ual learners (low out-degree) and is predictive of successful
individuals at long timescales in the future (Fig. 2c). In our
study, successful foraging outcomes were made salient by
a visual cue (i.e., splash), although people can also deploy
metacognitive strategies to infer latent performance or skill
from overt behavior5, 27, providing additional mechanisms for
guiding selective social learning. Previous agent-based sim-
ulations have shown how the flexible4 and selective28 use of
social information can mitigate the disadvantages of excessive
social learning. Here, we provide empirical evidence that
humans dynamically deploy these mechanisms in realistic
ecological contexts. Future work can explore the extent to
which these mechanisms (together with our ability to discount
correlated social information29) may offer a degree of nat-
ural protection against the spread of misinformation30 and
the formation of echo chambers through homophilic social
transmission31.

Success-biased social learning was also present in random
environments, albeit substantially reduced (Fig. 4c), suggest-
ing limitations to the degree of human adaptability and a
lingering bias towards social learning. However, even though
social information provided no benefits in random environ-
ments, it may still offer a computationally cheap tool for
engaging in exploration (away from one’s current location).
Individual exploration is associated with cognitive costs and
can be impaired by imposing memory load32 or time pres-
sure33. Thus, social imitation may act as an “exploration
device” at a reduced cognitive cost relative to individual explo-
ration, which could be further explored in future experiments.
This paradigm can also be used to explore developmental
changes34 or clinical differences35 in social learning, where
our ability to compare all results against an asocial baseline
provides a clear demarcation between what is attributable
to the environment alone and what is a uniquely social phe-
nomenon.

Although we observed a diverse range of social learning
patterns, we failed to find reliable predictors of individual suc-
cess, with the exception of spatial centrality (Fig. 2e; Fig. S7).
This may be due to a combination of factors: social learning

strategies having frequency-dependent fitness36, the dynamics
of selective imitation increasing competition for rewards near
successful individuals (leading to equitable performance), and
foraging success generally being very stochastic37. Future
work may consider using a non-depleting reward environment,
where collective coordination can yield additive benefits to
individual search5, 38. Indeed, a better understanding of our
ability to cumulatively innovate upon previous solutions over
long multi-generational timescales has been a powerful moti-
vating force in social learning research2, 36, 39. Here, we have
focused on understanding the temporal dynamics of social
learning over short timescales, which produced important
insights into the cognitive mechanisms supporting flexible
and adaptive social learning. However, a more complete un-
derstanding requires connecting social learning mechanisms
observed at short timescales to adaptive outcomes over long,
cultural timescales. Our work provides the foundations for
this endeavor, by providing new perspectives about the cog-
nitive mechanisms that make people such powerful social
learners in dynamic and more realistic contexts.

Methods
Participants and design
Participants (n “ 128) were recruited from the Max Planck
Institute for Human Development (MPIB) recruitment pool
in Berlin (82 female; Mage “ 27.4, SDage “ 5.0). The study
was approved by the Institutional Review Board of the MPIB
(number: A 2019-05) and participants signed an informed
consent form prior to participation. Participants received
a base payment of e12 plus a bonus of e0.03 per reward,
spending approximately one hour and earning on average
e17.32 ˘ 1.02 (SD).

Participants completed the task in groups of four. After
an in-game tutorial (Supplementary Video 1) and two prac-
tice rounds (see below), participants completed 16 2-minute
rounds of the task. Using a within-subject design, we manipu-
lated the reward structure (random vs. smooth; Fig. S10) and
search condition (solo vs. group). The order of round types
was counterbalanced across groups, with four consecutive
rounds of the same type (Fig. 1d). The reward structure and
search condition for each round was clearly announced prior
to the start of each round in an onscreen notification.

The reward structure of a given round was made salient by
mapping each reward structure to either pumpkin or water-
melon blocks (counterbalanced across groups). In both reward
structures, 25% of blocks contained rewards, but rewards were
either randomly or smoothly distributed. The smooth environ-
ments were generated by sampling from a Gaussian process40

prior, where we used a radial basis function kernel (Eq. 11)
with the lengthscale parameter set to 4 (similar to16). Sampled
reward functions were then binarized, such that the top quar-
tile (25%) of block locations were set to contain rewards. We
generated 20 environments for both smooth and random con-
ditions (Fig. S10), with each session (i.e., group) subsampling
1 (practice) + 8 (main task) = 9 environments of each class
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with pseudorandom assignments that were pregenerated prior
to the experiment. In the tutorial (Fig. 1d), participants were
given verbal descriptions of each reward condition, saw two
fully revealed illustrations of each environment class from a
bird’s-eye perspective, and interactively destroyed a 3x3 patch
of both smooth and random environments (Supplementary
Video 1).

