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Abstract

A key challenge in neuroscience is understanding how neurons in hundreds of interconnected brain regions

integrate sensory inputs with prior expectations to initiate movements. It has proven difficult to meet this

challenge when different laboratories apply different analyses to different recordings in different regions

during different behaviours. Here, we report a comprehensive set of recordings from 115 mice in 11 labs

performing a decision-making task with sensory, motor, and cognitive components, obtained with 547 Neu-

ropixels probe insertions covering 267 brain areas in the left forebrain and midbrain and the right hindbrain

and cerebellum. We provide an initial appraisal of this brain-wide map, assessing how neural activity en-

codes key task variables. Representations of visual stimuli appeared transiently in classical visual areas

after stimulus onset and then spread to ramp-like activity in a collection of mid- and hindbrain regions

that also encoded choices. Neural responses correlated with motor action almost everywhere in the brain.

Responses to reward delivery and consumption versus reward omission were also widespread. Representa-

tions of objective prior expectations were weaker, found in sparse sets of neurons from restricted regions.

This publicly available dataset represents an unprecedented resource for understanding how computations

distributed across and within brain areas drive behaviour.
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Introduction

How does coherent and effective output emerge from hundreds of interconnected brain areas processing

information related to sensation, decisions, action, and behaviour1–3? To answer this question we need to

know how the activity of individual neurons and populations of neurons reflect variables such as stimuli,

expectations, choices, actions, rewards, and punishments4. This has duly been studied over decades using

electrophysiological recordings. Until recently, however, technical limitations restricted these recordings to

small invertebrates5 or to a small number of brain areas, leaving much of the mammalian brain uncharted

or described by fragmentary maps. For instance, the mouse brain comprises over 300 identified regions6, of

which only a minority has been recorded systematically in behaviourally equivalent settings. The regions

studied were typically chosen based on a priori hypotheses derived from previous recordings and from

anatomical connectivity. This approach can suggest a localisation of function, revealing brain regions as

being engaged in computations such as the accumulation of sensory evidence in favour of a decision7.

However, in some circumstances8–12, a region that shows this encoding can be silenced without substantial

behavioural consequences, suggesting the involvement of other regions. Overall, it has proven difficult to

obtain a comprehensive picture of neural processing based on different reports from different laboratories

recording in different regions during different behaviours and analysing the data with different methods.

A broader search for the neuronal correlates of variables such as sensation and decision-making thus

requires systematic recording at a wider scale, using a single task with sufficient behavioural complexity,

and using the same analysis methods on all the data. Obtaining such a comprehensive dataset has recently

become possible with advances in recording technology. In a species with a small brain such as the mouse,

Neuropixels probes13 have enabled larger-scale recordings, such as sampling activity across eight visual

areas14, or tens of brain regions in mice performing behavioural tasks15–17, or experiencing changes in

physiological state18. Modern imaging techniques also provide a wider view over activity across dorsal

cortical regions19–21. The results emerging from these broad surveys suggest that the encoding of task

variables varies greatly: some neural correlates are found only in few brain areas, others in sparse sets

of cells, while other variables appear to be distributed much more broadly. Thus, it is critical to record

even more fully, because past recordings may have missed essential regions with focused coding of certain

variables, and have not fully characterised the nature of distributed coding.

Here we present a publicly available dataset22 of recordings from 547 electrodes spaced across the

entire brain in mice performing a behavioural task that requires sensory, cognitive, and motor processing23.

This approach enables detection of brain-wide correlates of sensation, choice, action, and reward, as well

as internal cognitive states including stimulus expectation or priors. We also describe initial analyses of

these data, which indicate that the neural correlates of some variables, such as reward and action, can be

found in many neurons across essentially the whole brain, while those of other variables such as prior

expectations can be decoded from a narrower range of regions, and significantly influence the activity of

many fewer individual neurons. These data are intended to be the starting point for a detailed examination

of the algorithmic realisation of decision-making across the brain, and are a unique resource enabling the

community to perform a broad range of further analyses at a brain-wide scale.
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Results

We first describe the task and recording strategy; further details of how we ensured reproducible behaviour,

electrophysiology, and videography are available separately23, 24 and are summarised in the Methods. Next,

we describe the set of analysis methods we used to provide different views of a rich and complex dataset.

Finally, we report the neural correlates of the main events and variables in the task: the visual stimulus,

choice, feedback, the expectation of the upcoming stimulus or choice, and finally movement.

Behavioural task and recording. We trained 115 mice (80 males, 35 females) on the International Brain

Laboratory (IBL) decision-making task23 (Fig. 1a;b). On each trial, a visual stimulus appeared to the left or

right, and the mouse had to move it to the centre by turning a wheel with its front paws within 60 seconds

(Fig. 1c). The prior probability for the stimulus to appear on the left/right side was constant over a block of

trials, at 20/80% (right block) or 80/20% (left block). Blocks lasted for between 20 and 100 trials, drawn

from a truncated geometric distribution (mean 51 trials). Stimulus contrast was sampled uniformly from

five possible values (100, 25, 12.5, 6.25, and 0%). The 0% contrast trials, when no stimulus was presented,

were assigned to a left or right side following the probability distribution of the block, allowing mice to

perform above chance by incorporating this prior in their choices. Following a wheel turn, mice received

positive feedback in the form of a water reward, or negative feedback in the form of a white noise pulse and

a 2 s time-out. The next trial began after a delay, followed by a quiescence period during which the mice

had to hold the wheel still.

In these mice, we performed 547 Neuropixels probe insertions (see an example of one recording of

three trials in Fig. 1d), following a grid covering the left hemisphere of the forebrain and midbrain, which

typically represent stimuli or actions on the contralateral side, and the right hemisphere of the cerebellum

and hindbrain, which typically represent the ipsilateral side (Fig. 2a). These recordings were collected

by 11 labs in Europe and the USA, with most recordings using two simultaneous probe insertions. To

ensure reproducibility, one brain location was targeted in every mouse in every laboratory, as described

elsewhere24. Only sessions with at least 400 trials and behavioural performance of 90% on the 100%

contrast trials were retained for further analysis. Data were uploaded to a central server, preprocessed, and

shared through a standardised interface25. To perform spike-sorting on the recordings, we used a version

of Kilosort26, with custom additions27. This yielded 295,501 neurons (including multi-neuron activity),

averaging 540 per probe. To separate individual neurons from clusters of multi-neuron activity, we then

applied stringent quality control metrics (based on those described in Ref.14), which identified 32,766 ‘good’

neurons, averaging 60 per probe.

Following recordings, electrode tracks were reconstructed using serial-section 2-photon microscopy28,

and each recording site and neuron was assigned a region in the Allen Common Coordinate Framework6

(CCF; details in online table; statistics in Fig. 2b). Our main analyses are restricted to regions with 10 or

more neurons assigned to them in at least two sessions. Due to the grid-based electrode insertion strategy,

more recordings were made in larger regions, typically leading to more neurons. Note that it is harder to

extract good quality neurons from some regions than others, and so the yield differs substantially. We map

our main results into a flatmap of the brain29 (Fig. 2c); supplementary figures present some of the results

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547681doi: bioRxiv preprint 

https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
https://github.com/int-brain-lab/paper-brain-wide-map/blob/main/brainwidemap/meta/region_info.csv
https://doi.org/10.1101/2023.07.04.547681
http://creativecommons.org/licenses/by-nc-nd/4.0/


on more conventional 2D sections (Fig. S1). For reference, average activity across all regions aligned to

stimulus onset, first movement, and feedback is shown in Fig. S2.

The processed data for each trial consisted of a set of spike trains from multiple brain regions together

with continuous behavioural traces and discrete behavioural events (Fig. 1c;d). These were recorded using

a variety of sensors including three video cameras and a rotary encoder on the choice wheel. These data

were processed with custom scripts and DeepLabCut30 to yield the times of major events in each trial

(stimulus onset, first wheel movement, reward delivery or error tone) along with wheel velocity, whisker

motion energy, lick timing, and the positions of body parts. We only analyzed trials in which the first wheel

movement time (reaction time) was between 80 ms and 2 s (Fig. 1c).

Instructions for accessing the data22, together with an online browser, are available at

https://data.internationalbrainlab.org.
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Figure 1. The IBL task and data types. a) Schematic of the IBL task and block structure of an example

session. After the first 90 trials in a session, the probability of the stimulus being on the right side was

varied in blocks of consecutive trials. b) Timeline of the IBL task with main events and the variables on

which we concentrate. After a time of imposed stillness, the stimulus appears on the screen, then the first

movement is detected by a small threshold of wheel rotation. When the wheel is turned by more than 35◦,

the animal is considered to have made a choice and feedback is provided. Colours are as in later figures. c)

Distribution of times between stimulus onset and first wheel movement onset (which can be interpreted as a

reaction time), from 354 sessions. The distribution is truncated at 80ms and 2 s, because we only analysed

trials with first movement times between these bounds (78.3% of trials, see Methods). d) Example time

series and key trial information for three trials, including the wheel’s rotary encoder output, video analysis

and rasters showing the spike times of simultaneously recorded neurons in multiple brain regions.
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Figure 2. Brain-wide recordings during behaviour. a) Neuropixels probe trajectories shown in a 3D

brain schematic. b) For each region, the number of neurons recorded (full bar length) and the number of

good neurons used for analysis (filled portion; for reference, the black line on each bar shows 10% of the

number of recorded neurons, which is the average number of neurons that were good). Definitions of the

acronyms for brain regions are available online. The same table reports the so-called Cosmos hierarchical

grouping of the regions, which distinguishes ’Isocortex’, ’OLF’ (olfactory areas), ’HPF’ (hippocampal

formation), ’CTXsp’ (cortical subplate), ’CNU’ (cerebral nuclei), ’TH’ (thalamus), ’HY’ (hypothalamus),

’MB’ (midbrain), ’HB’ (hindbrain), ’CB’ (cerebellum). c) Flatmap of one hemisphere indicating the region

acronyms.

Behavioural performance. As previously shown23, mice learned both to indicate the position of the stim-

ulus and to exploit the block structure of the task. After training, they made correct choices on 81.7% ±

0.4% (mean ± s.d.) of the trials, performing better and faster on trials with high visual stimulus contrast

(Fig. 3a). Sessions lasted on average 650 trials (median 605, range [401, 1,525]). Towards the end of the

sessions, performance decreased and reaction times increased (Fig. 3b;c). On 0% contrast trials, where no

visual information was provided, mice gained reward on 59% ± 0.4% (mean ± s.d.) of trials, significantly

better than chance (t-test t114 = 21.9, p < 0.001). After a block switch, mice took around 5 to 10 trials to

adjust their behaviour to the new block, as revealed by the fraction of correct choices made on 0% contrast

trials after the switch (Fig. 3d). Mice were influenced by their prior estimate also in the presence of visual

stimuli: for all contrast values, mice tended to answer right more often on right blocks than left blocks

(Fig. 3e). In a minority of sessions, mice embodied these choices in overt untrained behaviour such as

whisking (Fig. S3).

Neural analyses. To obtain an initial appraisal of the brain-wide map we performed single-cell and popu-

lation analyses, assessing how neural activity encodes task variables and how it can be analysed to decode

these variables. We considered five key task variables (Fig. 4a): visual stimulus, choice (turning the wheel

clockwise or counterclockwise), feedback (reward or time-out), the block, and physical movement (wheel

speed). The main figures show the results of these analyses in a canonical dataset of 123 regions for which

we had at least two sessions with 10 good neurons each (for a total of 22,113 neurons). Supplementary

figures show results for the wider range of neurons and regions appropriate for each analysis.

