
Flexible Protein-Protein Docking with a Multi-Track
Iterative Transformer

Lee-Shin Chu1 Jeffrey A. Ruffolo2 Ameya Harmalkar1 Jeffrey J. Gray1,2
1Department of Chemical and Biomolecular Engineering

2Program in Molecular Biophysics
Johns Hopkins University, Baltimore, MD 21218, USA.

Abstract

Conventional protein-protein docking algorithms usually rely on heavy candidate1

sampling and re-ranking, but these steps are time-consuming and hinder applica-2

tions that require high-throughput complex structure prediction, e.g., structure-3

based virtual screening. Existing deep learning methods for protein-protein dock-4

ing, despite being much faster, suffer from low docking success rates. In addition,5

they simplify the problem to assume no conformational changes within any pro-6

tein upon binding (rigid docking). This assumption precludes applications when7

binding-induced conformational changes play a role, such as allosteric inhibition8

or docking from uncertain unbound model structures. To address these limita-9

tions, we present GeoDock, a multi-track iterative transformer network to predict10

a docked structure from separate docking partners. Unlike deep learning models11

for protein structure prediction that input multiple sequence alignments (MSAs),12

GeoDock inputs just the sequences and structures of the docking partners, which13

suits the tasks when the individual structures are given. GeoDock is flexible at14

the protein residue level, allowing the prediction of conformational changes upon15

binding. For a benchmark set of rigid targets, GeoDock obtains a 41% success16

rate, outperforming all the other tested methods. For a more challenging bench-17

mark set of flexible targets, GeoDock achieves a similar number of top-model18

successes as the traditional method ClusPro [1], but fewer than ReplicaDock219

[2]. GeoDock attains an average inference speed of under one second on a sin-20

gle GPU, enabling its application in large-scale structure screening. Although21

binding-induced conformational changes are still a challenge owing to limited22

training and evaluation data, our architecture sets up the foundation to capture this23

backbone flexibility. Code and a demonstration Jupyter notebook are available at24

https://github.com/Graylab/GeoDock.25

1 Introduction26

Protein-protein interactions are involved in nearly all cellular functions in living organisms, from27

signaling and regulation to recognition. These cellular functions are crucially dependent on the28

precise assembly of proteins to become functional multi-protein complexes. Understanding the 3D29

structures of protein-protein complexes at the atomic level can give insight into the mechanisms30

that underlie these functions. While experimental approaches can determine protein structures,31

they are expensive, low-throughput, and not applicable to all proteins. Recent breakthroughs of32

AlphaFold2 [3] and other follow-up works [4–7] have demonstrated the prediction of 3D models of33

protein structures comparable to experimental accuracy. Along with genome-wide protein sequencing,34

the AlphaFold database [8] provides open access to 214M protein structure predictions from the35

sequences deposited in UniProt [9]. To provide proper biological context to the expanding number36

of predicted protein monomer structures, fast and reliable computational approaches for modeling37
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protein-protein interactions are critical. Protein-protein docking methods provide computational tools38

for fundamental studies of protein interactions by predicting the favorable protein binding sites and39

possibly binding-induced conformational changes.40

Protein-protein docking methods predict a protein complex structure given the structures of its un-41

bound monomeric partners. Classical protein docking approaches generally comprise (1) a sampling42

algorithm that generates ensembles of candidate docked structures and (2) a scoring function that43

evaluates the candidates generated from the sampling stage. The sampling strategies can be classified44

into exhaustive global search, local shape feature matching, or randomized search [10]. The exhaus-45

tive global search methods [11–16, 1, 17] mostly use fast Fourier transforms (FFTs) [18] to cover the46

complete 6D (3D translational plus 3D rotational) space, assuming no conformational changes of the47

docking partners. The local shape matching methods [19–24] typically represent a protein by the48

shape of its molecular surface and find matches of high shape complementarity between two proteins.49

