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Abstract 

PURPOSE:  

Systematic repurposing of approved medicine for another indication represents an attractive strategy 

to accelerating drug development in oncology. Herein we present a strategy of combining biomarker 

testing with drug repurposing to identify new treatments for patients with advanced cancer.  

 

METHODS: 

Tumours were sequenced with Illumina TruSight Oncology 500 (TSO-500) platform or the 

FoundationOne® CDx panel. Mutations were manually screened by two medical oncology clinicians 

and pathogenic mutations were categorised with reference to the literature. Variants of unknown 

significance were classified as potentially pathogenic if a plausible mechanism and computational 

prediction of pathogenicity existed. Gain of function mutations were evaluated through the repurposing 

databases Probe Miner, the Broad Institute Drug Repurposing Hub (Broad Institute DRH) and 

TOPOGRAPH. Gain of function mutations were classified as repurposing events if they were identified 

in Probe Miner, were not indexed in TOPOGRAPH which captures active clinical trial biomarkers and 

excluding mutations for which a known FDA-approved biomarker label exists. The performance of the 

computational repurposing approach was validated by evaluating its ability to identify known FDA-

approved biomarkers. Exploratory functional analyses were performed with gene expression data and 

CRISPR-dependency data sourced from the DepMap portal. The total repurposable genome was 

identified by evaluating all possible gene-FDA drug approved combinations in the Probe Miner dataset.  

 

RESULTS: 

The computational repurposing approach was highly accurate at identifying FDA therapies with known 

biomarkers (94%). Using a real-world dataset of next-generation sequencing molecular reports (n = 94) 

and excluding the identification of mutations that would render patients eligible for FDA-licensed 

therapies or local clinical trials, it was found that a meaningful percentage of patients (14%) would have 

an off-label therapeutic identified through this approach. Exploratory analyses were performed, 

including the identification of drug-target interactions that have been previously described in the 

medicinal chemistry literature but are not well known, and the evaluation of the frequency of theoretical 

drug repurposing events in the TCGA pan-cancer dataset (73% of samples in the cohort).  
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CONCLUSION: 

Overall, a computational drug repurposing approach may assist in identifying novel repurposing events 

in cancer patients with advanced tumours and no access to standard therapies. Further validation is 

needed to confirm the utility of a precision oncology approach using drug repurposing.  
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Computational repurposing of drugs for patients with advanced 

cancer 

 

Introduction 

Improving access to novel therapeutics for patients with advanced and poor prognosis cancer is 

important and challenging. Twin challenges in these patients are access to novel therapeutics and 

limited drug efficacy. The traditional pathway for accessing novel therapeutics in this patient population 

is through phase I clinical trials.  However, several issues limit the utility of this pathway to accelerate 

drug development in this subgroup of patients, including access, logistics and poor efficacy.  

 

As a consequence of safety being the primary endpoint for these trials, strict inclusion criteria often 

exclude patients from enrolment, with studies showing that as few as 34% of real-world cancer patients 

are able to access these trials (1). Access is compounded by lack of locally available clinical trials for 

up to 77% of patients (2). Logistically, due to cohort size limitations in dose escalation, phase I trials 

are not continuously accruing patients, further limiting trial availability. Finally, despite nearly doubling 

of efficacy rates on aggregate across phase I trials over the last 20 years, efficacy remains low with 

response rates of 12% (3). 

 

To overcome limited efficacy, biomarker enriched clinical trials consistently report higher response rates 

than biomarker-agnostic studies (4). This approach is consistent with the objective of precision 

oncology, which aims to identify targetable molecular aberrations that are unique to subsets of patients 

(5). Consequently, trends in anti-cancer drug development for patients with advanced solid tumours are 

increasingly aiming to match patients with specific molecular aberrations to trials targeting those 

aberrations. 

 

To mitigate issues relating to the relative low frequency of these aberrations, trials with master protocols 

using ‘umbrella’ (single condition, multiple sub-studies for different molecular aberrations) and ‘basket’ 
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(multiple conditions, single targetable molecular aberrations) have been designed to improve this 

matching process (6). The NCI-MATCH master protocol is one example of a highly successful umbrella 

study, identifying ‘actionable’ alterations in 38% of patients screened for this study (7). 

 

However, despite the significant cost and infrastructure development incorporated in these master 

protocols, results to date highlight two specific problems hindering drug development. Firstly, despite 

38% of patients having actionable alterations, only 18% of patients were assigned treatment (7) 

following the application of exclusion criteria. Secondly, although some sub-studies in NCI-MATCH 

have been an unequivocal success such as BRAF targeted therapy in non-gastrointestinal tumours, 

other therapies have modest response rates as low as 3%, although response in specific tumour 

subtypes may assist in biomarker refinement (8).  