The search conditions were made salient by having par-
ticipants stand on a teleportation block either by themselves
(solo) or with the other three participants (group) in order to
begin the round. In the solo condition, participants searched
on identical replications of the same environments but without
interacting with each other. In the group condition, partici-
pants searched on the same environment and could interact
with, compete against, and imitate one another.

Materials and procedure
The experiment was implemented as a computer-based exper-
iment, with each computer connected to a modified Minecraft
server (Java edition v.1.12.2). The task was originally de-
signed to also allow for data collection in VR using the Vive-
craft mod, which could be done seamlessly by having a par-
ticipant use a VR headset instead of a mouse and keyboard,
without any modifications to the experiment. However, pre-
liminary testing revealed that locomotion via teleportation
(the preferred method to avoid VR motion sickness) resulted
in less naturalistic spatial trajectories and also interfered with
the visual field analyses due to the field of view temporarily
fading to black during movement. In contrast, the computer-
based modality captured naturalistic trajectories in both space
and gaze direction.

In the experiment, the sound was turned off, participants
could not see each other’s screens, and task-irrelevant con-
trols (e.g., jumping, sprinting, inventory, etc...) were made
unavailable. The Minecraft world consists of “blocks” that
can be “mined” for resources by holding down the left mouse
button to hit them until they are destroyed. In the experi-
ment, participants controlled an avatar that moved through our
custom-made environment, defined as a flat field containing a
20x20 grid of 400 pumpkin or watermelon blocks (Fig. 1a)
with a two block space between each block. The field was
bounded by an impassable fence. See Supplementary Video
2 for a bird’s-eye illustration of a round, and Supplementary
Videos 3 and 4 for screen captures from group rounds on
smooth and random reward environments, respectively.

Each resource block (either watermelon or pumpkin) could
be foraged by continually hitting it for 2.25 seconds until it
was destroyed, yielding a binary outcome of either reward or
no reward. Rewards were indicated by a blue splash effect,
visible by other players from any position if it was in their
field of view. Only resource blocks could be destroyed in the
experiment and destroyed block were not renewed. Blocks
did not possess any visual features indicating whether or not
they contained a reward. However, rewards in smooth environ-
ments were predictable, since observing a reward predicted

other rewards nearby. Participants were individually incen-
tivized to collect as many rewards as possible, which were
translated into a bonus payment at the end of the experiment.
The cumulative number of rewards (reset after the practice
rounds) was shown at the bottom of the screen.

After receiving verbal instructions, participants completed
an in-game tutorial to familiarize themselves with the con-
trols, how to destroy blocks, the difference between smooth
and random reward distributions, and the overall task struc-
ture (Supplementary Video 1). They then completed one solo
practice round in a smooth environment and one solo prac-
tice round in a random environment. These were identical to
the solo condition of the main task, but performance in these
rounds did not contribute to a participant’s bonus payment.
Each round lasted 120 seconds, with the end of the round
corresponding to the sun setting below the horizon. This
served as an approximate in-game timer for each round, and
was communicated to participants in the tutorial. A 3-second
countdown timer was also shown onscreen. At the end of
the round, participants were given an onscreen announcement
indicating the number of rewards they had earned and noti-
fying them of the reward structure and search condition for
the next round. Participants were then teleported into a lobby
(separate lobbies for solo rounds or a communal one for group
rounds), and were required to all stand on a “teleportation”
block to indicate readiness for the subsequent round. Prior to
the start of a social round, participants all stood on a commu-
nal teleportation block, while prior to solo rounds, participants
each stood on separate teleportation blocks, in order to induce
the social or asocial context. Once all players were ready, a
3-second countdown was displayed and they were teleported
into a random position in the next environment with a random
orientation direction.