The randomized search methods [25–28, 2, 29–36] use stochastic algorithms such as Monte Carlo50

methods to explore docking poses through the free energy landscape starting from a randomized51

initial pose, with the protein represented as an all-atom or coarse-grain model. Depending on the52

sampling algorithms used, the scoring can take place after or can be coupled during the sampling53

process. In contrast to sampling and scoring scheme, template-based docking methods [37] use54

information such as sequence similarity, evolutionary conservation, and interface complementarity to55

search for complexes that are homologous to the proteins to be docked, and then use the complexes56

as docking templates. Due to the massive candidate searching and evaluation, these docking methods57

are usually time-consuming, hindering applications that require high-throughput complex structure58

prediction.59

Recent breakthroughs in machine learning, especially in deep learning techniques, have been applied60

to several protein docking-related tasks. MaSIF [38] and ScanNet [39] use geometric deep learning61

methods to predict the binding sites of a protein based on the structural and chemical features of62

its molecular surface, independent of the binding partners. For partner-specific protein interface63

prediction, several methods [40–47] predict protein inter-chain contacts (residues within some cut-off64

distance) using Graph Neural Networks (GNNs) that input structural and possibly evolutionary65

features of the proteins. The predicted binding sites or inter-chain contact maps from these deep66

learning methods can guide docking and generate protein complex structures [48, 49], but the67

resulting complex structures have not yet achieved accuracy comparable to the conventional docking68

approaches. End-to-end deep learning methods that predict protein complex structures from protein69

sequences and multiple sequences alignments (MSAs) have also been developed. These methods70

[50–52] extend the ability of AlphaFold2 [3] that was originally designed for protein folding to protein71

multimer structure prediction. Remarkably, AlphaFold-Multimer (AF-M) [53] includes multiple72

chains during training and outperforms other AlphaFold2-based approaches. However, searching73

for MSAs slows the inference process, hampering its applications to fast protein complex structure74

predictions. Furthermore, MSAs do not apply to the docking of important protein families like75

antibodies or T-cell receptors that evolve at different timescales than their binding partners [54].76

Several deep learning methods have been developed for fast rigid docking. Ganea et al [55] developed77

EquiDock, an equivariant graph-matching neural network that predicts the rotation and translation78

to place one of the proteins at the correct docked position relative to the second protein. Sverrisson79

et al [48] developed a generative model based on the interface features derived from dMaSIF [56]80

to produce ensembles of docking candidates that are then scored by a trained discriminative model.81

Due to the rigid-body assumption, these methods are not capable of predicting the conformational82

changes upon protein binding. In addition, the docking success rates of these methods are lower than83

the conventional docking methods. More recently, McPartlon & Xu [57] proposed DockGPT for84

flexible and site-specific protein docking and design, demonstrating high docking success rates when85

partial binding site information is provided.86

In this work, we develop GeoDock, a multi-track iterative transformer network for fast and flexible87

protein-protein docking. We use the ESM language model [6] to embed the sequences, thereby88

avoiding MSAs during training. Our approach involves a multi-track architecture inspired by89

AlphaFold2 [3], and it incorporates the input structure information and the invariant point attention90

(IPA) module to enable backbone motion. We demonstrate a superior performance of the docking91

success rate on a benchmark dataset consisting of bound docking tasks. We measure the extent of92

backbone motion the network can capture, and we highlight limited success on a benchmark set of93

unbound docking tasks.94
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2 Methods95

Datasets. For training, fine-tuning, and evaluating our models, we used datasets from (1) Database of96

Interacting Protein Structures (DIPS) [41] and (2) Docking Benchmark 5.5 (DB5.5) [58, 59]. DIPS97

comprises 42,826 non-redundant experimentally resolved binary protein complexes (< 30% sequence98

identity to any protein in the DB5.5). We filtered out the complexes with less than 50 residues in99

a single chain, resulting in train/validation/test splits of size 36318/927/100. DB5.5 contains 271100

protein complexes with both bound and unbound conformations. We curated two subsets from DB5.5101

for evaluation. The first subset (DB5.5 bound) consists of 24 complexes that were used as the test102

set in the EquiDock [55] report. The second subset (DB5.5 unbound) comprises 69 complexes that103

are classified as medium difficulty or difficult targets. We used the remaining 178 complexes for104

fine-tuning the model pre-trained on DIPS.105

Continuous Cropping for Model Training. We randomly cropped a continuous block of residues106

on each chain up to 500 residues in total (summing over the chains) to fit the memory size of the107