To provide complementary views on how these task variables are represented in each brain region, we

used four analysis techniques (Fig. 4b-e; see also Fig. S4 for a fuller picture). The details of each technique

are provided in the Methods, along with a discussion of the corresponding null distributions, permutation

tests and false discovery rate controls (FDRq at a level q; using the Benjamini-Hochberg procedure) that we

used to limit statistical artefacts.

First, we used a decoding model that attempts to predict the value of the task variable on each trial

from neural population activity using regularized logistic or linear regression (Fig. 4d; Fig. S4d). This

analysis can detect situations in which a variable is encoded robustly, but only in a sparse subset of neurons.
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Figure 3. Behaviour during the task. a) Performance (top) and first wheel movement time (reaction time)

(bottom) as a function of stimulus contrast (one point per mouse per contrast; green points for 0% contrast;

orange points for non-zero contrast). Performance on 0% contrast trials (green) was 59% ± 0.4% (mean ±

s.e. across mice) correct. b) Performance as a function of the number of trials before the end of the session

for 0% (green) and non-0% (orange) contrast trials (mean ± s.e. across mice). c) The same analysis for

reaction times. d) Reversal curves: proportion correct around a block change for trials with 0% contrast and

>0% contrast (mean +/- s.e. across mice). The first 90 trials (when the stimulus was not biased to appear

more frequently on a side) were ignored for this analysis. e) Psychometric curves showing the fraction of

right choices as a function of signed contrast (positive for right stimuli, negative for left stimuli), for all

mice (one dot per contrast per mouse). Right choices were more common in right blocks (red), when the

stimulus appeared on the right with probability p(right)=0.8, than on left blocks (blue) when p(right)=0.2.

We did not correct for the correlations between the task variables, and rather assessed decoding for each

variable separately. This quantifies what downstream neurons would be able to determine from the activity,

but does not disentangle related factors such as stimulus side and block.

As a form of omnibus test, we performed decoding for all the neurons recorded in a session, deter-

mining the significance for a session by comparing the R2 of the fit to a variable to the R2 of the fit to a

suitable null distribution. To combine decoding results across sessions we used Fisher’s combined proba-

bility test31, 32. We then performed decoding within each region. Again, we corrected the R2 of the fit to a

variable by the R2 of the fit to a suitable null distribution and used Fisher’s combined probability test31 to

combine decoding results across sessions. To correct for the comparisons over multiple regions we chose a

level of 0.01 for the false discovery rate (FDR0.01).

Second, we computed single-cell statistics, testing whether the firing rates of single neurons correlated

with four task variables (visual stimulus side, choice side, block side, and feedback) in the appropriate

epochs of each trial (Fig. 4b; Fig. S4b). Since the task variables of interest are themselves correlated, we

used a condition-combined Mann-Whitney U-test16 which compares spike counts between trials differing

in just one discrete task variable, with all others held constant. Using a permutation test, we determined

the fraction of individual neurons in a region that are significantly selective to a variable, using a threshold

specific to each variable. For each session with recordings in a specific region, we computed the significance

score of the proportion of significant neurons by using the binomial distribution to estimate false positive
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events. We then combined significance scores across sessions with Fisher’s combined probability test31

to obtain a combined p-value for each region. We report a region as being responsive to a variable if

this combined p-value was below the chance level, correcting for multiple comparisons using FDR0.01.

This method has lower statistical power than decoding since it only examines noisy single neurons, and it

may therefore miss areas that have weak but distributed correlates of a variable. Moreover, it controls for

correlated variables in a way that the decoding method does not, so it is selectively able to find neurons that

do not only represent a variable by virtue of that variable’s correlation with a confound.

Third, we performed a manifold analysis (Fig. 4e; Fig. S4e), averaging firing rates of single neurons

in a session across all trials in 20 ms bins and then aggregating all neurons across sessions and mice per

brain region. We examined how trajectories in the high dimensional neural spaces (manifolds) reflected

task variables. We did this by measuring the time-varying Euclidean distance between trajectories d(∆t) in

the interval of interest, normalised by the square root of the number of recorded cells in the given region

to obtain a distance in units of Hz/cell. From this time-varying distance, we extracted response amplitude

and latency statistics. For significance testing we permuted trials for the variable of interest while keeping

the other variables fixed to minimise the effect of correlations among the variables (as in the single-cell

statistics), using FDR0.01 to control for multiple comparisons. For visualisation only, we projected the

trajectories into a 3-dimensional principal components space. We performed this analysis on the canonical

set of cells and time windows.

Finally, we used an encoding model33 that fits the activity of each cell on each trial as a linear com-

bination of a set of temporal kernels locked to each task event (Fig. 4c; Fig. S4c; Fig. S5a). This general

linear model (GLM) provides a picture at a temporally fine scale, at the cost of a potentially lower signal-

noise ratio. We measure the impact of a variable by removing its temporal kernels and quantifying the

reduction in the fit of the activity of a neuron (typically assessed by ∆R2). This method lacks a convenient

null distribution, and so we report effect sizes rather than significance.

We next describe the results of these four analyses applied to the coding of each of the five task

variables.
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Figure 4. Illustration of neural analyses. See also Fig. S4. a) Task structure with time windows used for

analysis in grey. b) Single-cell analysis quantifies single-cell neural correlates with task variables. c) The

encoding model uses multiple linear regression of task- and behaviourally-defined temporal kernels on the

activity. d) The decoding model quantifies neural population correlates with task variables. e) Manifold

analysis describes the time evolution of the across-session neural population response, pooling cells across

all recordings per region.

Representation of Visual Stimulus. We first consider neural activity related to the visual stimulus. Classi-

cal brain regions in which visual responses are expected include superior colliculus34, 35, visual thalamus36–38,

and visual cortical areas39–42, with latencies reflecting successive stages in the visual pathway43, 44. Corre-

lates of visual stimuli have also been observed in other regions implicated in visual performance, such as

parietal45 and frontal46–49 cortical areas as well as the striatum50, 51. Substantial encoding of visual stimuli

may also be present beyond these classic pathways, since the retina sends outputs to a large number of brain

regions52. Indeed, an initial survey16 of regions involved in a similar task uncovered visual responses in
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areas such as the midbrain reticular nucleus (MRN). Thus we hypothesised that visual coding would extend

to diverse regions beyond those classically described.

Consistent with this hypothesis, a decoding analysis based on the first 100 ms following stimulus

onset revealed correlates of the visual stimulus side in many cortical and subcortical regions, with strong

signatures in visual cortex, thalamus, midbrain, and hindbrain (Fig. 5a; the top five regions were VISpm,

VISam, PRNc, GRN, and SCm). For instance, the activity of neurons in primary visual cortex (VISp)

could be used to predict the stimulus side (Fig. 5i). Note that, uniquely amongst our analyses, the decoding

analysis does not control for variables correlated with the visual stimulus, such as choice and block, so some

of the regions with statistically significant results on this analysis might instead encode these variables.

Decoding performance varied across sessions, and therefore, in Fig. S6, we show performance across

sessions for all regions, even those that are not significant after the FDR0.01 correction for multiple com-

parisons. Given that some regions may well represent visual information in localised sites that were only

occasionally targeted by our probes, we also report the fraction of sessions in which we were able to decode

a variable from a region (to assess spatial distribution; Fig. S8a).

To distinguish the possible contributions of variables correlated with the visual stimulus, we next

analysed responses in the same 100 ms window using a single-cell analysis, which controlled for other

variables by holding them constant in each comparison of stimulus side. This analysis yielded a consistent

picture but found fewer significant areas, with 0.5% of all neurons correlated with stimulus side (Fig. 5b).

The significant regions included visual cortical areas (VISp, VISpm, VISam, VISli, VISl) and visual tha-

lamus (LGd, LP), but also other structures such as retrosplenial cortex (RSPv), ventral thalamus (VM),

zona incerta (ZI) and parts of the midbrain (SCm, APN). However, even in those regions containing the

largest fractions of responsive neurons (such as visual cortex), this fraction did not exceed ∼ 10%. Note

that this low percentage of neurons could be the result of neurons not having receptive fields overlapping

the stimulus position, given our grid-based approach to targeting recordings.

To provide an overview of the variability across sessions, Fig. S7 shows the fraction of significant

neurons broken down by sessions, without applying FDR0.01 correction.

The results of the manifold analysis were consistent with the decoding analysis (Fig. 5c), and provided

further information about the time course with which visual signals were encoded (Fig. 5d). For instance,

the responses in visual area VISp to right vs. left visual stimuli show early divergence shortly after stimulus

onset, followed by rapid convergence (Fig. 5j;k). The null trajectories (shown in grey) are close to the

true trajectories because this analysis controls for choice, which is tightly correlated with the stimulus.

Altogether, this analysis indicated that distance was significant in 79 regions (Fig. 5c;f).

The evolution of trajectories over time could be distilled into two numbers (Fig. 5l;m): the maximal

response (maximum distance or dmax) and the response latency (first time to reach 70% of dmax; mapped

across the brain in Fig. 5d). This characterization of the dynamics of visual representations revealed that

some areas had short latencies and early peaks, including classical areas (LGd, LP, VISp, VISam, VIpm),
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with a spatiotemporally finely resolved view of latency differences such that LGd < VISp ≈ LP < VISpm

< VISam (latencies ≈ 34, 42, 42, 57, 78 ms; Fig. 5d;l;m). This early wave of activity was followed sub-

stantially later by significant visual encoding in other areas, including MRN, SCm, PRNr, IRN, and GRN

(latencies ≈ 100− 120 ms; Fig. 5d;l;m).

Finally, the encoding analysis characterised visual encoding in individual neurons across the brain

(Fig. 5e). This analysis asks whether a prediction of single-trial activity can be improved by adding a

temporally structured kernel that unfolds over 400 ms after stimulus onset, on top of activity related to

feedback, wheel movement speed, and block identity. Since there is no convenient null distribution which

could be used to test the significance of this improvement, we only report effect sizes for the encoding

analysis.

For instance, as expected, an example VISp neuron showed large differences between stimuli on the

left and right (Fig. 5g) such that removing the visual kernel resulted in a poor fit of the neuron’s firing rate

(Fig. 5h). This analysis indicates that the visual stimulus variable improved fits of encoding models for

neurons across a wide range of brain regions (Fig. 5e,f).