 

A drug repurposing approach, defined as identifying new cancer indications for existing approved drugs, 

is an attractive alternative. Specifically, repurposing enables wider access to therapies which are widely 

available for other indications, with established safety profiles and prescribing guidelines enabling more 

widespread clinical use of repurposed drugs. Additionally, repurposing, if successful, has numerous 

well documented financial and logistical advantages compared to traditional drug development (9). 

Although repurposing has been successful for non-cancer indications, such as sildenafil, which was 

developed for angina and has been licensed for treatment for erectile dysfunction (10), few licensed 

repurposed therapies for oncology indications exist, with thalidomide in myeloma being the best-

described example (9). 

 

Most repurposing efforts have been developed in response to in vitro and in vivo preclinical studies 

demonstrating activity of specific compounds or by serendipity (9, 11). In vitro systematic drug 

repurposing screens have systematically evaluated compounds for anti-cancer activity, with the 

resource mostly being used for target identification (11). The Broad Repurposing Hub is one such 

systematic screen, which involved the curation of 4,707 compounds, experimental confirmation of their 

identities and annotated these compounds with reference to the literature (12). Overall, three broad 

types of drug repurposing have been described: off-label use for the same molecular aberration in a 

different indication (such as the repurposing of trastuzumab from human epidermal growth factor 
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receptor (HER2) amplified breast cancer to HER2 amplified gastric cancer); off-target activity (such as 

the use of imatinib to target KIT mutations in gastrointestinal stromal tumours); and combination 

approaches based on in vitro assays (13). 

 

To our knowledge, a systematic evaluation of off-target activity of FDA-approved drugs to target 

molecular variants for which approved therapies do not exist has not been undertaken. We have 

previously developed a computational, objective, quantitative assessment of small molecules for their 

use to selectively study specific proteins, also termed chemical probes, that we named Probe Miner 

(15). Probe Miner is based on six different quantitative scores of which potency and selectivity have the 

highest weight in the final prioritization. To calculate the scores, Probe Miner uses publicly available 

pharmacological data of several resources integrated in the knowledgebase canSAR, that also 

integrates its own curated pharmacological data from selected publications (16). Accordingly, Probe 

Miner can identify the most potent and selective compound to study a specific protein. The Broad 

Institute DRH is an annotated repurposing library combining publicly available clinical-drug structures 

from regulatory data and public databases with extensive manual curation (12).  TOPOGRAPH is a 

compendium of approved and experimental therapies assembled from regulatory data, public 

databases and literature review used to meet the clinical need for tiered assessment for actionability 

and linking biomarkers to clinical trials (17). The Cancer Dependency Map Project builds upon the 

original Cancer Cell Line Encyclopedia (18), which involved the systematic molecular profiling of 1,000 

cell lines, and performed large-scale functional genomics profiling via RNA-interference and CRISPR 

screens to identify genetic dependencies. In parallel, these cell lines had systematic drug sensitivity 

profiling performed. Here, we hypothesise that using these publicly available resources to 

systematically evaluate off-target drug repurposing activity is feasible and potentially expands 

therapeutic options available to patients. 

 

Methods: 

Patients 

Patients with metastatic or advanced solid organ malignancies were referred from participating partner 

hospitals via the Monash Partners Comprehensive Cancer Consortium (as coordinating body) who 

were sequenced using next generation sequencing (NGS) through the Molecular Screening and 
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Therapeutics (MoST) clinical trial platform study during patient care were accessed. Ethics approval for 

the current study was granted through the Alfred Hospital Human Research Ethics Committee (HREC) 

(419/21).  

 

The MoST trial NGS panel utilises either the Illumina TruSight Oncology 500 (TSO-500) panel or the 

FoundationOne® CDx panel.  The TSO-500 analyses 523 genes for single nucleotide variations (SNVs) 

and insertion/deletions. It also analyses 55 genes for fusion transcripts and splice variants. Alternatively, 

the FoundationOne® CDx panel analyses 324 genes for substitutions and insertion/deletions.   

Microsatellite instability (MSI) status was classified as high and low as per manufacturer’s specification 

of the respective panel. Tumour mutational burden (TMB), defined as number of non-synonymous 

mutations per megabase, was dichotomised at the threshold of 10mut/mb consistent with KEYNOTE-

158 study that form the basis of pembrolizumab approval (19).   