Data collection
Experimental data was collected using a custom data logging
module programmed in Java, which were separated into map
logs and player logs. Map logs recorded information about
each block destruction event, including a timestamp, player
identifier, block position, and the presence or absence of re-
ward. Player logs contained each player’s position in the
horizontal XZ-plane together with the XYZ components of
their gaze vector (i.e., where they were looking). Both logs
contained information sampled at Minecraft’s native 20 Hz
tick-rate (i.e., once every 0.05s), providing high-resolution
data about spatial trajectories and gaze directions.

Automated transcription of visual field data
We developed a custom tool built on the Unity game engine
(ver. 2019.3) for performing automated transcription of visual
field data (Fig. 1c). We first used data collected from the
experiments to simulate each round of the experiment from
each participant’s point of view. These simulations were then
used to automate the transcription of each participant’s field
of view (Supplementary Video 5).

Our Unity simulations assigned each entity in the exper-
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iment (i.e., each block, player, and reward event) a unique
RGB value, which was drawn onto a render texture one tenth
the size of the player’s actual monitor (192x108 pixels as op-
posed to 1920x1080 pixels). Since the images were rendered
without any anti-aliasing or transparency through a simple,
unlit color shader, the RGB value of any drawn pixel could
be uniquely related with a lookup table to the corresponding
entity. We then simulated each round of all experiment data
from each player’s perspectives within the Unity game engine,
using the map logs and player logs, which allowed us to fully
reconstruct the world state. Once all four player perspectives
were individually rendered, we could read out the pixels from
each player’s field of view, using the RGB colors of the simu-
lated pixels to determine whether an entity was visible at any
point in time (20 Hz resolution), and what proportion of the
screen it occupied.

In creating these simulations, a few approximations were re-
quired. In addition to the reduced resolution mentioned above,
player models were approximated by their directionally-
oriented bounding box and we ignored occlusion from the
heads up display and view-model (e.g., occlusion due to hand
position of the avatar). Additionally, some animations pro-
duced by the Minecraft game engine include inherent stochas-
tic processes that were approximated. Namely, the splash
particles used to indicate a reward event are generated in
Minecraft using a random process that spawns 300 particles at
predefined locations in a sphere around the player. Whilst the
starting locations are deterministic, small deviations in veloc-
ity and the lifetime of these particles are generated randomly.
Thus, we tuned the parameters of Unity’s particle system to
be as authentic as possible by comparing simulated splash
effects with video footage of splash effects generated by the
Minecraft game engine.

We used a similar procedure for the solo rounds to establish
an asocial baseline for our analyses. Whereas all four players
searched on different replications of the same field, we simu-
lated them “as if” they were on the same field. Again, a few
approximations were required. In these solo simulations, we
removed a block whenever any of the four players destroyed
it. Additionally, we generated a splash for each reward event,
meaning if multiple players foraged the same block in a round,
it would trigger a different splash event each time.

Agent-based simulations
We implemented agent-based simulations to understand how
the different reward environments (smooth vs. random dis-
tribution of rewards) interact with individual-level learning
strategies (asocial learning vs. unbiased imitation vs. biased
imitation) in determining foraging success (see Fig. 1f). The
simulations uses the same features as the computational model,
but are defined fora simplified version of the task, capturing
the key visual-spatial dynamics of collective decision-making.

More precisely, our simulations modeled the foraging task
as a discrete-time sequential game with partial observabil-
ity, which generalizes Markov decision processes to incor-

porate multiple agents, partial observability, and separate re-
wards41. Formally, a task is a tuple, xI,S,A,O,T,R,Oy: an
agent index set, I; a set of environment states correspond-
ing to configurations of agent locations/directions and avail-
able/destroyed blocks, S; a set of joint actions corresponding
to agents moving in cardinal directions, A“

Ś

iAi; a set of
joint observations, O“

Ś

iOi, where each Oi is a subset of
events viewed from agent i’s perspective (i.e., other agents’
locations, reward reveal events, and available blocks); a en-
vironment transition function, T : SˆAÑ S; a joint reward
function R : SˆAˆSÑR|I|; and a joint observation function,
O : AˆSÑO.