Taken together, the decoding, single-cell statistics, and manifold analyses reveal a largely consistent

picture of visual responsiveness that includes large and short-latency responses in classical areas but also

extends to diverse other regions, particularly at later times relative to stimulus onset.
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Figure 5. Representation of the Visual Stimulus. See also Fig. S6; S7; S8. An interactive version of this

figure can be found on our data website. a) Decoding analysis: Flat brain map of decoding score (balanced

accuracy) across sessions. The values have been corrected by subtracting the median of the decoding score

in the null distribution. Colour represents effect size. Grey: regions in which decoding was not statistically

significant, using FDR0.01 to correct for multiple comparisons. White: regions that were not analysed due

to insufficient data. The omnibus test of decoding from all neurons in each session was highly significant

p ≪ 10−10. b) Single cell statistics: Flat brain map of the fraction of neurons in a region for which firing

rates were significantly modulated by stimulus side (left vs right) in the period [0, 100] ms aligned to the

stimulus onset. The significance score of single cells were obtained by conjoining two tests: a Mann-

Whitney test (p < 0.001) and a condition combined Mann-Whitney test (p < 0.05). The omnibus test of

the fraction of significant neurons from all neurons in each session was highly significant p ≪ 10−10. c)

Manifold distance: Flat brain map of the time-resolved maximum distance between trajectories following

stimuli on the left vs. right side, based on Euclidean distance (in Hz/cell) in the full-dimensional space

(dimension = number of cells) for each brain region. Significance was assessed relative to a shuffle control,

using FDR0.01 to correct for multiple comparisons. The omnibus test based on treating all cells from all

sessions as one region resulted in highly significant modulation, p ≪ 10−3. d) Manifold latency: The

earliest time after stimulus onset at which 70% of the maximum of the trajectory distance was reached, for

significant regions only. e) Encoding analysis: Flat brain map of mean model improvement differences per

region, across all neurons in that region computed as the absolute difference between the improvements

(|∆R2|) from the right stimulus kernel and left stimulus kernel regressors (400 ms causal kernels aligned

to the stimulus onset time). f) Table of effect significance (grey - not significant; a-c) and effect size (by

darkness; a-c; e), grouped by region. Regions are sorted within each Cosmos group by the sum of effects

across analyses (see Methods). g) Spike raster of example neuron in VISp identified by the encoding model

as being sensitive to stimulus side (see Table 3 for session and neuron details). h) Upper panel: Comparison

of peri-event time histogram (PETH) of spiking activity for left and right stimuli for the example neuron in

panel g conditioned on stimulus onset, along with associated predictions of the full encoding model. The

width of the PETH traces reflects standard error of the mean. Lower panel: The same PETHs, but with

predictions produced by an encoding model in which the stimulus onset-aligned regressors were omitted.

Error bars represent 1 SEM about the mean rate at each time point. i) Predicted probability from decoding

analysis of stimulus side (‘neurometric curve’) from VISp as a function of contrast. Note that the left-

side stimulus contrasts are shown with < 0 values and the right-side stimulus contrasts are shown with

> 0 values. Balanced accuracy for this region session was 0.749; see Table 3 for session and neuron

details. j) Trajectories obtained from left (right) stimulus side trial-averaged activity of all VISp neurons,

visualised by projection via PCA onto 3 dimensions, Each dot corresponds to a single time bin of the trial-

averaged population activity, darker colours indicate later times. Grey pseudo-trajectories were obtained by

averaging randomly selected trials matched for block and choice but with different visual stimuli presented.

(A clear split of pseudo-trajectories indicates correlation of block, choice and stimulus side, as stimulus

sides were shuffled within block/choice classes, see methods.) k) Trajectory distance as a function of

time for example region VISp, showing an early response; pseudo-trajectory distances in grey (control). l)

Trajectory distances for more example regions showing early response in most visual areas and ramping

stimulus side modulation with time in others. The number of neurons is given alongside the acronym. m)

Maximal manifold distance and modulation latency for all analysed regions (diamonds - significant regions,

dots - not significant regions).
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Representation of Choice. Next, we examined which regions of the brain represented the mouse’s choice,

and in which order. Choice-related activity has been observed in parietal, frontal and premotor regions of the

primate cortex7, 53, 54 where many neurons show ramping activity consistent with evidence accumulation7, 55.

These choice signals develop across frontoparietal regions and appear later in frontal eye fields56. Similar

responses were found in rodent parietal57, frontal58, 59, and premotor60, 61 cortical regions. However, in

both rodents and primates, choice-related activity has also been found in hippocampal formation62 and

subcortical areas, in particular in striatum16, 63, superior colliculus16, 64, 65 and other midbrain structures16.

Subcortical regions show choice signals with similar timing as cortex16, 66 and play a causal role in the

choice65. This evidence indicates that decision formation engages a distributed network of cortical and

subcortical brain regions. Our recordings allowed us to determine in detail where and when choice-related

activity emerges across the brain.

The decoding analysis suggested a representation of choice (left versus right upcoming action) in a

larger number of brain regions than the representation of the visual stimulus (Fig. 6a;f). The animal’s choice

could be decoded from neural population activity during a 100 ms time window prior to movement onset

in many analysed regions, with the strongest effect sizes in hindbrain (GRN, PRNc), midbrain (APN, SCm,

MRN, PPN), cerebellum (IP), striatum (GPe), and thalamus (VM). For instance, the activity of neurons in

the Gigantocellular Reticular Nucleus (GRN) of the medulla could be readily decoded to predict choice

in an example session (Fig. 6g;i). Choice was also significantly decodable from somatosensory (SSp-ul),

prelimbic (PL), motor (MOs), orbital (ORBvl), and visual (VISpm) cortical areas.

Some of the decodable choice information, however, could be due to responses to the visual stimulus

or block, which correlate with choice. We thus performed single-cell analyses that control for correlations

between all these task variables. More single neurons responded significantly to choice than to the visual

stimulus (Fig. 6b;f): firing rates of 3% of all neurons recorded across all brain regions correlated with choice

direction during the 100 ms prior to the movement onset, controlling for correlations with the stimulus and

block. The largest fractions of neurons responding significantly to choice were in the hindbrain, cerebellar,

midbrain, and thalamic regions, consistent with the results of decoding analysis. Neurons with significant

responses to choice were highly prevalent in pons, medulla, and cerebellar nuclei (PRNc, IRN, GRN, DCO,

PARN, MV, COPY), most of which did not show visual responses. These results obtained from statistical

analyses were confirmed by the single-cell encoding model (Fig. 6e). For instance, an example neuron in

GRN showed stronger responses for right choices than left choices (Fig. 6g). The encoding model captured

this preference but only in the presence of the kernel associated with choice (Fig. 6h).

The manifold analysis allowed us to compare across brain regions the magnitude of choice repre-

sentation on the population level, measured as the distance between trajectories in the neural population

state space on left versus right choice trials (Fig. 6c;f). The magnitude of the population-level choice rep-

resentation was highly non-uniform across the brain, with the strongest separation of neural trajectories in

hindbrain (IRN, GRN, PRNc) and midbrain (APN, MRN, SCm), dwarfing the population-level choice en-
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coding in most other areas (Fig. 6c;f). In our example region GRN, the trajectories for left and right choice

trials separated significantly more than in shuffled control (Fig. 6j;k, controlling for correlations with stim-

ulus and block), and the magnitude of this separation was greatest across all brain regions (Fig. 6l). Thus,

all our analyses consistently point to a distributed choice representation, with the strongest choice signals

in midbrain, hindbrain and cerebellum, and relatively weaker choice encoding across many cortical areas.

Next we analysed when the choice signals emerged across the brain by measuring the latency with

which neural population trajectories separated on the left versus right choice trials during the time preced-

ing movement onset (Methods). Some of the earliest choice signals developed nearly simultaneously in

pons (PRNr), thalamus (LGd), striatum (LSr), and cortex (VISl, ILA), and later appeared in a larger dis-

tributed set of brain areas (Fig. 6d;l;m). The pontine region PRNr and medullary regions GRN and IRN

showed, respectively, some of the lowest choice latencies and the strongest magnitude of population level

choice representations (Fig. 6m), suggesting a role for these brainstem structures—classically associated

with automatic motor processing—in decision formation or movement preparation.
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Figure 6. Representation of Choice. See also Fig. S6; S7; S9. An interactive version of this figure

can be found on our data website. a) Decoding analysis: Flat brain map of median corrected decoding

score (balanced accuracy) across sessions. The values have been corrected by subtracting the median of

the decoding score in the null distribution. Colour represents effect size. Grey: regions in which decoding

was found not to be statistically significant, using FDR0.01 to correct for multiple comparisons. White:

regions that were not analysed due to insufficient data. The omnibus test of decoding from all neurons in

each session was highly significant (p ≪ 10−10). b) Single-cell statistics: Flat brain map of the fraction

of neurons in a region for which firing rates were significantly modulated by choice side (left vs. right)

in the period [−100, 0] ms aligned to the first-movement onset. The significance scores of the single cells

were obtained by conjoining two tests: a Mann-Whitney test & a condition combined Mann-Whitney test

(Methods), using thresholds of p < 0.001&p < 0.05, respectively. The significance score of each region

was computed by assuming a binomial distribution of false positive events, and FDR0.01 was used to correct

for multiple comparisons. The omnibus test of the fraction of significant neurons from all neurons in

each session was highly significant (p ≪ 10−10). c) Manifold distance: Flat brain map of the maximum

distance between neural trajectories for left and right choice, based on time-resolved Euclidean distance (in

Hz/cell) in the full-dimensional space (the number of dimensions equals to the number of cells) for each

brain region. Significance was assessed relative to a shuffle control, using FDR0.01 to correct for multiple

comparisons. Canonical window lengths were employed, as shown in Fig. 4a. The omnibus test based on

treating all cells in each session as one population was significant (p ≪ 10−3). d) Manifold latency: The

earliest times before movement onset at which 70% of the maximum of the trajectory distance (see part

c) was reached, for significant regions only. e) Encoding: Flat brain map of mean model improvement

differences per region, across all neurons in that region computed as the absolute difference between the

improvements (|∆R2|) from the right first movement kernel and left first movement kernel regressors.

These regressors for choices in each direction were 200 ms anti-causal kernels aligned to the movement

onset time. f) Table of effect significance (grey - not significant; a-c) and effect size (by darkness; a-c; e),

grouped by region. Regions are sorted within each Cosmos group by the sum of effects across analyses

(see Methods). g) Spike raster of an example neuron in GRN identified by encoding model as sensitive

to choice (see Table 3 for session and neuron details). h) Upper panel: Comparison of PETHs aligned

to movement onset on left (blue) and right (red) choice trials for the example neuron in panel g, along

with the encoding model predictions for each condition (dark colours). This neuron was selected for a high

difference in ∆R2

choice
, computed as the absolute difference of additional variance explained by the left/right

first movement regressors. Lower panel: The same PETHs, but with predictions produced using a model

lacking the left and right first movement regressors. Error bars represent 1 SEM about the mean rate at each

time point. i) Decoding to predict choice for part of an example session in GRN (balanced accuracy for

this region-session was 0.840; see Table 3 for session and neuron details). Decoder predictions separate in

correlation with the mouse’ choices (blue - left choice, red - right choice). j) Trajectories obtained from trial-

averaged activity of all GRN neurons on left (blue) and right (red) choice trials, visualised by projecting

onto the first 3 PCA dimensions. Each dot corresponds to a time bin of the population activity, darker

colours indicate times closer to the movement onset. Grey pseudo-trajectories were obtained from trial-

averaged activity on trials with randomised choice, controlling for correlations with stimulus and block. k)

Trajectory distance as a function of time for GRN, showing ramping activity; pseudo-trajectory distances

in grey (control). l) Trajectory distances for more example regions showing ramping choice-modulation

with time. m) Maximal manifold distance and modulation latency for all analyzed regions (diamonds -

significant regions, dots - not significant regions).
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Representation of Feedback. At the end of each trial, the mouse received feedback for correct or incorrect

responses: a liquid reward at the lick port or a noise burst stimulus with a time-out period. These positive

or negative reinforcers influence the learning of the task 67–71. If received, the liquid is consumed through

licking, which may itself have a prominent neural representation which, in this study, we will not be able

to distinguish from the more abstract qualities of reward. Feedback also activates neuromodulatory sys-

tems such as dopamine72, which have widespread connections throughout cortical and subcortical regions.

However, it is unclear how widespread the feedback signals themselves are in the brain.