 

 

 

Classification of Variants 

NGS reports were secondarily reviewed by two medical oncology clinicians (FZ, IW, MA) to classify and 

curate genomic variants of significance.  Variants were classified into either potential gain of function or 

loss of function mutations based on literature review and annotated as pathogenic, likely pathogenic, 

or likely benign by  cross-referencing against the Catalogue of Somatic Mutations in Cancer (COSMIC) 

database (20).  Their corresponding pathogenicity score by Functional Analysis Through Hidden 

Markov Models (FATHMM) was recorded (21). A literature review to identify pathogenic mutations 

which had been previously orthogonally functionally validated was then performed.  For variants of 

uncertain significance (VUS), mutations were annotated as possibly pathogenic if they demonstrated a 

plausible mechanism, pathogenic FATHMM score, in combination with review by an oncologist (MA) 

and medicinal chemist (AA). In general, truncating mutations were classified as loss of function and 

amplifications were classified as gain of function.  Non-synonymous single nucleotide (nsSNV) variants 

were classified on a case-by-case basis.  Kinase and hotspot mutations in known oncogenes were 

classified as potential gain of function mutations.   
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Identification of Drug Targets 

Gain of function mutations were assessed as possible drug targets using three well-established and 

accessible complementary databases– Probe Miner (15), the Broad Institute DRH (12) and 

TOPOGRAPH (17).  Probe Miner uses a systematic quantitative approach combining publicly available 

chemical and pharmacological data with an objective scoring metric, weighting selectivity and potency, 

to identify chemical probes, including licensed medicines, that bind specific protein targets (15). To 

assess the predictive performance of Probe Miner, we postulated that the top scoring results from this 

platform could re-identify FDA-approved drugs (15), which would be heavily weighted for selectivity and 

potency for the specific protein.  FDA approved drugs targeting that mutation were reviewed. A list of 

drugs meeting these criteria was curated for each gain of function mutation.  Gain of function mutations 

were then filtered using the Broad Institute DRH (12) and TOPOGRAPH databases (17).  Again, a list 

of drugs identified as potentially targeting these gain of function mutations was collated. The Broad 

Institute DRH was utilised to assess the degree of overlap in repurposing opportunities identified by 

Probeminer. Variants in TOPOGRAPH were assumed to have preclinical/clinical rationale given this 

database specifically curates this information. 

 

Categorisation of Drug Repurposing Events 

From the list of curated drugs identified via Probe Miner and the Broad Institute DRH, drug repurposing 

events were categorised. A repurposing event was classified as any gene aberration with a drug 

repurposing opportunity identified on one of the databases. Initially gain of function mutations in genes 

with well recognised, investigated and approved targeted therapies (Tier I mutations) were removed 

after review by two oncologists (IW, MA) and cross-referencing with the Table of Pharmacogenomic 

Biomarkers in Drug Labelling published by the FDA (22). These included KRAS, ERBB2, EGFR, BRAF, 

KIT, CDK4, CDK6 and PIK3CA.  Mutations of potential clinical significance (aligning with Tier II (23) 

mutations), for which an active ongoing clinical research program was investigating trial therapies with 

a strong preclinical/clinical rationale, were removed using TOPOGRAPH (17) and annotated as 

repurposing events with trial level evidence. Remaining mutations were classified as repurposing 

events without trial level evidence. Manual curation of remaining mutations was performed by an 

oncologist (MA) and a medicinal chemist (AA). This included reviewing mechanistic data to ensure the 

binding identified in public databases was likely to be functionally consequential. Mutations with 
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identified drugs meeting these criteria were considered novel drug repurposing events from genomic 

variants.  Well-known off-label drug-target interactions were annotated as off-label repurposing events 

(MA, AA) and drug-target interactions which were not well known were annotated as novel repurposing 

events. Analysis was then undertaken to assess the degree of overlap between recommendations 

generated from all three databases: Probe Miner, Broad Institute and TOPOGRAPH.  

 

Exploratory functional analysis of drug-target interactions 

Exploratory functional analysis was performed using data obtained from the Cancer Dependency Map. 

Drug sensitivity data from the PRISM repurposing project (11) and genomics of drug sensitivity screen 

(24, 25) were cross-referenced against gene expression data (26) and CRISPR-gene dependency data 

(27). Drug-target combinations identified by Probe Miner, for which a possible relationship could be 

observed, were annotated. 

 

Evaluation of repurposable genome 

The repurposable genome was defined as genes for which a drug repurposing event could be identified 

by Probe Miner. This was assessed first by converting the Uniprot accession indexed in Probe Miner to 

an entrez ID and gene name. All compounds indexed in Probe Miner per gene, with a Probe Miner 

global score >0.25, were cross referenced against FDA licensed therapeutics from the Drugs@FDA 

database, downloaded on 6 May 2022. The top ranked unique compounds were then collated with 

corresponding genes, to create the total repurposable genome. The genes included in the total 

repurposable genome were then evaluated for gene mutations in the The Cancer Genome Atlas 

(TCGA) pan-cancer analysis of whole genomes dataset (28) from Cbioportal (29, 30) to calculate 

repurposable frequency. All analysis was performed in R version 4.2.2. 