Agents are modeled as selecting a destination to navigate
to, navigating to that destination, and then destroying the
target block (requiring k “ 9 timesteps in the simulation;
approximately equivalent to the 2.25 seconds required to
destroy a block and the maximum movement speed of 4.3
blocks/second). Agent policies consist of a high-level con-
troller that transitions among different modes of behavior
n P tSelectDest, NavTopxq, and foragepkqu, where
x is a target destination that a low-level navigation con-
troller moves towards and k is a counter for the number of
timesteps left to complete the foraging of a block. When
in SelectDest, the controller samples a destination from
Pwpxq9exptfpxq ¨w}, where f : X Ñ RK returns a real-valued
feature vector (incorporating both asocial and social mecha-
nisms, the same as in the computational models; see below)
for each destination block, and w P RK are feature weights.

We considered populations of three types of agents. Asocial
agents used a combination of locality (distance from current
location), block visibility (using a 108.5-degree field of view
as in the experiment), and asocial reward learning (see the
subsection “Gaussian process for binary reward prediction”
below). Unbiased social agents added an additional feature
using the average proximity from observed social partners
since the last choice, while biased social agents used a similar
social proximity feature, but was computed only from social
partners that were observed acquiring a reward since the last
choice. All feature weights were arbitrarily set to 1. For each
of 20 random/smooth environments, we generated 100 simu-
lations for each agent type in groups of four agents (for a total
of 20ˆ2ˆ100ˆ3“ 12,000 simulations). Each simulation
was run for 400 timesteps. Figure 1f provides the results of
the simulations, showing the average total reward collected
by agents by environment type (smooth/random) and strategy
(asocial/unbiased social/biased social).

Hierarchical Bayesian regressions
Statistical analyses were conducted using hierarchical
Bayesian regressions to simultaneously model the effects of
the experimental manipulations (smooth vs. random and solo
vs. group), while controlling for random effects of partici-
pants and the group they were assigned to. All regression mod-
els used Hamiltonian Markov chain Monte Carlo (MCMC)
with a No-U-Turn sampler42 and were implemented using
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brms43. For count-based variables (e.g., blocks destroyed or
pull events), we used Poisson regression, but report the un-
transformed regression coefficients for simplicity. All models
used generic, weakly informative priors „N p0,1q and all
fixed effects also had corresponding random effects follow-
ing a maximal random-effects procedure44. All models were
estimated over four chains of 4,000 iterations, with a burn-in
period of 1,000 samples.

Temporal dynamics
Based on methods developed in Neuroscience45, the temporal
dynamic analyses (Fig. 2a-c and Fig. S3) use time-series data
from each participant in each round to discover temporal
structures in social interactions, where rewards predict future
spatial/visual patterns and where spatial/visual patterns predict
future rewards.

The time-series variables we used are reward (binary vec-
tor), spatial proximity (average inverse distance to all other
players), and both the number of visible peers and the num-
ber of observers (integer variables P [0,3]; acquired from the
automated transcription of visual field data) at every point in
time (20 Hz time resolution). For solo rounds, we computed
both spatial proximity and visibility “as-if” participants were
on the same field to provide an asocial baseline.

We then computed correlations between each pair of vari-
ables cor(V1,V2), where we iteratively time-lagged V2
from -20 to +20 seconds, with non-overlapping regions of
each time series omitted from the data. Each correlation was
then z-transformed and corrected for chance using a permuta-
tion baseline. This chance correction is based on iteratively
permuting the order of V2 and computing the correlation
cor(V1,V2_permuted) over 100 different permutations
(for each correlation). We then subtracted the z-transformed
mean of the permutation correlations from the target correla-
tion. These permutation corrected correlations are reported
as a population-level mean (˘95% CI) in Figure 2a-c and
Figure S3.

Lastly, to provide better interpretability of these results,
we used a maximum cluster mass statistic45 to discover tem-
porally continuous clusters of significance at the population
level. For each pair of variables rV 1,V 2s and within each
combination of condition (solo vs. group) and environment
(random vs. smooth), we used a cluster permutation test
to find a threshold for random clusters. This analysis used
10,000 permutations, where for each, we iterated over each
individual time series of z-transformed (and chance-corrected)
correlations, randomly flipping the sign at each time point.
We then used a single-sample t-test with α “ .05 to compute
which time points (at the population level) were significantly
different from 0. This provided a distribution of the duration
of temporally continuous clusters of significance in the ran-
domly permuted data. We then used the upper 95% CI of
this distribution as a minimum threshold for the actual data,
where we applied the same significance testing procedure, but
discarded all clusters shorter in duration than the permutation

threshold. The surviving clusters are illustrated with bold
lines in Figure 2a-c and Figure S3.