The decoding analysis revealed nearly ubiquitous neural responses associated with the delivery of

reward on correct versus incorrect trials, and likely the motor responses associated with its consumption

(Fig. 7a). Using the neural responses in the 200 ms following feedback onset, we were able to decode

whether or not the trial was correct from nearly all recorded brain regions (Fig. 7a;f). In many regions,

decoding was practically perfect, including, for instance, the activity of the intermediate reticular nucleus

in the hindbrain (IRN) in an example session (Fig. 7i).

Our single-cell statistics applied to the same trial interval confirmed the decoding results. We found

that neurons with significant response changes to correct versus incorrect feedback or reward consumption

were extremely widespread (Fig. 7b;f), with only a small handful of regions not significant for feedback

type. The same was true for feedback versus the inter-trial interval baseline (Fig. S10).

Manifold analysis also found statistically significant response differences for correct versus incorrect

responses across every recorded brain region, predominantly consistent with the other analyses (Fig. 7c;f).

It confirmed the relative strength of hindbrain, midbrain, and thalamic responses to feedback seen across

analyses. Manifold analysis also revealed asymmetries in response to negative versus positive feedback: for

positive feedback the response was overall stronger, and multiple brain areas exhibited a coherent ∼10Hz

oscillatory dynamics during reward delivery that was phase-locked across brain areas (Fig. 7j;k;l) and ses-

sions (Fig. S11). Across-session coherence is visible as a large oscillatory signal in example area IRN

(Fig. 7j;k). These oscillatory dynamics were missing during negative feedback, and were closely related to

licking behaviour (Fig. S11)73–76, pointing to consumption-related activity being the dominant factor over

influences of reward on neural activity.

Assessing response latencies by the divergence of the trajectories over time, we found that the primary

auditory region AUDp and the saccade- and gaze-reorienting brainstem region PRNr (rostral pontine retic-

ular nucleus) exhibited the earliest and strongest responses (Fig. 7l;m). Many of these likely reflect residual

responses from choice-related activity because the latencies are very short and several identified areas ex-

hibit high choice responsivity. The responses from auditory areas likely reflect responses to the error tone

and the click from the reward delivery valve. After these initial responses, the latencies across other brain

regions appeared roughly similar, suggesting a common signal broadcast across the brain (Fig. 7d). More

detailed manifold distance and latency scatterplots can be found in Fig. S12.
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We applied the encoding model to the responses measured in the 400 ms after stimulus onset, and

found that the kernel for correct feedback was the largest single contributor to neural response variance

(Mean ∆R2 of 7 × 10−3 averaged across all neurons; Fig. S5b), surpassing all other kernels (left or right

stimulus, left or right movement onset, incorrect feedback, block probability, and wheel speed). This high

variance-explaining response to reward delivery or consumption held across both wide regions of cortex

and subcortical areas. Mid- and hindbrain areas exhibited particularly strong responses to reward delivery,

with many additional regions including thalamus and sensory (e.g. AUDp, SSs) and motor (MOp) cortex

showing sensitivity as well (Fig. 7e). Removing the regression kernel for correct feedback then refitting the

encoding model of an IRN neuron illustrates the large influence of correct feedback on activity (Fig. 7g;h).

In sum, we found feedback signals to be present across nearly all recorded brain regions, with a

stronger response to positive than negative feedback (i.e., to reward delivery and consumption) and with

particularly strong responses in thalamus, midbrain, and hindbrain. Further research will be needed to

distinguish between responses for an internal expectation of feedback or the initiation of choice-related

action versus responses to external feedback.
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Figure 7. Representation of Feedback. See also Fig. S6; S7; S13. An interactive version of this figure can

be found on our data website. a) Decoding: Flat brain map of median corrected decoding score (balanced

accuracy) across sessions. The values have been corrected by subtracting the median of the decoding score

in the null distribution. Colour represents effect size. Grey: regions in which decoding was found not to

be statistically significant, using FDR0.01 to correct for multiple comparisons. White: regions that were

not analysed due to insufficient data. The omnibus test of decoding from all neurons in each session was

highly significant p ≪ 10−10. b) Single-cell analysis: Flat brain map of the fraction of neurons for which

firing rates were significantly modulated by feedback compared to baseline activity ([−200, 0] ms aligned

to the stimulus onset) in the period following feedback onset ( [0, 200] ms). The significance scores of the

single cells were obtained by conjoning two tests: a Mann-Whitney test & a condition combined Mann-

Whitney test (Methods), using thresholds of p < 0.001&p < 0.05, respectively. The significance score

of each region was computed by assuming a binomial distribution of false positive events, and FDR0.01

was used to correct for multiple comparisons. The omnibus test of the fraction of significant neurons from

all neurons in each session was highly significant p ≪ 10−10. c) Manifold distance: Flat brain map of

the time-resolved maximum distance between correct and incorrect choice trajectories, based on Euclidean

distance (in Hz/cell) in the full-dimensional space (dimension = number of cells across all sessions) for each

brain region. Significance was assessed relative to a shuffle control, using FDR0.01 to correct for multiple

comparisons. Canonical window lengths were employed, as shown in Fig. 4a. The omnibus test based on

treating all cells from all sessions as one region resulted in highly significant modulation, p ≪ 10−3. d)

Manifold latency: The earliest time after feedback at which 70% of the maximum trajectory distance (see

part c) was reached, for significant regions only. e) Encoding: Flat brain map of the mean model differences

per region, across all neurons in that region, computed as the log of the absolute difference between the

improvements (∆R2) from the correct feedback kernel and incorrect feedback kernel regressors. These

regressors are 400 ms causal kernels aligned to the feedback time. f) Tabular form of effect significance

(grey - not significant; a-c) and effect size (by darkness; a-c; e), grouped by region. Regions are sorted

within each Cosmos group by the sum of effects across analyses (see Methods).

g) Spike raster of example neuron in IRN identified by encoding model as sensitive to feedback (see Table

3 for session and neuron details). h) Upper panel: Comparison of PETHs aligned to movement onset on

correct (blue) and incorrect (red) trials for the example IRN neuron in panel g, along with the encoding

model predictions for each condition (grey). This neuron was selected for a high difference in ∆R2

feedback,

computed as the absolute difference of additional variance explained by the feedback regressors. Lower

panel: The same PETHs but with predictions produced using a model lacking the feedback regressors. Er-

ror bars represent 1 SEM about the mean rate at each time point. i) Predicted probability from decoding

analysis about whether reward was received, coloured by true feedback, from region IRN (balanced accu-

racy for this region-session was 1.000; see Table 3 for session and neuron details). j) Trajectories obtained

from incorrect (correct) trial-averaged activity of all neurons in IRN vizualised by projection via PCA to

3 dimensions. Each dot corresponds to a time bin of the population activity, darker colours indicate later

times. The oscillation of the blue trajectory correlated with licking, and was much stronger in correct trials

when the animals received water. Grey pseudo-trajectories were obtained by averaging randomised trials,

shuffling choice types within classes of stimulus side and block. k) Trajectory distance between correct

and incorrect trials, as a function of time for example region IRN, showing oscillatory (licking) activity;

pseudo-trajectory distances in grey (control). l) Trajectory distances for more example regions showing

early response e.g. in auditory areas and prolonged feedback type modulation with time in others. m) Max-

imal manifold distance and modulation latency for all analyzed regions (diamonds - significant regions,

dots - not significant regions). Most regions’ activity was modulated within 100 ms after feedback.22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547681doi: bioRxiv preprint 

https://ephysatlas.internationalbrainlab.org/?alias=bwm_feedback
https://doi.org/10.1101/2023.07.04.547681
http://creativecommons.org/licenses/by-nc-nd/4.0/


Representation of Block Prior. The IBL task is a perceptual decision-making task that requires combining

sensory evidence with the prior probability over the stimulus side, which itself can be inferred from past

trials. Mice perform this computation competently (Fig. 3). We may thus expect neural correlates of the

block structure in multiple brain regions, particularly regions in which stimulus value has been reported, as

prior information is often associated with value. In primates and humans, these include posterior parietal

cortex, orbital cortex, dorsolateral prefrontal cortex, premotor cortex, and striatum, among others77–82. In

rodents, similarly, they include striatum83–85, medial prefrontal cortex84–87, orbitofrontal cortex84–86, 88, 89,

secondary motor cortex84, 85, dorsal hippocampus84, and frontal pole85. Moreover, one would expect block

signals in midbrain dopamine neurons, because changes in block strongly modulate dopamine signals in

ventral striatum90. Considering that the prior probability may exert its influence through additional means,

e.g. through visual attention91 and motor preparation, one may expect correlates of block structure in an

even broader swath of brain regions, potentially impacting not only firing rates but also the strength of

synapses92.

To search for neural correlates of the block structure, we applied the decoding analysis to the activity

measured during the inter-trial interval (400 to 100ms before stimulus onset), a time during which the mice

must keep the wheel still. After correcting for multiple comparison with a false discovery rate of 0.01, we

found that block identity could be decoded significantly (p < 0.05) from only the primary motor cortex,

MOp (see the example session in Fig. 8g). The single-cell statistics analysis found the block prior to be

encoded is a small number of regions, namely, CENT3, CEA, CP, ORBV1 and SCm (Fig. 8b;f).

The encoding analysis revealed that block signals were ∼10 times smaller than feedback signals, and

much smaller than other signals such as movement (Fig. 8e, Fig. S5b) which possibly explains why only

a small number of regions were found to encode the prior significantly. The weak effects of block on the

activity of single cells can be observed in an example neuron in MOp: the firing rates measured during

the right and left blocks were significantly different according to the model but the difference is modest

(4.76 vs 0.68 spikes/s) (Fig. 8h). Finally, the manifold analysis identified no region as reflecting the prior

significantly (Fig. 8c). Fig. 8i shows an example of block-conditioned trajectories in MOp. While the right

and left block trajectories are distinct, they do not differ from the null trajectories shown in grey (Fig. 8j). As

to the latency analysis, it is not informative since it is based on the inconclusive manifold analysis (Fig. 8d).