GPU (NVIDIA A100 40GB) we used. The cropping strategy ensures that the cropped structure still108

has two continuous chains, and the length of the chains always sums to 500. Cropping is used for109

training the models only but not for inference.110

Input Protein Graphs. We represent the input docking partners as two separate graphs. Each graph is111

fully-connected, with nodes representing the amino-acid identity and edges representing the geometric112

relations between the intra-chain residues. For node embeddings, we used the ESM-2 (650M) pre-113

trained language model [6], which inputs a protein sequence and outputs per-residue embeddings. The114

embeddings from the language model have been shown to improve downstream structure prediction115

tasks such as protein folding [60, 6]. For edge embeddings, we used the inter-residue distance and116

orientation distributions adopted from trRosetta [61] and the relative positional encodings from Evans117

et al [53]. The two separate graphs from the two docking partners are concatenated before input to118

the neural network, with the inter-chain information masked. The graph representation contains rich119

geometric information without any task-specific or hand-crafted features.120

Inter-chain Contact Information for Model Training. Inspired by the work from McPartlon &121

Xu [57], we provided a small fraction of inter-chain contact (distance between Cβ atoms under 10122

Å) information as a binary embedding Cij ∈ {0, 1} concatenated to the edge embeddings during123

training. Specifically, for each training example, we generated a random integer i ∈ [0, 3] and124

randomly sampled i inter-chain contacts. Thus, during training, the model sees 0 to 3 contacts with125

equal probability. During inference for the blind docking tests, no inter-chain contact information is126

provided (Cij = 0).127

128

Figure 1: Diagram of the multi-track iterative transformer network for predicting a docked protein129

complex structure from input docking partners.130
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Multi-Track Iterative Transformer Network. We predict a docked protein complex structure from131

the input docking partners end-to-end via a multi-track iterative transformer network as shown in132

Figure 1. Inspired by the model architecture of AlphaFold2 [3], the network comprises a graph133

module followed by a structure module. The graph module communicates 1D (node embeddings)134

and 2D (edge embeddings) information and outputs the updated embeddings. The structure module135

inputs the updated embeddings from the graph module along with the backbone frames and outputs136

the predicted rotations and translations for updating the backbone frames. The main difference137

between our network and AlphaFold2 is that we input sequences and structures instead of MSAs. In138

addition, the network is much shallower compared to AlphaFold2, with only 3 layers for both the139

graph and structure modules. During training, we iterate the network 4 times with no gradient except140

for the last iteration. During each iteration, we recycle the outputs from both the graph and structure141

modules. Our implementation of recycling differs from AlphaFold2, as we additionally recycle the142

inter-residue orientation distribution from the output backbone frames of the structure module. The143

number of trainable parameters is around 4.3M. The last iteration outputs the predicted backbone144

frames, pair-wise distance bins, and per-residue confidence scores.145

Loss Functions. To train our neural network, we used intra-chain and inter-chain frame-alignment146

point error (FAPE), pairwise distance loss, the Cα local distance difference test (lDDT-Cα) [62] loss,147

and structure violation loss. The loss functions are largely adopted from AlphaFold-Multimer [53],148

but we omit the cross-entropy loss for sequences, as we do not input MSAs. We also exclude the149

within-residue violation term in the structure violation loss because our network does not predict150

side-chain atoms.151

Training Stages. We found that including the inter-chain FAPE at the beginning hinders the152

convergence of the intra-chain FAPE, as the gradients from the two loss functions compete. Therefore,153

we trained our network in three stages with gradually increasing loss terms. In the first stage, we154

only include the intra-chain FAPE, pair-wise distance loss, and lDDT-Cα loss. In the second stage,155

we add the inter-chain FAPE. At the last stage, we add the structure violation loss. With this156

training procedure, the neural network initially learns how to position the intra-chain residues, and157

subsequently acquires the ability to assemble the docking partners. Our model was first trained on the158