Social influence
We used methods developed to analyze the movement pat-
terns of geotracked baboons in the wild21 to measure social
influence. This allows us to detect discrete “pull” events over
arbitrary time scales, where the movement patterns of one
participant (leader) pull in another (follower) to imitate and
forage in the same vicinity (Fig. 3).

We first computed the pairwise distance between all par-
ticipants (Fig. 3a) and defined candidate pull events from
min-max-min sequences, where we used a noise threshold
of 1 block distance to determine what corresponds to mini-
mum and maximum distances. These candidate sequences
were then filtered based on strength, disparity, leadership, and
duration in order to be considered a successful pull.

Strength Si, j defines the absolute change in dyadic distance
relative to absolute distance:

Si, j “
|di, jpt2q´di, jpt1q||di, jpt3q´di, jpt2q|
pdi, jpt1q`di, jpt2qqpdi, jpt2q`di, jpt3qq

, (2)

where di, jptkq is the dyadic distance between participants i
and j at time k P r1,2,3s (corresponding to the timepoints of
the min-max-min sequence). We required pull events to have
a minimum strength of Si, j ą .1, such that they correspond
to meaningful changes in spatial proximity rather than minor
“jitters” at long distance.

Disparity δi, j defines the extent to which one participant
moves more than the other in each segment, relative to the
total distance moved by both participants:

δi, j “
|∆xipt1, t2q´∆x jpt1, t2q||∆xipt2, t3q´∆x jpt2, t3q|
p∆xipt1, t2q`∆x jpt1, t2qqp∆xipt2, t3q`∆x jpt2, t3qq

, (3)

where ∆xipt1, t2q is the displacement between t1 and t2. We
filtered pull events to have a minimum disparity of δi, j ą .1,
such that changes in spatial proximity were asymmetrically
driven by one of the interaction partners. Figure S5 shows that
our results are robust to changes in the disparity threshold.

Leadership is a simple binary filter requiring that the par-
ticipant who moved more in the first segment (t1 to t2) moved
less in the second segment (t2 to t3). We refer to the participant
who moved the most in the first segment maxaPpi, jq∆xapt1, t2q
as the leader and the participant who moved the most in the
second segment maxbPpi, jq∆xapt2, t3q as the follower. Thus,
successful pulls are defined as a ‰ b, where the leader and
follower are separate participants.

Duration was the final filter, where we required pulls to be
at least 3 seconds in duration (since it takes 2.25 seconds to
destroy a block). After all filters were applied, the average
pull duration was 13.1 seconds ˘ 0.09 (SEM).

Computational modeling
To better understand individual foraging decisions at a micro-
level, we developed a computational modeling framework that
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sequentially predicts each block participants destroy based
on different combinations of asocial and social features. We
modeled the choice probabilities for each block destruction
using a linear combination of block features f and regression
weights w that represent the influence of each feature for par-
ticipants’ block choices (Eq. 1). This was modeled using a
categorical likelihood function with Bk`1 possible outcomes
(i.e., the number of remaining blocks available for choice at
time k`1), with a softmax link function. Different models
incorporate different sets of features in f. Because models
only differed with respect to the social features they incor-
porate and, thus, make identical predictions for solo rounds,
the Bayesian model selection (Fig. 4b) was applied to group
rounds only.

For interpretability of weight estimates and to allow for
identical prior distributions, we z-standardized all block fea-
tures within each choice, with the exception of block visibility,
which was coded as a binary indicator. We also omitted the
first choice in each round, since most features need to be com-
puted with respect to some previous block destruction. Thus,
we only started modeling from the second choice in each
round, conditioned on the first choice. Furthermore, while all
asocial features were included as predictors for each choice,
the social features could be undefined for some choices if the
conditions were not met (e.g., no visible players, or no visible
and successful players). In these situations, the feature values
were effectively set to 0 for all blocks.