In sum, while block identity influenced the behaviour of the mice, our standard analyses failed to

reveal its neural representation beyond a handful of regions. This result might reflect an extremely sparse

encoding of the prior, but our inability to decode the prior from prefrontal, frontal and parietal areas, where

the prior has been reported previously78–81, 89, hints at other factors. One is that the active representation of

the prior during the inter-trial interval might be very modest. A second is that our analyses were confined

to the true block identity, a variable that is not directly available to the animal. In a companion paper 93, we

examine in detail the representation of the aspects of the block that we could show actually influenced the

behaviour of the animals (a form of subjective prior). By combining Neuropixels recordings with wide field
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calcium imaging of cortical regions, we show there a rather wide encoding of the subjective prior across all

levels of brain processing.
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Figure 8. Representation of Block Prior. See also Fig. S6; S7; S14. An interactive version of this figure

can be found on our data website. a) Decoding: The flat brain map of median corrected decoding score

(balanced accuracy) across sessions. The values have been corrected by subtracting the median of the

decoding score in the null distribution. Colour represents effect size. Grey: regions in which decoding was

found not to be statistically significant, using FDR0.01 to correct for multiple comparisons. White: regions

that were not analysed due to insufficient data. The omnibus test of decoding from all neurons in each

session was significant p ≪ 10−10. b) Single-cell analysis: The flat brain map of the fraction of neurons for

which firing rates are significantly modulated by block prior (left vs right) in the period [−400,−100] ms

aligned to the stimulus onset. The significance scores of the single cells were obtained by a Mann-Whitney

test, using a threshold of p < 0.001. The null distribution was generated via the pseudo-block method

(Methods). The significance score of each region was computed by assuming a binomial distribution of

false positive events, and FDR0.01 was used to correct for multiple comparisons. The labels of regions are

shown in f. The omnibus test of the fraction of significant neurons from all neurons in each session was

highly significant p ≪ 10−10. c) Manifold distance: Quantification of the time-resolved maximum distance

between left (right) block trajectories, based on Euclidean distance (in Hz/cell) in the full-dimensional space

(dimension = number of cells) for each brain region. The omnibus test based on treating all cells from all

sessions as one region resulted in insignificant modulation, p = 0.9. d) Manifold latency: Times at which

70% of the maximum of the trajectory distance was reached (see part c), for significant regions only, of

which there was none for block. e) Encoding: The flat brain map of mean model improvements per-region,

across all neurons in that region, when the ITI P(left) regressor is added to the model. The regressor is a step

function bounded to be the value of the block (0.5, 0.2, 0.8) P(left) in the period [−400,−100] ms aligned

to stimulus onset. f) Tabular form of effect significance (grey - not significant; a-c) and effect size (by

darkness; a-c; e), grouped by region. g) Decoding analysis uses logistic regression to identify blocks. We

show the predicted probability across a window of trials (100 to 400) in region MOp (balanced accuracy in

this region-session was 0.666; see Table 3 for session and neuron details). h) Distribution of firing rates for

an example neuron in region MOp, in the window used in c), along with the distribution of GLM encoding

model predicted firing rates in the same window (see Table 3 for session and neuron details). i) Example

trajectories for region MOp, obtained from left (right) choice trial-averaged activity, reduced via PCA to

3 dimensions, one dot being a time bin of the population activity, darker is later. Grey pseudo-trajectories

were obtained by averaging randomised trials, here using the pseudo-session method only. j) Trajectory

distance as a function of time for example region PL, showing low amplitude and random fluctuations,

indistinguishable from pseudo-trajectory distances in grey (control).

Representation of Wheel Movement. A consistent finding from previous large-scale recordings in mice

has been the macroscopic impact of movement on neural activity, with both task-related and task-unrelated

movements influencing activity well outside premotor, motor, and somatosensory cortical areas 19, 20, 94, 95.

Here, we start from the task-dependent component of movement, namely the movement of the wheel to

register a response. Unlike the other task variables, movement trajectories change relatively quickly, ne-

cessitating different analysis and null control strategies. Accordingly, we only report simple encoding and

decoding analyses.
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We observed that different mice (and potentially the same mouse on different sessions) adopted differ-

ent strategies for moving the wheel – for instance, some used both front paws; others only one. Turning the

wheel is also a relatively complex operation, rather than being just a simple, ballistic movement. Thus, one

should not expect a simple relationship between these movements and activity in unilateral motor systems.

Again, for simplicity, we restrict our analyses to the activity associated with both wheel velocity and its

absolute value, wheel speed.

Wheel speed was decodable from a wealth of areas in the brain. Top regions include sensory-motor

related regions, both cortical (SSp-ll, VISC, ORBvl, POST) and subcortical (MS, VAL, VPL, GRN, PARN,

IRN, RT, DCO) (plus there are cerebellar regions SIM, COPY, IP) (Fig. 9a;e). For example, we could

readily decode wheel speed from single trials of activity in region GRN (Fig. 9g).

The encoding analysis confirmed that many regions across the brain were sensitive to the wheel speed

during the task, with ∆R2 taking values orders of magnitude larger than for the other variables considered

besides feedback (Fig. S5). The pontine reticular nucleus (PRNc) and gigantocellular reticular nucleus

(GRN), in particular, stood out in our analysis for the mean ∆R2 for neurons within those regions (mean

∆R2 = 9.9 × 10−3 in PRNc, and ∆R2 = 24.0 × 10−3 in GRN). Many other cortical (e.g. MOs) and

subcortical (e.g. GPe, GPi, CP) regions had less substantial, but still above-average, correlations with the

wheel speed relative to other regressors (Fig. 9b;e).

Wheel velocity was also significantly decodable from a rather similar collection of areas as wheel

speed (Fig. 9c;f;h; S15a), and was also duly encoded (Fig. 9d;f) albeit with generally smaller values of

∆R2 (Fig. 9i). The apparently high decodability of velocity was unexpected given the complexities of wheel

movement mentioned above, and indeed the uncorrected values of R2 for decoding speed were substantially

larger than those for velocity in most regions (Fig. S15b). However, the null distribution based on imposter

sessions (i.e., wheel movements from other sessions, including from other mice) can be decoded much

more accurately for speed than for velocity (Fig. S15c), reducing the statistical significance of the decoding

of speed. We attributed this excess decodability of the null distribution to the more stereotyped, i.e., less

variable, trajectory of speed (Fig. S15d.

We also correlated neural activity with behavioural movement traces extracted from video (nose, paw,

pupil, and tongue). To test for significance we used the linear-shift method, comparing the correlation

of spiking activity with behavioural movement variables against a null ensemble in which the movement

variables were shifted in time96 (Methods, Fig. S16a). More than half of the neurons in most brain regions

were significantly correlated with at least one behavioural variable (Fig. S16b).

The widespread relationship between neural activity and motion has various potential sources. These

include the specific details of motor planning and execution, efference copy97, somatosensory feedback,

the suppression of input associated with self-motion98, and more subtle effects such as the change in other

sensory inputs caused by the movement19, or even prediction errors associated with incompetent execution

that can fine-tune future performance99. Others are more general, including arousal and the calculation

and processing of the costs of movement (which would then be balanced against future gain)100. More
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generally, of the components that are indeed specific, only a fraction are likely to be associated with the

wheel movement that we monitored, as opposed to other task-related motor actions. This is especially true

given the results of previous studies such as Refs19, 20 showing just how important uninstructed movements

are in modulating a wide swathe of neural activity.

Two facts suggest that there might be an even richer coupling of action and activity in the task. One

is that, in at least a minority of cases, the mice embody their block-based expectations about the upcoming

stimulus in a form of externally observable pose or movement that we can extract with DeepLabCut30

(Fig. S3). This implies that some of what we would report as an association with the block could really

be an association with action. Second, and more subtly, in more detailed analyses of how their choices are

influenced by the block (see the companion paper 93), we found that the mice exhibited a form of action

perseveration (i.e., the law of exercise101). That is, they had a tendency to repeat recent previous actions, in

way that apparently covaries with their estimate of the block. Thus, again, some of what we would report

as an association with the block could really be an association with action.
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Figure 9. Representation of Wheel Movement. See also Fig. S6; S15. An interactive version of this

figure can be found on our data website for speed and velocity. a) Decoding: Flat brain map of median

corrected decoding score (R2) across sessions for wheel speed (the absolute value of the wheel velocity).

The values have been corrected by subtracting the median of the decoding score in the null distribution.

Colour represents effect size. Grey: regions in which decoding was found not to be statistically significant,

using FDR0.01 to correct for multiple comparisons. White: regions that were not analysed due to insufficient

data. The omnibus tests of both wheel-speed decoding and wheel-velocity decoding from all neurons in

each session were significant p ≪ 10−10 b) Encoding analysis: Flat brain map of mean model improvement

differences per-region, across all neurons in that region computed as the improvements (∆R2) from the

wheel speed regressor. These regressors are 200 ms anti-causal kernels convolved with the trace of wheel

speed. c;d) Same as a;b but for wheel velocity rather than wheel speed. Note that the encoding results

involve a completely separate model fit using the velocity rather than speed. e) Tabular form of effect

significance for wheel speed (grey - not significant; a) and effect size (by darkness; a;b), grouped by region.

Regions are sorted within each Cosmos group by the sum of effects across analyses. f) Tabular form of

effect significance for wheel velocity (grey - not significant; c) and effect size (by darkness; c;d), grouped by

region. Regions are sorted within each Cosmos group by the sum of effects across analyses, for significant

regions only. g) Comparison of actual and predicted wheel speed for an example trial from region GRN (R2

is 0.662 uncorrected and 0.432 null-corrected for this region-session; see Table 3 for session and neuron

details). h) Same as g, for a target signal of velocity rather than speed (R2 is 0.648 uncorrected and 0.623

null-corrected for this region-session). i) A comparison of the distributions of additional variance ∆R2
wheel

explained, across the whole population, when using either wheel speed or velocity as the base signal.

Distributions truncated for clarity.

Discussion

Building on previous efforts to build brain-wide maps of activity in the mouse at neuronal resolution using

Neuropixels probes15–17 or in other species using imaging (e.g., Refs.5, 102, 103), we have developed a new

strategy for assembling large-scale electrophysiological maps by pooling data from numerous laboratories

that employed the same standardised and reproducible task23. This approach places replication at the very

foundation of the data set, because each Neuropixels insertion was repeated in at least two laboratories, with

reproducibility of outcomes across laboratories verified with extensive analyses that we have previously

reported24. The result is an unprecedented brain-wide consensus map of neural activity of the mouse brain.

This map reveals the neural activity that underlies performance in a rich task that requires processing of

visual stimuli, motor responses, rewards, and stimulus expectations.

In addition to releasing the data – which are available to download via an API and to view interactively

at data.internationalbrainlab.org – we also performed a battery of standard analyses coupled with rigorous

statistical methods, which suggest that neural activity throughout the entire brain correlates with some

aspects of the task, but with major differences in the ubiquity of representation of different task variables

(Fig. 5- 9), see also Fig. S6; S7; S17 for side by side comparisons). Importantly, while our coverage is
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extensive, we do not have uniform coverage across all regions, particularly when considering the neurons

that pass our quality control metrics. This could bias our results against discovering task correlates in

regions with certain anatomical arrangements (e.g., where cell bodies are densely packed).

The neural representations of movement16, 19, 20 (Fig. 9) and feedback (Fig. 7) were particularly widespread,

with the former potentially reflecting a brain-wide change in the state of neural processing during move-

ment periods, along with specific encoding of motor features. The hypothesis of a brain-wide state change

is consistent with findings that the neural representation of upcoming movements in cortex is extremely

widespread, though not all of this activity is causally related to the performance of the movements47. As

for the brain-wide correlates of feedback, they may also partly or primarily reflect the licking movements

required for reward consumption, rather than the hedonic aspects of reward as such. Distinguishing these

possibilities would require experiments recording activity during the presentation of reinforcement with no

motor correlates, such as optogenetic stimulation of dopamine systems104, 105, or by comparing correlates

of rewards with a motor correlate to the same movements when their hedonic reward was devalued, for

example by satiation.

The subject’s upcoming choice was represented in the activity of neurons across brain systems includ-

ing cortex, basal ganglia, thalamus, midbrain, hindbrain, and cerebellum (Fig. 6). These representations

cannot reflect sensory reafference (i.e. responses related to sensory stimuli that occur as part of the move-

ments, such as pressure on the paws and movements of the visual stimuli across the screen) since we only

analysed the time period prior to the earliest detectable movement onset. Moreover, our carefully controlled

task design and pseudo-session statistical methods mean that choice coding reported in the single-cell and

manifold analyses cannot reflect processing of the visual stimulus nor non-specific brain states such as

arousal. Instead, these responses reflect aspects of decision formation or motor preparation, potentially

including corollary discharge specific to the chosen action106, 107. This study is the first report at single-cell

resolution of choice coding across these brain systems in a single task, and while many past studies have

focused on the role of cortex, basal ganglia, or midbrain in visual perceptual decisions 7, 16, 55, 56, 63–65, 108, 109,

here we discovered that parts of the medulla, pons, and cerebellum are all selectively responsive with sim-

ilar timing to those areas. Our data are not able to determine whether these different systems make unique

contributions to decision formation and execution. However, they rule out a model in which only a limited

set of systems subserve a given behaviour according to specific task demands.