 

Results 

Validation of Probe Miner accuracy for FDA approved medications 

Drugs that are FDA licenced with a biomarker indication in oncology were curated from the Table of 

Pharmacogenomic Biomarkers in Drug Labelling published by the FDA (22). This table was manually 

curated (FZ, MA) to ensure that the drug target for the FDA approved drug was correct. Specific 

examples of curation include, FDA labels identifying a molecular target related to the tumour type (such 
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as the oestrogen receptor, ESR1 gene in breast cancer) as opposed to the molecular target (such as 

CDK4 inhibitors). The curated table is shown in Supplementary Table I, with the molecular targets 

labelled “Target”. For each drug-target combination, manual curation was performed to find small 

molecular inhibitors that bind the specific molecular target (n = 67, Supplementary Table II). Of the 67 

drug-target combinations, Probe Miner identified 94% as targets, with a quantitative score ranging from 

0.19 (ivosidenib for IDH1) to 0.80 (ponatinib for ABL1) (Supplementary Table II). Thirty drugs were 

ranked in the top ten chemical probes (45%), highlighting the good performance of the in silico 

approach. It must be stressed that Probe Miner includes many chemical probes that are not licensed 

drugs as its primary use is in chemical biology, so the performance for this alternative use is significant. 

Highly selective small molecule inhibitors consistently ranked higher than less selective inhibitors (e.g. 

osimertinib ranked higher than erlotinib for EGFR). Of the four drug-target combination missed by Probe 

Miner, one interaction was the rarely used toremifene as a selective oestrogen receptor modulator 

(ESR1). The full list of FDA licensed drugs with oncology indications and their Probe Miner score and 

rank is listed in Supplementary Table II.  

 

Quantification of the performance of Probe Miner for detecting true drug-target interactions was 

performed. For this analysis, a Probe Miner quantitative score of 0.25 was used as it was slightly greater 

than the lower bound of the range of global scores of FDA licensed therapies with known biomarkers. 

For the gold standard, curated FDA-approved drug-biomarker combinations were considered true 

positives and all non-FDA approved drug-biomarker combinations were considered true negatives. Only 

compounds indexed in both the Drugs@FDA database and Probe Miner were considered in this 

analysis because Probe Miner may not contain all the latest FDA-approved drugs, that sometimes take 

a few months to appear in public pharmacological databases. Only biomarkers for which there were 

more than one licensed therapy were considered as these were most likely to have sufficient data to 

inform analysis. . Overall, Probe Miner identified FDA-licensed biomarker-drug combinations with 

moderate-to-high sensitivity (range 0.5-1) and high specificity (range 0.99-1.00) (Table I). Although the 

precision of Probe Miner was demonstrably lower, this may be due to the high threshold used for true 

positives in this analysis (i.e. if a drug-target interaction identified by Probe Miner is clinically efficacious 

but is not FDA listed, it would be identified as a false positive).  
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Gene True 

positive 

False 

positive 

True 

negative 

False 

negative 

Sensitivity Specificity Precision 

CYP19A1 3 5 741 0 1 0.99 0.38 

BCR 5 11 733 0 1 0.99 0.31 

ALK 3 11 734 1 0.75 0.99 0.21 

EGFR 5 9 735 0 1 0.99 0.36 

BRAF 3 3 743 0 1 1.00 0.5 

ROS1 3 8 738 0 1 0.99 0.27 

ESR1 3 9 737 1 0.75 0.99 0.25 

KIT 2 13 734 0 1 0.98 0.13 

FGFR2 2 11 736 0 1 0.99 0.15 

ERBB2 2 10 736 1 0.67 0.99 0.17 

NTRK1 2 5 742 0 1 0.99 0.29 

NTRK2 1 9 738 1 0.5 0.99 0.1 

NTRK3 1 10 737 1 0.5 0.99 0.09 

FLT3 2 14 733 0 1 0.98 0.13 

PARP1 4 0 745 0 1 1 1 

RET 1 17 731 0 1 0.98 0.06 

MET 2 5 742 0 1 0.99 0.29 

RARA 1 5 743 0 1 0.99 0.17 

 

Table I: Performance of Probe Miner for identification of FDA-licensed drug-biomarker combinations 

 

Patient demographics 

A total of 94 patient NGS reports generated from September 2019 to May 2021 were reviewed. The 

median age of patients undergoing NGS was 63 years with only 36.2% of patients 65 years or older 

(Table II). The most common tumour group undergoing testing was hepatobiliary/pancreatic cancers 

(23.4%), followed by gynaecological (21.3%), lower gastrointestinal (12.8%) and upper gastrointestinal 

cancers (7.4%) (Table II). The 15 subtypes listed under other included carcinoma of unknown primary, 

anal, peritoneal, thyroid and unknown tumour streams. These are reflective of a patient population with 

limited treatment options. Tumour histology was most commonly adenocarcinoma (64.9%) followed by 

carcinoma (13.8%), squamous cell carcinoma (4.3%) and carcinoid (2.1%) (Table II). Other histology 

included papillary cancer, small cell carcinoma, serous and mucinous cystadenocarcinoma and 
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glioblastoma. No patients were microsatellite instability high (MSI-H) (Table II). High tumour mutational 

burden (TMB-H) was found in 6.4% of patients (Table II). 