All model weights were estimated in a hierarchical
Bayesian framework with random effects accounting for dif-
ferences in the importance of (asocial and social) features
among individuals and experimental groups. The models
were fit using Stan as a Hamiltonian Monte Carlo engine
for Bayesian inference46, implemented in R v.4.0.3 through
cmdstanr version 0.3.0.9. We used within-chain paralleliza-
tion with reduce_sum to reduce model run times through
parallel evaluation of the likelihood.

To minimize the risk of overfitting the data, we used weakly
informative priors for all parameters. We used weakly infor-
mative normal priors centered on 0 for all weight parameters,
exponential priors for scale parameters and LKJ priors for
correlations matrices47. To optimize convergence, we imple-
mented the noncentered version of random effects using a
Cholesky decomposition of the correlation matrix48. Visual
inspection of traceplots and rank histograms49 suggested good
model convergence and no other pathological chain behaviors,
with convergence confirmed by the Gelman-Rubin criterion50

R̂ď 1.01 . All inferences about weight parameters are based
on several hundred effective samples from the posterior51. We
provide additional details about some model features below.

Block visibility
Since block visibility only captures a static representation of
which blocks were visible at time k, we computed it with per-
missive assumptions. Specifically, we assumed no object or
player occlusions (i.e., object permanence) and used only the
horizontal component of their gaze vector to avoid incorporat-

ing noise from vertical jitters. Visibility computations used the
true horizontal viewing angle of 108.5 degrees, corresponding
to the 16:9 aspect ratio monitors used in the experiment.

Gaussian process for binary reward prediction
Gaussian processes40 provide a Bayesian function learning
framework, which we use as a psychological model of reward
generalization for predicting search behavior16. Gaussian pro-
cesses are typically used to learn a function f : X Ñ Rn that
maps the input space X (i.e., the field of destructible blocks)
to real-valued scalar outputs such as continuous reward values.

Here, we modify the Gaussian process framework to the bi-
nary classification case, where we want to make probabilistic
predictions about whether destroying some block x will yield
a reward ppr “ 1|xq. This can be described as a logistic sig-
moid function Sp¨q of some real-valued latent variable z, such
that ppr “ 1|zq “ Spzq “ 1

1`expp´zq . We set the prior mean

z0 “ logp .25
1´.25 q such that ppr “ 1|z0q “ 0.25, corresponding

to the true prior probability of rewards. Thus, larger values
of z correspond to higher-than-chance reward probabilities,
while lower values correspond to lower-than-chance reward
probabilities.

The latent variable z thus becomes the target of the Gaus-
sian process posterior predictive distribution, computed for
some location x˚ P X and conditioned on the past set of
observations Dk “ tXk,rku:

ppr˚ “ 1|Dkq “

ż

ppr˚ “ 1|z˚qppz˚|Dkqdz˚ (4)

This exact integral in Eq. 4 is analytically intractable, but (i)
assuming ppz˚|Dkq is Gaussian distributed (using the Laplace
approximation40; see below) and (ii) approximating ppr˚ “
1|z˚q “ Spz˚q with the inverse probit function52, 53 Φpz˚q, we
obtain a tractable approximation.

We start by defining a posterior on the latent variable z˚
corresponding to some unobserved block x˚:

ppz˚|Dkq “

ż

ppz˚|zkqppzk|Dkqdzk (5)

The first term ppz˚|zkq is a Gaussian distribution that can be
obtained using the standard GP posterior predictive distribu-
tion40, while ppzk|Dkq is intractable. However, the Laplace
approximation allows us to approximate the latter term using
a Gaussian distribution:

ppzk|Dkq “N pzk|ẑk,pK`W`σ
2
z Iq´1q, (6)

where ẑk is the posterior mode, W is a diagonal matrix with
diagonal elements Spẑkqp1´ Spẑkqq, K is the kˆ k kernel
matrix evaluated at each pair of observed inputs (see Eq. 11),
σ2

ε is the noise variance, and I is the identity matrix. We
set σ2

ε “ .0001 as in the environment generating process.The
posterior mode ẑ can be obtained iteratively:

znew
k “KzpI`Kzq

´1pr´Spẑq`Wẑkq (7)
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where Kz “K`σ2
z I, ẑk is the current estimate of the pos-

terior mode, znew
k is the new estimate, and ẑk “ znew

k at conver-
gence.