Other task variables such as visual stimuli (Fig. 5) and the identity of the bias block (Fig. 8) were

represented (prior to movement) in more restricted manners. The processing of visual stimuli followed a

temporal sequence from traditional visual areas such as the visual thalamus and cortex to midbrain and hind-

brain regions whose activity also correlated with choices. Importantly, the temporal structure of activity in

these two groups of regions differed, with visual representations in classical visual regions showing a tran-

sient representation of the stimuli, and activity in midbrain and hindbrain showing later, ramping activity,

consistent with a role of this activity in decision-making. The representation of stimulus expectation (i.e.

the bias block) was more subtle still: it could be significantly decoded from the activity of a small number

of neurons in restricted regions but could not be found in a much larger number of areas. The representation

of this variable is addressed in more detail in a companion paper 93 by analysing the neural correlates of the

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547681doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547681
http://creativecommons.org/licenses/by-nc-nd/4.0/


mouse’s behavioural estimate of the block prior (rather than the veridical block identity known only to the

experimenter, which is what we analysed here), and with additional recording modalities.

Although more than half of the recorded neurons in most brain regions were significantly modulated

by at least some aspect of the task (Fig. S18), our ability to explain the total variance of single neurons

was limited (the mean R2 across all neurons was 0.0155 with a median of 0.0027 and standard deviation

of σ = 0.044). This indicates that the vast bulk of activity in the brain is not modulated by the task. It

may instead be related to noise, to uninstructed movements19, 20, or to other processes that are not timed to

the task events. These processes often result in activity that is strongly symmetrical110 and are thus best

captured through bilateral measurements.111 Our brain-wide map, however, is unilateral, so it is not ideally

suited for this purpose. Even for the activity that is modulated by the task, external cue-driven responses

were consistently smaller than internally generated signals such as those arising in relation to integration

of the stimulus and movement planning. As ever, absence of evidence for a neural representation of a task

variable in a given region cannot be taken to indicate evidence of absence.

In summary, we have provided a database of recordings spanning the entire mouse brain as subjects

performed a complex behavioural task. Our analyses have begun to elucidate the mechanisms by which the

mouse brain solves this task. Further examination beyond the scope of the present work, including detailed

analyses at the level of sub-regions (such as cortical layers or functional zones of the striatum) and cell

types (as identifiable from extracellular waveforms, such as broad versus narrow spike shapes in cortex),

can be addressed in this rich dataset that is freely available to the community.
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Resources

Data access Please follow these instructions to download the data used in this article. You can also browse

the data at http://viz.internationalbrainlab.org.

Data quality Please read our white paper on the released data for additional details about quality control

and metrics. For electrophysiology data, please also see the spreadsheet listing the quality of the raw data

and spike sorting output.

Code repository Please visit our Github repository to access the code used to produce the results and

figures presented in this article.

Protocols and pipelines Please visit our two Figshare repositories to access the protocols and pipelines

used to train mice and perform the electrophysiology recording and histology validation.

Methods

All procedures and experiments were carried out in accordance with the local laws and following approval

by the relevant institutions: the Animal Welfare Ethical Review Body of University College London; the

Institutional Animal Care and Use Committees of Cold Spring Harbor Laboratory, Princeton University,

University of Washington, University of California at Berkeley and University of California at Los Angeles;

the University Animal Welfare Committee of New York University; and the Portuguese Veterinary General

Board.

Animals Mice were housed under a 12/12 h light/dark cycle (normal or inverted depending on the labora-

tory) with food and water available ad libitum, except during behavioural training days. Electrophysiolog-

ical recordings and behavioural training were performed during either the dark or light phase of the cycle

depending on the laboratory. The data from N=115 adult mice (C57BL/6; 80 male and 35 female, obtained

from either Jackson Laboratory or Charles River) is used in this study. Mice were aged 13-122 weeks (mean

34.43 weeks, median 26.0 weeks) and weighed 16.1-36.2 g (mean 24.17 g, median 24.0 g) on the day of

electrophysiological recording.

Headbar implant surgery A detailed account of the surgical methods for the headbar implant is in Ap-

pendix 1 of Ref.23. Briefly, mice were anesthetised with isoflurane and head-fixed in a stereotaxic frame.

The hair was then removed from their scalp, which was subsequently removed along with the underlying

periosteum. was Once the skull was exposed, Bregma and Lambda were marked. The head was positioned

along the anterior-posterior and left-right axes using stereotaxic coordinates. The head bar was then placed

in one of three stereotactically defined locations and cemented (Super-Bond C&B) in place. Future cran-

iotomy positions were marked on the skull relative to Bregma. The exposed skull was then covered with

cement and clear UV curing glue (Norland Optical Adhesives).
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Materials and apparatus For detailed parts lists and installation instructions for the training rigs, see

Appendix 3 of Ref.23; for the electrophysiology rigs, see Appendix 1 of Ref.24.

Each lab installed a standardised electrophysiological rig, which differed slightly from the apparatus

used during behavioural training 23. The structure of the rig was constructed from Thorlabs parts and was

placed on an air table (Newport, M-VIS3036-SG2-325A) surrounded by a custom acoustical cabinet. A

static head bar fixation clamp and a 3D-printed mouse holder were used to hold a mouse such that its

forepaws rested on the steering wheel (86652 and 32019, LEGO)23. Silicone tubing controlled by a pinch

valve (225P011-21, NResearch) was used to deliver water rewards to the mouse. Visual stimuli were

displayed on an LCD screen (LP097Q × 1, LG). To measure the timing of changes in the visual stimulus,

a patch of pixels on the LCD screen flipped between white and black at every stimulus change, and this

flip was captured with a photodiode (Bpod Frame2TTL, Sanworks). Ambient temperature, humidity, and

barometric air pressure were measured with the Bpod Ambient module (Sanworks) and wheel position

was monitored with a rotary encoder (05.2400.1122.1024, Kubler). Videos of the mouse were recorded

from 3 angles (left, right and body) with USB cameras (CM3-U3-13Y3M-CS, Point Grey) sampling at

60, 150, 30 Hz respectively (for details see Appendix 1 of Ref.24). A custom speaker (Hardware Team

of the Champalimaud Foundation for the Unknown, V1.1) was used to play task-related sounds, and an

ultrasonic microphone (Ultramic UM200K, Dodotronic) was used to record ambient noise from the rig. All

task-related data was coordinated by a Bpod State Machine (Sanworks). The task logic was programmed in

Python and the visual stimulus presentation and video capture was handled by Bonsai112 and the BonVision

package113.

Neural recordings were made using Neuropixels 1.0 (3A or 3B) probes (Imec13), advanced in the

brain using a micromanipulator (Sensapex, uMp-4). Typically, the probes were tilted at a 15 degree angle

from the vertical line. Data were acquired via an FPGA (for 3A probes) or PXI (for 3B and 1.0 probes,

National Instrument) system using SpikeGLX, and stored on a PC.

Habituation, training, and experimental protocol For a detailed protocol on animal training, see Meth-

ods in Refs.23, 24. Briefly, at the beginning of each trial, the mouse was required to not move the wheel for

a quiescence period of 400–700 ms. After the quiescence period, a visual stimulus (Gabor patch) appeared

on either the left or right (±35◦ azimuth) of the screen, with a contrast randomly sampled from a predefined

set (100, 25, 12.5, 6, 0%) . A 100 ms tone (5 kHz sine wave) was played at stimulus onset. Mice had 60 s to

move the wheel and make a response. Stimuli were yoked to the rotation of the response wheel, such that a

1 millimetre movement of the wheel moved the stimulus by 4 visual degrees. A response was registered if

the centre of the stimulus crossed the ±35◦ azimuth line from its original position. If the mouse correctly

moved the stimulus 35◦ to the centre of the screen, it immediately received a 3 µL reward; if it incorrectly

moved the stimulus 35◦ away from the centre, it received a timeout. If the mouse responded incorrectly

or failed to reach either threshold within the 60 s window, a white noise burst was played for 500 ms and

the inter-trial interval was set to 2 s. In trials where the visual stimulus contrast was set to 0%, the mouse

had to respond as for any other trial by turning the wheel in the correct direction (assigned according to

the statistics of the prevailing block) to receive a reward, but the mouse was not able to perceive whether

the stimulus was presented on the left or right side of the screen. The mouse also received feedback (noise
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burst or reward) on 0% contrast trials.

Each session started with 90 trials in which the probability of a visual stimulus appearing on the left

or right side was equal. Specifically, the 100%, 25%, 12.5%, and 6% contrast trials were each presented 10

times on each side, and the 0% contrast was presented 10 times in total (i.e. the ratio of the [100 : 25 : 12.5

: 6 : 0] % contrasts is set at [2 : 2 : 2 : 2 : 1]). The side (and thus correct movement) for the 0% contrast

trials was chosen randomly between the right and left with equal probability. This initial block of 90 trials

is referred to as the unbiased block (50/50).

After the unbiased block, trials were presented in biased blocks: in right bias blocks, stimuli appeared

on the right on 80% of the trials, while in left bias blocks, stimuli appeared on the right on 20% of the trials.

The ratio of the contrasts remained as above ([2 : 2 : 2 : 2 : 1]). Whether the first biased block in a session

was left or right was chosen randomly, and blocks then alternated.

Mice were trained on this task following a stepwise shaping strategy in which progressively lower

contrast stimuli were introduced as performance increased23.

Electrophysiological recording using Neuropixels probes For details on the craniotomy surgery, see

Appendix 3 of Ref.24.

Briefly, upon the first day of electrophysiological recording, the animal was anaesthetised using isoflu-

rane and surgically prepared. The mouse was administered with analgesics (typically Carprofen) subcuta-

neously. The glue was removed (typically using a biopsy punch (Kai Disposable Biopsy Punches (1mm))

or a drill), exposing the skull over the planned craniotomy site(s). A test was made to check whether the

implant could hold liquid; the bath was then grounded either via a lose or implanted pin. One or two cran-

iotomies (approximately 1 × 1 mm) were made over the marked locations. The dura was left intact, and

the brain was lubricated with ACSF. A moisturising sealant was applied over the dura (typically DuraGel

(Cambridge NeuroTech) covered with a layer of Kwikcast (World precision instruments)). The mouse was

left to recover in a heating chamber until locomotor and grooming activity were fully recovered.

Subjects were head-fixed for recording after a minimum recovery period of 2 hours. Once a cran-

iotomy was made, up to 4 subsequent recording sessions were made in that same craniotomy. Once the

first set of craniotomy was fully recorded from, a subject could undergo another craniotomy surgery in

accordance with the institutional licence. Up to two probes were implanted in the brain on a given session.

CM-Dil (V22888 Thermofisher) was used to label probes for subsequent histology.