DIPS training set for 50 epochs, using Adam with a learning rate 5× 10−5. The best DIPS-validated159

model was then fine-tuned on the DB5.5 training set alone with the same optimization settings.160

3 Results161

162

Figure 2: (A) DIPS, (B) DB5.5 bound, and (C) DB5.5 unbound test sets results of docking success163

rates with CAPRI acceptable, medium, or high quality ranking. The success rates are calculated164

as the fraction of cases within a specific range of DockQ scores. Scores above 0.23 are considered165

acceptable, scores between 0.49 and 0.80 are considered medium quality, and scores above 0.80 are166

considered high quality [63]. * indicates inference starting from the unbound conformation.167

Evaluation. We evaluate the predicted structures using the DockQ score [63], which assesses the168

structural quality of the interface and provides a score ranging from 0 to 1. Following the practice in169

the CAPRI blind prediction challenge [64], we use a DockQ score threshold of 0.23 to count as a170

successful dock, corresponding to an "acceptable" CAPRI ranking.171
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Bound-conformation Docking Results. For the bound docking task, we compared GeoDock with172

the existing methods mentioned in EquiDock [55]. Each method belongs to one of the categories173

specified in the introduction. ClusPro [1] is an exhaustive global search method using FFT; PatchDock174

[21] is a local shape feature matching approach; ATTRACT [30] is energy minimization with175

a reduced protein model; EquiDock [55] is a deep learning rigid-body docking approach. The176

predicted protein complex structures of these methods are taken from the EquiDock GitHub repository177

https://github.com/octavian-ganea/equidock_public. We excluded HDOCK [65] in our178

comparison, as it is a template-based docking method and the test targets are in HDOCK’s template179

set. We cannot compare GeoDock to the dMaSIF rigid docking method [48] since they have not180

reported the per-target docking success rate, and their code is not accessible. We also do not compare181

with AlphaFold-Multimer [53] due to the presence of test targets within their training sets. We182

employed the best DIPS-validated model and the DB5.5 fine-tuned model to evaluate DIPS and183

DB5.5 held-out test sets, respectively. Our method GeoDock successfully docks 41% of the targets in184

the DIPS test set, outperforming all the other tested methods (Fig 2A). On the DB5.5 bound set of185

targets tested in EquiDock [55] paper, GeoDock obtains a 25% success rate, outperforming EquiDock186

and PatchDock but underperforming other traditional methods (Fig 2B). The lower success rate on187

DB5.5 relative to DIPS suggests that the DIPS training set, which is predominantly homo-multimers,188

may not adequately cover the range of interface diversity in the DB5.5 set.189

Unbound-conformation Docking Results. For the unbound docking task, we compared GeoDock190

with the conventional methods ClusPro [1] (rigid docking) and ReplicaDock2 [2] (flexible docking).191

For ClusPro, we used the single top model success rate reported in their paper [66]. For ReplicaDock2,192

we selected the single top model (ranked by Rosetta interface score) obtained from blind docking193

runs. We evaluate our method on the DB5.5 unbound set (Fig 2C) of flexible targets (classified as194

medium or difficult). The success rate of GeoDock performs similarly to the traditional rigid docking195

method ClusPro (7% vs 6%), demonstrating GeoDock’s capability of unbound docking. However,196

GeoDock underperforms the physics-based flexible docking method ReplicaDock2 (7% vs 22%).197

Similar to GeoDock, DockGPT [57] reported a blind unbound docking success rate (7%) on a DB5.5198

set of 42 targets (classified as rigid, medium, or difficult). The generally lower docking success rates199

for unbound docking reflect the current difficulty of deep-learning docking approaches to capture200

backbone conformational changes.201

202

Figure 3: Analysis of backbone flexibility measured with backbone interface RMSD (BB-iRMS)203

for DB5.5 flexible targets. (A) BB-iRMS distributions of GeoDock-predicted structures to unbound204

structures. (B) BB-iRMS of GeoDock-predicted structures to bound structures versus unbound to205

bound. (C) Comparison of the unbound structure (grey) superimposed over the bound (green), and206
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the GeoDock-predicted structure (blue) for the DsbC-DsbDalpha complex (PDB accession code:207