Eq. 5 can now be derived analytically as a Gaussian
ppz˚|Dkq «N pz˚|µz˚ ,σ

2
z˚
q, with mean and variance defined

as:

µz˚ “ kT
˚prk´Spẑkqq (8)

σ
2
z˚
“ kpx˚,x˚q´kT

˚pW
´1`K`σ

2
z Iq´1qk˚ (9)

where k˚ applies the kernel to the target
x˚ and all previously encountered observations
k˚ “ rkpx1,x˚q, . . . ,kpxk,x˚qs.

Lastly, we use the inverse probit function Φpz˚q as a com-
mon method52, 53 for approximating the reward probability
as a function of the mean and variance estimates described
above:

ppr˚ “ 1|Dkq « Spµz˚p1`
πσ2

z˚

8
q´1{2q (10)

As a kernel function, we use the radial basis function kernel,
which specifies that the correlation between inputs decays
smoothly as a function of distance:

kpx,x1q “ exp
ˆ

´
||x´x1||2

2l2

˙

(11)

The degree of smoothness is controlled by the length scale
l, which we set to l “

?
48. Note that this is equivalent to

the l “ 4 used to generate the environments, but accounts for
the scaling of the coordinate system in the experiment, where
each block has an empty tile on each side.
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Supplementary Information for
Visual-spatial dynamics drive adaptive social learning in im-
mersive environments
Charley M. Wu, Dominik Deffner, Benjamin Kahl, Björn Meder, Mark H. Ho, & Ralf H.J.M.
Kurvers

Supplementary Videos
Movie S1. Tutorial. The original German text has been translated to English for better interpretability. https://www.
youtube.com/watch?v=QksKYOoElxg

Movie S2. Bird’s eye recreation of a group round with smooth rewards. https://www.youtube.com/watch?v=
vUHaAhjfFVo

Movie S3. Screen capture of a group round with smooth rewards (corresponds to Supplementary Video 2). All in-game
text was originally in German for all experiments, but have been translated here to English for interpretability. https:
//www.youtube.com/watch?v=wyk7RbmHiok

Movie S4. Screen capture of a group round with random rewards. https://www.youtube.com/watch?v=
mWe4CeLWdpg

Movie S5. Automated transcription of visual field using Unity simulations. https://www.youtube.com/watch?v=
iSZ-ewpiZWI

Supplementary Results
Rewards, social distance, and foraging rate
Smooth environments resulted in higher rewards in both solo (0.5 [0.4,0.5]) and group conditions (0.3 [0.3, 0.4]; Fig. S1a-c).
Within smooth environments, participants performed better in solo than in group rounds (-0.1 [-0.2, -0.1]). However, this effect
of solo vs. group condition disappears when we control for faster reward depletion in groups (Fig S1d-f). Thus, reward structure
is the key driver of performance.

We then computed the average pairwise distance between participants (Fig S2a-b). Solo rounds provide an asocial baseline
by accounting for the influence of reward structure, which we calculated by simulating as if participants were on the same field.
This analysis revealed closer foraging proximity in smooth than in random environments (-0.6 [-0.8,-0.4]). Comparing group to
solo rounds, participants socially distanced themselves by avoiding one another in random environments (0.3 [0.1, 0.5]), but
not in smooth environments (0.0 [-0.2,0.2]). While there was no overall social distancing effect in smooth environments, this
analysis may mask more complex dynamics of social influence (see Temporal dynamics).

Lastly, our analysis of foraging rate (i.e., number of destroyed blocks per second) revealed greater selectivity in smooth
environments, corresponding to a slower rate of blocks destroyed (-0.04, [-0.07, -0.02]; Fig. S2c-d). The selectivity of smooth
environments was further amplified in group rounds (-0.03, [-0.06, -0.005]), where participants did not only need to contend
with the structure of the environment, but also the structure and dynamics of social interactions.