 

Age  

Median age (range) – years 63 (29 – 86) 

≥ 65 years – no. (%) 34 (36.2) 

Tumour stream – no. (%) Total (n = 94) 

Upper Gastrointestinal 7 (7.4) 

Hepatobiliary/Pancreas 22 (23.4) 

Lower Gastrointestinal 12 (12.8) 

Breast 3 (3.2) 

Genitourinary 6 (6.4)  

Lung  5 (5.3) 

Gynaecological 20 (21.3) 

Brain 1 (1.1) 

Melanoma/Skin 1 (1.1) 

Head and Neck 2 (2.1) 

Sarcoma 0 (0.0) 

Other 15 (16.0) 

Tumour histology – no. (%)  

Adenocarcinoma 61 (64.9) 

Squamous cell carcinoma 4 (4.3) 

Invasive ductal carcinoma 1 (1.1) 

Sarcoma 1 (1.1) 

Melanoma 1 (1.1) 

Mesothelioma 1 (1.1) 

Carcinoma 13 (13.8) 

Carcinoid 2 (2.1)  

Transitional cell carcinoma 1 (1.1) 

Other 9 (9.6) 

Biomarker Analysis- no. (%)  

TMB-H 6 (6.4%) 

MSI-H 0 (0%) 

 

TMB-H=Tumour Mutational Burden High. MSI-H=Microsatellite Instability High 

Table II: Demographics of patient cohort  
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Mutations 

A total of 396 mutations were described from the 94 patient NGS reports, with 180 (45.4%) being gain 

of function mutations. The most common type of gain of function alteration was amplification (58.3%), 

with genes affected including CCND1, FGF3, FGF19, FGF4, MYC, ERBB2 and EGFR affected most 

frequently (Figure 1). Non-synonymous single nucleotide variations (nsSNV) represented 35.6% of gain 

of function mutations (Figure 1). Genes most frequently altered were KRAS, TP53, BRAF, PIK3CA and 

NRAS. The frequency of fusions was 3.3% including TMPRSS2-ERG, HNRNPH1-ETV4, ESR1-

PLEKHG1 and TPM3-ROS1. Other alterations accounted for 2.7%.  
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Figure 1: Histogram of gain of function mutations (n=180) 

Gain of function mutations included amplifications (blue), non-synonymous single-nucleotide variants (green), fusions (orange) and other mutations (grey). 
Asterisk indicates mutations for which a repurposing event was identified on Probeminer (n=32).
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Drug Repurposing 

Seventy-five repurposing events were identified by Probe Miner, 80 by TOPOGRAPH and 50 by the 

Broad Institute DRH, which reduced to 32, 29 and 26 respectively after removing duplicate events 

(Figure 2). Within Probe Miner, there were 21 repurposing events with trial level evidence, 11 

repurposing events without trial level evidence and four novel drug repurposing events (Figure 2). At a 

patient level, repurposing was applied to mutations for which no FDA-approved therapy or recruiting 

clinical trial was available (Figure 3). 13 unique patients had an off-label gene event (i.e., the 

repurposing approach identified a gene target for which there was no available clinical trial nationally). 

 

Figure 2: Repurposing events 

Unique repurposing events identified via the three databases were evaluated for overlap as indicated 
in the Venn diagram (top). The breakdown of these repurposing events by trial level evidence and 
degree of novelty (bottom). 
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The most common tumour type with targets found in Probe Miner was hepatobiliary/pancreatic (24% of 

patients), colorectal (18.7%), gynaecological (16%), genitourinary (9.3%) and upper gastrointestinal 

(5.3%).  The most common types of mutations with probes found in Probe Miner were nsSNV (46.7%) 

and amplifications (46.7%) (Table III, Figure 1).  The most common gene involved in nsSNV mutations 

was KRAS (25.3%), with KRAS G12D being most frequent. This was followed by BRAF (5.3%) and 

PIK3CA (5.3%) mutations. In terms of amplifications CCND1 (10.7%), CCNE1 (5.3%) and ERBB2 

(5.3%) were most involved. A full list of mutations identified is included in Supplementary Table III.  
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TYPE OF MUTATION MUTATED GENE MUTATIONS (N) MUTATIONS (%) 