1JZD_AB:C (bound); 1JZO_AB and 1JPE_A (unbound)).208

Backbone Flexibility. As shown in Figure 3, GeoDock is able to move the backbone at the flexible209

regions. The current GeoDock model typically pushes the backbone away from the bound state (Fig210

3B) similar to previous conformer selection methods [67]. The observed movement is minimal (< 1Å211

Fig 3A) and the predicted structures closely resemble the input unbound structures (Fig 3C). The212

current training examples had no conformational change, so a next step might be to fine-tune our213

model with an ensemble of sampled backbone conformations (e.g. from ReplicaDock2 [2]) to better214

capture conformational changes from the unbound to bound states.215

Inference Speed. The inference times of GeoDock are 0.76 ± 0.62 seconds for the DIPS test set216

(residue sizes 100-800) and 0.80 ± 0.52 seconds for the DB5.5 test set (residue sizes 200-700) on217

a single NVIDIA V100 GPU, which is faster than the reported runtimes for EquiDock (5 ± 5 and218

5 ± 10 seconds) and is at least 103 times faster than the other methods [55]. Inference time is219

important for applications that require high throughput protein complex structure prediction, such as220

structure-based virtual screening.221

4 Discussion and Conclusion222

GeoDock is a fast, end-to-end approach for flexible protein-protein docking with a multi-track223

iterative transformer network. Unlike previous deep learning methods for protein complex structure224

prediction that require MSAs as input [3, 4], GeoDock inputs structure and sequence information of225

individual proteins and predicts a docked protein complex structure, which suits the task when the226

unbound structures are given. Furthermore, the model allows for backbone movements, which is in227

contrast to previous deep learning methods that assume no conformational changes [55, 48]. With228

the same training dataset and faster inference speed, our method GeoDock outperforms EquiDock229

[55] on both DIPS and DB5.5 test sets. The observed improvement can be attributed to the iterative230

updating of coordinates, which contrasts with the EquiDock paper’s approach of predicting a single231

transformation for one of the docking partners.232

While this method significantly accelerates the inference process, in terms of docking success rates,233

it does not surpass conventional methods that use sampling and re-ranking strategies. This may be234

attributed to the training objective of the model not aligning with the evaluation of docking success,235

which is determined by the percentage of predictions with a DockQ score above a certain threshold.236

The objective function of GeoDock is to minimize the expected error between the predicted and237

ground truth structures. Trained with this objective, the model learns to predict structures with low238

average error, although each individual structure may not necessarily be considered a success case239

if the error is not sufficiently low. A more viable objective is to identify a low-error docking pose240

distribution and sample from it, which can be framed as a generative model similar to a prior study241

on the small molecule docking using diffusion model [68]. This suggests a future research direction242

of deep generative models in sampling protein docking poses.243

We have demonstrated that GeoDock can move the backbone despite being currently trained only on244

the bound protein complexes. However, the movement is minimal, and the predicted structures closely245

resemble the input unbound structures. We leave for future work the fine-tuning of the model with246

sampled backbone conformations to test whether the model can better capture the conformational247

change upon binding. This is particularly important for cases such as allosteric inhibition or docking248

from uncertain unbound model structures, where the flexible regions on the proteins hinder the249

success of rigid docking.250

For target-specific protein binder design, e.g., screening antibodies for a specific antigen, a high-251

throughput docking algorithm is usually required to scan over a vast search space of potential hits.252

With further development, GeoDock can serve as a fast and flexible protein-protein docking tool and253

facilitate the design of protein binders and drugs for a wide variety of targets.254
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Code Availability258

Code, pre-trained models, and a demonstration Jupyter notebook for GeoDock are available at259

https://github.com/Graylab/GeoDock.260
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