In sum, smooth environments increased reward rate (Fig. S1a), brought participants closer together (Fig. S2a), and slowed
the rate of foraging (Fig. S2c). Groups performed on par with solo rounds when controlling for depletion (Fig. S1d-f), avoided
each other in random environments (Fig. S2a), and foraged even slower in smooth environments (Fig. S2c).
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Figure S1. Reward. a) Average rewards per round. Each colored dot is a participant and the black dot and error bars show
the fixed effect (˘ 95% CI) of a hierarchical Bayesian regression (panel c), with contrasts reported above. b) Smoothed curves
showing the average rate of rewards over time as a Generalized Additive Model (GAM). Ribbons indicate 95% CI. c)
Coefficient plot of a hierarchical Bayesian Poisson regression showing the rate of rewards. Each dot is the posterior mean and
error bars show the 95% CIs. d) Expected reward rate over time, showing the probability that a randomly sampled block (from
those remaining) contains a reward. Each line shows the aggregated mean, which only diminished in smooth environments (due
to predictable rewards) and much faster in group rounds (due to more participants foraging for the same finite number of
rewards). e) We compute a normalized reward rate by dividing reward rate (panel b) by expected reward rate (panel d). f) When
running a comparable regression on the normalized rewards, only the effect of smooth environments remains.
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Figure S4. Relationships between environment, out-degree, in-degree, foraging rate and reward rate in groups. a-b)
In smooth environments, participants with a higher out-degree (i.e., observing other players) destroyed fewer blocks. c-d) This
did not translate into an effect on the reward rate. e) Rank ordering participants in each group according to their in- and
out-degree, also showed a negative correlation between participants’ in- and out-degree. f) Regression coefficients predicting
out-degree. Smooth environments increased out-degree, while higher in-degree decreased out-degree, with a reliably stronger
negative effect in smooth environments.
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Figure S6. Relating leadership to visibility (VisNet) and proximity networks (ProximityNet). Each dot is a participant,
with the line and ribbon showing the mean (˘95% CI) of a mixed-effects regression, with the fixed effect reported above. For
interpretability, we compute leadership only from group rounds in smooth environments. a) Participants with a higher
leadership score were observed more (i.e., higher in-degree), and b) observed others less (i.e., lower out-degree). c) Leadership
score also predicted the difference between in-/out-degree, and d) high leadership score also predicted lower spatial centrality,
suggesting leaders were at the frontiers of the group.
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Figure S7. Consistency of visibility and proximity networks and their relationship to performance (in group rounds).
Each dot is a participant, with the line and ribbon showing a linear regression. a) Eigenvector centrality was consistent across
visibility and proximity networks. b) A player’s in-degree was unrelated to their average spatial distance to other players in
smooth environments, c) d) e) f) Bayesian mixed-effects regression predicting the influence of social network statistics on
reward (smooth rounds
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Figure S8. Player-specific weights. Higher weights indicate a player exerted more social influence over the rest of their
group. Since weights were estimated hierarchically (across the other members of each group) with individual and group as
random effects, we report the posterior means. Each dot is a participant, with the line and ribbon showing a linear regression. a)
Players with higher average score exerted more influence (i.e., larger weights) in smooth (r “ .24, p“ .007, BF “ 6.5), but not
in random environments (r “ .02, p“ .853, BF “ .21). b) Weights were not related to either foraging rate (random: r “ .14,
p“ .126, BF “ .63; smooth: r “ .03, p“ .726, BF “ .22), c) or spatial centrality (random: r “´.10, p“ .265, BF “ .37;
smooth: r “ .03, p“ .739, BF “ .22). d) Players with higher weights were observed more (i.e., higher in-degree) in smooth
(r “ .26, p“ .003, BF “ 14) but not in random environments (r “´.03, p“ .760, BF “ .21). e) Players with higher weights
tended to be observed others less in random (r “´.18, p“ .045, BF “ 1.4), but not in smooth environments (r “´.09,
p“ .333, BF “ .32). f) Lastly, higher weights predicted higher leadership scores in smooth (r “ .20, p“ .023, BF “ 2.5), but
not random environments (r “ .13, p“ .152, BF “ .55).
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Figure S9. Weights for all models. Symbols show the posterior mean and error bars the 95% HDI. The solo model is
estimated only on the solo rounds (using only asocial features). The other models use a combination of asocial and social
features estimated on group rounds. Player-specific proximity shows the posterior proximity weights aggregated across all
players (see Fig. S8 for distribution across individuals).
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Figure S10. Reward distributions used in the experiment. Black squares represent blocks containing a reward, while
white squares represent boxes containing no reward. Note that these plots omit the spacing between resource blocks in the
experiment for readability.
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