NSSNV TOTAL 35 46.7 

 AR      1  

 BRAF 4 5.3 

 EED 1  

 EPHA7 1  

 FLT4* 1  

 KIT 1  

 KRAS 19 25.3 

 MAP2K1 (MEK1)  1  

 PIK3C2G* 1  

 PIK3CA  4 5.3 

 RAF1 1  

AMPLIFICATION TOTAL 35 46.7 

 AURKA* 1  

 CCND1 8 10.7 

 CCND3 1  

 CCNE1 4  5.3 

 CDK12 1  

 CDK4 2  

 CDK6 1  

 CDK8* 1  

 DNMT1 1  

 EGFR 5  

 ERBB2 4  5.3 

 ERBB3 1  

 FGFR3 1  

 FLT3 1  

 MDM2* 1  

 MPL 1  

 RARA 1  

OTHER TOTAL 1 1.3 

 MET 1  

FUSION TOTAL 4 5.3 

 TMPRSS2-ERG 3  

 TPM3-ROS1 1  

 OVERALL TOTAL 75  

Table III: Mutations with drug probes found in Probeminer  

*Genes with novel drug repurposing probes found
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Figure 3: CONSORT diagram of selection of novel drug repurposing events, patient level 

180 gain of function mutations were identified across the cohort of patients, which represented 80 
unique genes across 68 patients. Eight of these genes had FDA licensed therapies available and a 
further 17 had active, locally available clinical trials evaluating this biomarker. Of the 55 remaining 
mutations, 11 mutations (13 patients) had a repurposable drug identified by Probeminer or which 4 were 
considered novel. 
 

Novel Drug Repurposing Events 

Within the Probe Miner drug events found, four novel repurposing targets were found (Figure 3), with 

multiple candidate drugs, of which the top two candidate repurposing events were further evaluated. 
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Specific mutations included for PIK3C2G R1034H and FLT4 V763M, whilst the other genes were 

amplified  (Supplementary Table III). To demonstrate the validity of the drug repurposing events 

identified by Probe Miner, a comprehensive literature search was performed for the drug-target 

interactions considered novel. Strong biochemical data supported drug-target interactions in each case. 

For PIK3C2G-midostaurin, PIK3C2G-lapatinib, FLT4-axitinib, FLT4-tivozanib, AURKA-axitinib and 

CDK8-sorafenib experimental data demonstrating target selectivity was found (31, 32, 33). The potency 

was highest for FLT4-tivozanib (0.2 nM) and lowest for PIK3C2G-lapatinib (7,500 nM). Overall, literature 

supporting each drug-target interaction was demonstrated, with robust supporting biochemical data 

observable for all novel repurposing events. 

 

Although Probe Miner is designed to evaluate drug-target binding, it is not designed to predict the 

functional consequences of this interaction. To evaluate whether prospective repurposing events are 

potentially functionally consequential, public datasets download from the Cancer Dependency Map 

Project were explored (24, 25, 26, 27, 34, 35, 36, 37). The Cancer Dependency Map Project builds 

upon the original Cancer Cell Line Encyclopedia (18), which involved the systematic molecular profiling 

of 1,000 cell lines, and performed large-scale functional genomics profiling via RNA-interference and 

CRISPR screens to identify genetic dependencies. In parallel, these cell lines had systematic drug 

sensitivity profiling performed. It was hypothesised that gene expression and gene-dependency in these 

public datasets would correlate with drug activity for each drug-target interaction in an exploratory 

analysis.  

 

To evaluate the validity of this hypothesis, target gene expression (26) and CRISPR dependency (27) 

from the Cancer Dependency Map Project were plotted against drug sensitivity (log-fold change in cell 

viability), from either the Genomics of Drug Sensitivity Screens (38) or the Broad PRISM project (11) 

for all known FDA approved drug-target combinations (Supplementary Table I). An ANOVA was 

performed comparing the drug sensitivity with gene-expression or CRISPR dependency data analysed 

by quartiles.  Of the FDA approved drug-target combinations, 55 had available drug sensitivity data, of 

which 23 (42%) had a statistically significant relationship between gene expression (n = 12) or gene 

dependency (n = 19) and drug sensitivity and 34 did not. Table IV lists the FDA drug-target combinations 

with statistically significant relationships between expression or CRISPR gene-dependency data and 
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drug sensitivity and Figure 4 (top panels) demonstrate violin plots of the drug sensitivity data for 

osimertinib. Only eight drug-target combinations demonstrated a statistically significant relationship 

between both gene expression and CRISPR gene-dependency and drug sensitivity, all of which were 

drugs targeting EGFR or ERBB2, two of the best characterised oncogenes. Supplementary Table IV 

lists all FDA-approved drug-target combinations for which no statistically significant relationship was 

found between gene-expression/CRISPR gene-dependency data and drug sensitivity. 