Serial section two-photon imaging Mice were given a terminal dose of pentobarbital and perfuse-fixed

with PBS followed by 4% formaldehyde solution (Thermofisher 28908) in 0.1M PB pH 7.4. The whole

mouse brain was dissected, and post-fixed in the same fixative for a minimum of 24 hours at room temper-

ature. Tissues were washed and stored for up to 2-3 weeks in PBS at 4C, prior to shipment to the Sainsbury

Wellcome Centre for image acquisition. For full details, see Appendix 5 of Ref.24.
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remaining

section filter sessions probes neurons

5.9.1 session and insertion QC 354 547 295,501

5.9.2 reaction time & missing events 353 545 293,566

5.9.2 minimum 3 error trials 352 543 292,165

5.9.3 single unit QC 352 543 32,525

5.9.3 gray matter regions 351 542 28,972

5.9.3 minimum 10 units/region 312 450 22,818

5.9.3 minimum 2 sessions/region 308 439 22,113

Table 1. Session and probe filtering. The table indicates the progressive filtering of the sessions and probes

based on the various inclusion criteria described in the text.

For imaging, brains were equilibrated with 50mM PB solution and embedded into 5% agarose gel

blocks. The brains were imaged using serial section two-photon microscopy114, 115. The microscope was

controlled with ScanImage Basic (Vidrio Technologies, USA), and BakingTray, a custom software wrapper

for setting up the imaging parameters116. Image tiles were assembled into 2D planes using StitchIt117.

Whole brain coronal image stacks were acquired at a resolution of 4.4 x 4.4 x 25.0 µm in XYZ, with a

two-photon laser wavelength of 920 nm, and approximately 150 mW at the sample. The microscope cut 50

µm sections but imaged two optical planes within each slice at depths of about 30 µm and 55 µm from the

tissue surface. Two channels of image data were acquired simultaneously using multialkali PMTs (‘Green’

at 525 nm ±25 nm; ‘Red’ at 570 nm low pass).

Whole brain images were downsampled to 25 µm XYZ pixels and registered to the adult mouse

Allen common coordinate framework6 using BrainRegister118, an elastix-based119 registration pipeline with

optimised parameters for mouse brain registration. For full details, see Appendix 7 of Ref.24.

Probe track tracing and alignment Neuropixels probe tracks were manually traced to yield a probe tra-

jectory using Lasagna120, a Python-based image viewer equipped with a plugin tailored for this task. Traced

probe track data was uploaded to an Alyx server121; a database designed for experimental neuroscience labo-

ratories. Neuropixels channels were then manually aligned to anatomical features along the trajectory using

electrophysiological landmarks with a custom electrophysiology alignment tool122, 123. For full details, see

Appendix 6 of Ref.24.

Spike sorting The spike sorting pipeline used at IBL is described in detail in Ref.27. Briefly, spike sorting

was performed using a modified version of the Kilosort 2.5 algorithm124. We found it necessary to improve

the original code in several aspects (scalability, reproducibility, and stability, as discussed in Ref.24), and

developed an open-source Python port; the code repository is in Ref.125.

Inclusion criteria We applied a set of inclusion criteria to sessions, probes and neurons to ensure data

quality. Table 1 lists the consequences of these criteria for the number of sessions and probes that survived.

They are described below.
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Sessions and insertions Sessions were included in the data release if the mice performed at least 400

trials, with a performance of at least 90% correct on 100% contrast trials for both left and right blocks,

and if there were at least three trials with incorrect choices (after applying the trial exclusions below).

Furthermore, sessions were included in the release only if reached threshold on a collection of hardware tests

(definitions can be found at https://int-brain-lab.github.io/iblenv/_autosummary/

ibllib.qc.task_metrics.html)

Insertions were excluded if the neural data failed the whole recording visually assessed criteria of

the ‘Recording Inclusion metrics and Guidelines for Optimal Reproducibility’ (RIGOR) from Ref.24, by

presenting major artefacts (see examples in Ref.27), or if the probe tract could not be recovered during the

histology procedure. Furthermore, only insertions whose alignments had been resolved (see Appendix 6 of

Ref.24 for definition) were used in this study.

After applying these criteria, a total of 354 sessions, 547 insertions and 295,501 neurons remained,

constituting the publicly released data set.

Trials For the analyses presented here, trials were excluded if one of the following trial events could not

be detected: choice, probabilityLeft, feedbackType, feedback times, stimOn times,

firstMovement times. Trials were further excluded if the time between stimulus onset and first

movement of the wheel was outside the range of [0.08, 2.00] seconds.

Neurons and brain regions Neurons output by the spike sorting pipeline were excluded from the analyses

presented here if they failed one of the three criteria described in Ref.27 (the single unit computed metrics

of RIGOR24): amplitude >50 µV ; noise cut-off < 20 µV; refractory period violation. Neurons that passed

these criteria are termed ’good’ neurons (or often just ’neurons’) in this study. Out of the 295,501 neurons

collected, 32,766 were considered good neurons. Final analyses were additionally restricted to regions that

a) are designated gray matter in the adult mouse Allen common coordinate framework6, b) contained at

least 10 good neurons per session, and c) were recorded from in at least 2 such sessions.

Video analysis We briefly describe the video analysis pipeline; full details can be found in Ref.126. The

recording rigs contain three cameras, one called ‘left’ at full resolution (1280x1024) and 60 Hz filming

the mouse from one side; one called ‘right’ filming the mouse symmetrically from the other side at half

resolution (640x512) and 150 Hz; and one called ‘body’ at half resolution and 30 Hz filming the body of

the mouse from above. We developed several quality control metrics to detect raw video issues such as poor

illumination (as infrared light bulbs broke) or accidental misplacement of the cameras126.

We computed the motion energy (the mean across pixels of the absolute value of the difference be-

tween adjacent frames) of the whisker pad areas in the ‘left’ and ‘right’ videos. The whisker pad area was

defined empirically using a rectangular bounding box anchored between the nose tip and the eye, both found

using DeepLabCut127 (DLC; see more below). This metric quantifies motion in the whisker pad area and

has a temporal resolution of the respective camera.
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We also performed markerless pose estimation of body parts using DLC30, which is used within a

fully automated pipeline in IBL (version 2.1) to track various body parts such as the paws, nose, tongue,

and pupil. In all analyses using DLC estimates, we drop predictions with likelihood < 0.9. Furthermore,

we developed several quality control metrics for the DLC traces126.

Assessing statistical significance In this work, we studied the neural correlates of task and behavioural

variables. In order to assess the statistical significance of these analyses, we need to account properly for

spurious correlations. Spurious correlations can be induced in particular by slow continuous drift in the

neurophysiological recordings, due to various factors including movement of the Neuropixels probes in the

brain. Such slow drifts can create temporal correlations across trials. Because standard correlation analyses

assume that all samples are independent, they can yield apparently significant nonsense-correlations even

for signals that are completely unrelated128, 129.

Null distributions were generated against which we tested the statistical significance of our results.

More specifically, we used distinct null distributions for each of the three types of variables we considered:

discrete behaviour-independent variables (e.g., the block prior and the stimulus side), discrete behaviour-

dependent variables (e.g., reward and choice), and continuous behaviour-dependent variables (e.g., wheel

speed and wheel velocity). For the rest of the section, we will denote the aggregated neural activity across

L trials and N neurons by S ∈ R
L×N , and denote the vector of scalar targets across all trials by C ∈ R

L.

For discrete behaviour-independent variables, we generated the null distribution from so-called “pseudo-

sessions”, i.e., sessions generated from the same generative process as the one used for the mice. This

ensured that the time series of trials in each pseudo-session shares the same summary statistics as the ones

used in the experiment. We generated M (typically M = 200) pseudo-targets C̃i, i ∈ [1,M ], and performed

the given analysis on the pair
(
S, C̃i

)
and obtained a fit score F̃i. In pseudo-sessions, the neural activity

S should be independent of C̃i as the mouse did not see C̃i but rather C. Any predictive power from C̃i

to S (or from S to C̃i) would arise, for instance, from slow drift in S unrelated to the task itself. These

pseudo-scores F̃i can be compared to the actual score F obtained from the neural analysis on (S,C) to

assess statistical significance.

For discrete behaviour-dependent variables (such as choice or reward), we could not use the pseudo-

session procedure above as we did not know the underlying generative process in the mouse. We therefore

used “synthetic” sessions to create a null distribution. These depend on a generative model of the process

governing the animals’ choices. In turn, this requires a model of how the animals estimated the prior

probability that the stimulus appears on the right or left side of the screen, along with a model of its response

to different contrasts given this estimated prior. We found (see our companion paper on the subjective prior
93) that the best model of the prior across all animals uses a running average of the past actions as a subjective

prior of the side of the next stimulus, which we refer to as the ‘action-kernel’ model. The subjective prior

πt follows the update rule:

πt+1|πt, at, α = (1− α) · πt + α · (at > 0)

with at ∈ {−1, 1} the action performed by the mouse on trial t and α the learning rate. This effectively
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models how mice use information from previous trials to build a subjective prior of where the stimulus is

going to appear at the next trial. The details of how this prior is integrated with the stimulus to produce a

decision policy is described in the companion paper93.

With this model of the mouse’s decision-making behaviour in hand, we fit an action-kernel model

to the mouse’s behaviour on each session. Then, we generated stimuli from pseudo-sessions and simulate

the fitted model on the pseudo-sessions to obtain times series of choice and reward. This leads to the

“synthetic” targets C̃i. Then, as we did with pseudo-sessions, we obtained pseudo-scores F̃i and assessed

statistical significance by comparing the distribution of pseudo-scores to the actual score F obtained from

the neural analysis on (S,C).

For the third type of variable – continuous behaviour-dependent variables such as wheel speed –

generating synthetic sessions is harder, as we do not have access to a reasonable generative model of these

quantities. We instead used what we call “imposter” sessions, generated from the continuous behaviour-

dependent variable from another mouse on another session. More precisely, an imposter session for an

original session of L trials is generated by performing the following steps:

1. concatenate trials across all sessions analysed in this paper (leaving out the session under considera-

tion)

2. randomly select a chunk of L consecutive trials from these concatenated sessions

3. return the selected chunk, the imposter session

The continuous behaviour-dependent variable can then be extracted from the imposter session. As

with the pseudo-sessions and the synthetic sessions, we obtained pseudo-scores F̃i from a collection of

imposter sessions and assess statistical significance by comparing the distribution of pseudo-scores to the

actual score F obtained from the neural analysis on (S,C).

Additional information about assessing statistical significance for individual analyses are detailed in

the analysis-specific sessions below. For decoding, single-cell and manifold analyses, the results come in

the form of per-region p-values. We used the false discovery rate to correct for comparisons across all

the regions involved in each analysis (123 for the main figures), at a level of q = 0.01. We employed

the Benjamini-Hochberg procedure130 as we expected substantial independence among the tests. As noted,

we were not able to assess significance for the encoding analysis because of a lack of a convenient null

distribution.

Motor correlates of block The mice in this study were able to leverage block information to guide their

choice behaviour (Fig. 3). We described our analyses of the neural representation of this information in

Sec. ; but we must also consider the possibility that this information was represented in the non-choice be-

haviour of the mouse; for example, a mouse might have rested its paws on the right side of the wheel during
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periods where the stimulus appears on the right more often. To search for such “embodied” strategies, video

and rotary encoder (wheel) data were used to extract 7 behavioural variables as being potentially modulated

according to the block structure: licking, left/right whisker pad motion, wheel movement, nose position,

and left/right paw positions (all described below). For each behavioural variable we assessed whether the

variable differed across blocks during the time window −400 ms to 0 ms relative to stimulus onset. We

chose to analyse the behaviour before stimulus onset in order not to confound the behaviour with other

trial properties such as the stimulus side and action taken. We summarised the amplitude of each of these

behaviours by taking the mean across time bins in the window, and then compared the average amplitude

across left block trials to that across right block trials (i.e. taking the absolute value of their difference). We

then assessed statistical significance using a null distribution obtained by randomizing the block labels of

the trials with 100 pseudo-sessions. A one-sided p-value was defined with the percentile of our statistic in

this null distribution, say q, as 1− (q/100). We repeated this analysis using another time window, −600 ms

to −200 ms relative to stimulus onset, in order to test how sensitive the metrics are to the exact position of

the window. Below we provide more details on how the individual behaviours are extracted:

• “Licking” is obtained from videos from both side cameras of the animal using DLC to obtain two

points on the tongue (left and right edge of the tongue). A lick is defined to have occurred in a frame

if the difference for either coordinate to the subsequent frame is larger than 0.25 times the standard

deviation of the difference of this coordinate across the whole session. This measure was empirically

confirmed as detecting licks, via manual inspection of sample videos.