 

Target/Drug 

combination 

Gene expression and drug 

sensitivity p. value 

CRISPR-dependency and drug 

sensitivity p. value 

EGFR_afatinib 0.0025 0.0000 

EGFR_osimertinib 0.0250 0.0000 

ERBB2_neratinib 0.0000 0.0000 

ERBB2_tucatinib 0.0000 0.0000 

EGFR_dacomitinib 0.0000 0.0000 

EGFR_gefitinib 0.0004 0.0000 

ERBB2_lapatinib 0.0126 0.0000 

EGFR_erlotinib 0.0000 0.0000 

MAP2K1_cobimetinib 0.2454 0.0073 

BRAF_dabrafenib 0.8397 0.0000 

BCR_nilotinib 0.6058 0.0127 

PARP1_talazoparib 0.0000 0.0914 

BCR_dasatinib 0.9402 0.0329 

FGFR2_erdafitinib 0.3544 0.0138 

MAP2K1_trametinib 0.7233 0.0117 

PIK3CA_alpelisib 0.0747 0.0000 

RARA_tretinoin 0.0310 0.5605 

RET_cabozantinib 0.5788 0.0461 

ESR1_fulvestrant 0.7958 0.0015 

PARP1_niraparib 0.0000 0.2605 

CDK4_ribociclib 0.6047 0.0248 

PARP1_rucaparib 0.0359 0.8725 

BRAF_vemurafenib 0.3716 0.0000 

Total 12 19 

Bold indicates target/drug combinations with both supporting gene expression and CRISPR-gene 

dependency data. 

Table IV: FDA approved drug-target combinations with supportive functional data from the Cancer 

Dependency Map Project. 
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To evaluate the functional consequences of potential repurposing events, target gene expression (26) 

and CRISPR dependency (27) from the Cancer Dependency Map Project were plotted against drug 

sensitivity (log-fold change in cell viability or area under the curve of a dose-response curve), from either 

the Genomics of Drug Sensitivity Screens (38) or the Broad PRISM project (11) for the 11 repurposing 

events identified by Probe Miner without trial level evidence. A statistically significant increased drug 

sensitivity was demonstrated with increased PIK3C2G expression and lapatinib (p<0.001),with ERBB3 

expression (p<0.0001) and ERBB3 gene-dependency (p<0.0001) with multiple drugs including 

dacomitinib. Violin plots of the gene-expression and gene dependency data for dacomitinib-ERBB3 are 

shown in Figure 4 (bottom panels).  

 

  

Figure 4: Gene expression and drug sensitivity 

A) Drug sensitivity for osimertinib (area under the curve of a dose-response curve) according to EGFR 
expression (left) and EGFR gene-dependency (right). B) Drug sensitivity for dacomitinib (area under 
the curve of a dose-response curve) according to ERBB3 expression (left) and ERBB3 gene-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 1, 2023. ; https://doi.org/10.1101/2023.07.01.547311doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.01.547311


 22 

dependency (right). Asterisks indicate results of t-tests comparing relevant quartile with the first quartile 
of gene expression/gene dependency: * p<0.05, **p<0.01, ***p<0.001, ****P<0.0001 
 

Theoretical Drug Repurposing Events 

The total repurposable genome was evaluated by analysing all gene targets with a Probe Miner global 

score >0.25 (from Probe Miner dataset) that were indexed as a licensed therapeutic in the Drugs@FDA 

database to get the total repurposable genome. All drug-gene combinations found in this analysis are 

listed in Supplementary Table IV A total of 1,968 theoretical repurposing events were identified. These 

genes were evaluated for frequency of mutations in the TCGA pan-cancer cohort (28) to assess the 

frequency of patients having possible mutations. 2,142 out of 2,922 (73%) samples had a mutation in a 

gene that was categorised as a theoretical repurposing event. Drug-gene combinations with a Probe 

Miner global score > 0.7 were further analysed as described above to identify potentially functionally 

consequential repurposing events. Six repurposing events with supportive functional data were found 

(Table V)(Supplementary Figure I). 

 

Target/Drug 

combination 

Gene expression and drug 

sensitivity p. value 

CRISPR-dependency and drug 

sensitivity p. value 

EPHB2_dasatinib 0.0079 0.1454 

FRK_dasatinib 0.0006 0.9778 

FKBP1A_sirolimus 0.0295 0.0133 

STK24_neratinib 0.0014 0.1545 

DDR2_nilotinib 0.5003 0.0010 

GSK3A_abemaciclib 0.0766 0.0392 

 

Table V:  Probe Miner identified (global score > 0.7) repurposing drug-target combinations with 

supportive functional data from the Cancer Dependency Map Project. 

 

Discussion 

A biomarker-driven precision oncology approach is increasingly used to enrich patients for clinical trials, 

however, trial access issues limit the utility of this approach for real-world patients. A drug repurposing 

approach, using established drugs with known safety profiles, potentially mitigates limitations of the 

current paradigm. Traditional drug repurposing relies upon serendipity and more recently systematic 
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drug repurposing screens are being used for drug identification (11). Combining genomic biomarker 

testing with an in silico approach utilising pre-screened gene-drug interaction databases could enrich 

the identification of candidate drugs for repurposing to be formally tested in clinical trials.  

 

In this study, using a real-world dataset of next generation sequencing molecular reports, we showed 

that a meaningful (14%) percentage of patients would have an additional off-label therapeutic identified 

by using a computational drug repurposing approach. This compares favourably with the results of the 

NCI-MATCH clinical trial, which found an actionable alteration rate of 38% (8). As our computational 

drug repurposing approach excludes mutations that would confer eligibility for local clinical trials, this 

additional incremental off-label therapeutic access is particularly meaningful. As only 17% of patients 

with actionable mutations identified on the NCI-MATCH clinical trial enrolled onto a sub-study (7), the 

computational drug repurposing approach may substantially expand the number of patients treatable 

with a biomarker-enriched approach. Overall, a repurposing rate of 14% was consistent with our 

hypothesis that a computational drug repurposing approach may identify novel therapeutic options for 

patients with no further access to standard therapies. 

 

Several exploratory analyses were conducted which raised interesting findings that require further 

elucidation. Firstly, several drug-target interactions that have been previously elucidated in the 

medicinal chemistry literature, but are not well known, were identified. Preliminary exploratory functional 

analysis using publicly available datasets suggested that further validation of these targets may be 

warranted. Preclinical target validation is notoriously complex (39) and whilst these results are 

interesting, robust additional orthogonal validation is necessary to make further conclusions on the 

functional consequences of drug therapy.  

 

As the pool of licensed therapeutics increases continually and only 11% of the kinome is currently 

characterised (15), and the targeted NGS panel used evaluated only 523 genes, successful validation 

of this approach could potentially meet a large unmet disease burden in oncology patients if the genome 

becomes better characterised and more extensive sequencing is performed. To explore the theoretical 

drug repurposing genome, all genes mapped to compounds with a Probe Miner global score >0.25 with 

an FDA-licensed therapeutic were evaluated for their frequency on the TCGA pan-cancer dataset, 
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showing that 73% of samples in this cohort would have a theoretical drug repurposing event. This 

compares very favourably with the actionable alteration rate of 38% in the NCI-Match clinical trial.  

 

There are several limitations to this study. In the main analysis, curation of variants of uncertain 

significance is fraught with difficulty. Extensive manual curation with a robust framework was performed 

to minimise the risk of mischaracterising mutations. Additionally, as Probe Miner is predominantly based 

on medicinal chemistry datasets that specifically assess drug-target binding, the assumption that drug-

target binding results in meaningful anti-tumour activity is a large leap. Mitigating this, we evaluated 

Probe Miner’s ability to identify licensed FDA therapies linked to a biomarker, demonstrating high 

sensitivity (0.67-1.00) and specificity (0.99-1.00). These results strongly supported the validity of Probe 

Miner. Nevertheless, although strong inferences can be made about drug-target binding from this 

dataset, any conclusions regarding anti-tumour efficacy cannot be made from these data. Despite its 

inherent limitation, in silico functional predictions of utility of known therapies offer a novel strategy for 

rationally screening drug candidates to further examine in confirmatory phase 2 clinical trials.  

 

In the exploratory analysis, robust mechanistic exploration of drug-target interactions was not 

performed. To make firm conclusions regarding possible anti-tumour activity, ideally in vitro cell viability 

assays with subsequent in vivo validation would be performed. For the theoretically repurposable drugs 

analysis, the cut-off Probe Miner global score of 0.25 was chosen as this was slightly greater than the 

lower bound of the range of global scores of FDA licensed therapies with known biomarkers. The Probe 

Miner global score is a relative score per gene target and using an absolute score of 0.25 as a cut-off 

is arbitrary. Additionally, many mutations annotated in the TCGA pan-cancer dataset are passenger 

alterations and do not contribute to oncogenesis; inclusion of such genomics findings could explain the 

higher-than-expected theoretical drug repurposing rate. Nevertheless, as the genome is further 

characterised and new therapies are licensed these numbers will only increase and a large baseline 

rate of theoretical drug repurposing events is fundamentally supportive of further research in this area. 

 

Conclusion 

Despite significant advances in cancer care, patients with advanced solid tumours that are treatment 

refractory still face significant issues accessing novel therapeutics (8) and represent a large unmet 
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need. Clinical drug development is extremely costly and drug repurposing can potentially substantially 

reduce drug development costs and timelines (9). We provide initial data demonstrating that in a real-

world cohort of patients sequenced with a targeted NGS panel, that 14% of patients would have a 

possible, non-obvious drug repurposing candidate identified using a computational drug repurposing 

approach.   
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