• “Whisking left/right” is defined by the motion energy in a bounding box around the whisker pad of

the corresponding camera (see Sec. ).

• “Wheeling” is obtained by computing the speed (rather than velocity) of the rotary encoder.

• “Nose position” is defined as the x coordinate of the DLC-tracked nose in the left camera video.

• “Paw position left/right” is the Euclidean distance between the left/right paw (tracked by DLC in the

left/right camera) and the upper left frame corner of the frame.

Single-cell correlates of sensory, cognitive, and motor variables We quantified the sensitivity of single

neurons to four task variables: the visual stimulus (left versus right location of the visual stimulus), choice

(left versus right direction of wheel turning), prior expectation (left versus right block side), and feedback

(reward versus non-reward). We computed the sensitivity metric for each task variable using the condition

combined Mann-Whitney U statistic16, 131, 132 (Fig. S4a,b). Specifically, we compared the firing rates from

those trials with one task-variable value V1 (e.g., trials with stimulus on the left side) to those with the other

value V2 (e.g., with stimulus on the right side), while holding the values of all other task variables fixed. In

this way, we could isolate the influence of individual task variables on neural activity. To compute the U

statistic, we first assigned numeric ranks to the firing rate observations in each trial. We then computed the

sum of ranks R1 and R2 for the observations coming from n1 and n2 trials associated with the task-variable
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values V1 and V2, respectively. The U statistic is defined as:

U = min

[
R1 −

n1(n1 + 1)

2
, R2 −

n2(n2 + 1)

2

]
. (1)

The probability that the firing rate on V1 trials is different (greater or smaller) from the firing rate on V2

trials is computed as 1− P , where P is given by

P =
U

n1n2

, (2)

which is equivalent to the area under the receiver operating characteristic curve133, 134. The null hypothesis

is that the distributions of firing rates on V1 and V2 trials are identical.

To obtain a single probability across conditions, we combined observations across different trial con-

ditions j by a sum of U statistic in these conditions16:

P =

∑
j Uj∑

j n1,jn2,j

. (3)

Here n1,j and n2,j are the numbers of V1 and V2 trials, respectively, within the condition j.

For the visual stimulus, we compared firing rate on trials with the stimulus on the left versus stimulus

on the right during time-window [0, 100] ms aligned to the stimulus onset time. For choice, we compared

firing rate on trials with the left versus right choice during time-window [−100, 0] ms aligned to the move-

ment onset time. For the block side, we compared firing rate on trials with the left versus right block prior

during time-window [−400,−100] ms aligned to the stimulus onset. For the feedback, we compared firing

rate on trials with reward versus non-reward during time-window [0, 200] ms aligned to the feedback onset

time.

To estimate statistical significance, we used a permutation test in which trial labels for one task vari-

able were randomly permuted 3,000 times within each subset of trials with fixed values of all other task

variables, and the Mann-Whitney U statistic was computed for each permutation. We computed the p-value

for each task variable as the fraction of permutations with the statistic P greater than in the data. This

approach controls for correlations among task variables and allows us to isolate the neuron’s sensitivity to

stimulus that is not due to sensitivity to block and choice, and vice versa. Random permutations, however,

do not control for spurious correlations that can arise due to autocorrelations in the time series of the firing

rate and task variable128. To control for spurious correlations, we used the pseudo-session approach128 to

generate a null distribution of block-side labels. The pseudo-session approach controls for temporal correla-

tions but destroys correlations among task variables, which is complementary to the random permutations.

For the single neuron correlates with block-side, we tested the statistical significance with pseudo-session

null distribution. For the single neuron correlates with visual stimulus, choice and feedback, we cannot use

the pseudo-session approach to generate null distributions, because it cannot preserve the original statistical

distribution of stimulus or choice in permuted blocks. Instead, for the single neuron correlates with these

task variables (visual stimulus, choice and feedback), we used a within-block permutation test to simul-

taneously control for both temporal correlations and correlations among task variables. Specifically, we
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generated the null distribution by randomly permuting trial labels with fixed values of all other task vari-

ables within each individual block, which effectively reduces the serial dependencies of task variables at

the timescale of block duration.

For visual stimulus, choice, and feedback, the combined condition Mann-Whitney U statistic can

have a relatively high false positive rate due to the limited number of trials in each condition. To obtain a

sufficient number of trials, we also performed simple Mann-Whitney U statistic without separating different

conditions. We defined p < 0.001 (αMW = 0.001) as the criterion of significance for the simple Mann-

Whitney U statistic, and p < 0.05 (αCCMW = 0.05) for the combined condition Mann-Whitney U statistic.

We defined neurons that were statistically significant in both tests to be sensitive neurons for a specific task

variable. For block variable, we performed Mann-Whitney U test and defined p < 0.001 (αMW = 0.001)

as the criterion of significance.

To quantify the overall responsiveness of single neurons to the behavioural task, we used the Wilcoxon

rank-sum test to compare firing rates between the baseline ([−200, 0] ms window aligned to the stimulus

onset) and different task periods: [50, 150] ms and [0, 400] ms aligned to stimulus onset, [−100, 50] ms and

[−50, 200] ms aligned to the first-movement onset, and [0, 150] ms aligned to the reward delivery.

To measure the behavioural movement correlates of single neurons in the entire recording sessions,

we computed zero time-lag Pearson correlation coefficient between time-series of spike counts in 50ms bins

and time-series of four behavioural variables (nose, pupil, paw, and tongue) each extracted from videos of

the subject using DeepLabCut software30. To assess the significance of these correlations, we applied a

time-shift test135 and computed 2K = 40 time-shifted correlations varying the offset between time-series of

spiking activity and behavioural variables from 50 to 1,000 ms (both positive and negative offsets). We then

counted the number of times m where the absolute value of time-shifted correlation exceeds that of zero

time-lag correlation and assigned the p-value as the fraction of the absolute value of permuted correlations

greater than in the data p = m/(K + 1). We can then assign each neuron as being significantly responsive

relative to a particular threshold on this p-value.

We then computed the fraction of neurons in each brain region that were significantly responsive to

the behavioural task, movement, visual stimulus, choice and prior expectation, and identified brain regions

that were most responsive to these conditions. Specifically, for each region, we computed p-value of the

fraction of neurons (fi) in i-th session by comparing the fraction to a binomial distribution of fractions due

to false positive events: Binomial(Ni, α), where Ni is the number of neurons in i-th session, and α is the

false positive rate:

α =

{
αMW × αCCMW = 0.001× 0.05 , for stimulus, choice, feedback

αMW = 0.001 , for block
(4)

We defined the p-value pi as the probability of the fraction fi that is larger than the distribution Binomial(Ni, α).

Next, we used Fisher’s method to compute a combined p-value of each brain region by combining the p-
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values of all sessions (i = 1, 2, ...m):

combined p-value : χ2
2m = −2

m∑

i

log(pi) , (5)

where χ2
2m has a chi-squared distribution with 2m degrees of freedom. After computing combined p-

values of each brain region, these p-values are then entered into the false discovery rate (FDR) procedure

(Benjamini–Hochberg procedure) at level q = 0.01 to correct for multiple comparisons. We declare a list

of regions to be significant based on this FDR procedure.

Multiple linear regression model of single neuron activity We fit linear regression models to single

neuron activity, measured as spikes binned into 20 ms intervals. These models aim to express {slt}, the

neural activity in time bin t ∈ [1, T ] on trial l ∈ [1, L] based on D time-varying task-related regressors

X ∈ R
L,T,D. We first represented the regressors across time using a basis of raised cosine “bump” functions

in log space136. Each basis function was associated with a weight in the regression model, with the value

of the basis function at time t described by cos(2(t−τ)π
2w

+ 1
2
). The basis functions were computed in log

space and then mapped into linear time to more efficiently capture both fast neuronal responses in the

< 100ms range and slow changes beyond that time (Fig. 4c). The width w and centre τ of each basis were

chosen to ensure even coverage of the total duration of the kernel. In an example kernel with 3 bases, 3

separate weights would be fit to the event in question with weights describing early, middle, and late activity

predicted by the event. These bases were convolved with a vector describing the effects of each regressor.

In the case of timing events, the bases were convolved with a Kronecker delta function, resulting in a copy

of the kernel at each time where the event occurred. We describe the simple case that each regressor enjoys

the same number B of basis functions. This produced a new regression tensor X̂ ∈ R
L,T,D,B

We then sought regression weightsβββ ∈ R
D,B such that, as closely as possible, slt = β0+

∑
d,b βdbx̂ltdb,

where {βdb} are linear regression weights (Fig. S4c). Each single-neuron model used regressors for stimulus

onset (left and right separately), first movement onset (L/R), correct feedback, incorrect feedback, value of

the block probability, movement initiation, and wheel speed. Fitting was performed using an L2-penalised

objective function (as implemented in the scikit-learn python ecosystem as ||s−βββ0 − X̂ ·βββ||22 +α ∗ ||βββ||22),

with the weight of the regularization α determined via cross-validation. Note that the intercept of the model

is not included in the regularization, in order to capture fully the mean of the distribution of s.

We used a kernel composed of 5 basis functions to parameterise left and right stimulus onset, and

correct and incorrect feedback. These bases spanned 400 ms, and corresponded to 5 weights per regressor

for each of these 4 regressors in the model.

Previous work has shown that difficulty in perceptual decision-making tasks137, along with neural

responses, do not change linearly with contrast. To account for this we modulated the height of the stimulus

onset kernels as a function of contrast c with height h = tanh 5c
tanh 5

. The resulting kernels would produce a

response that was lower at low contrasts for the same set of weights {βdb}.

To capture statistical dependencies between wheel movements and spiking, we used anti-causal ker-
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nels (in which the convolution of signal and kernel produces a kernel peak before peaks in the signal)

describing the effect of movement onset for leftward and rightward movements. These kernels described

200 ms of activity preceding first movement using 3 basis functions. We also used an additional anti-causal

kernel of 3 bases covering 300 ms describing the effect of wheel speed, and was convolved with the trace

of wheel speed for each trial. With these regressors we aimed to capture preparatory signals preceding

movements related to the wheel.

Finally, two terms describing the modulation of firing by the block probability were used. Neither

term used the basis function parameterization, instead using a scalar value. One term (a single slice of

the regression tensor X) which was the value of the prior (0.8, 0.5 or 0.2 depending on the block) in the

previous trial from 400 ms pre-stimulus to 100 ms pre-stimulus, and another which was the same value

from stimulus onset until 600 ms post-feedback. The latter term changed value from the previous trial’s

value of the prior to the current trial at feedback time.

Models were fit on a per-neuron basis with a ridge objective function using 5-fold cross-validation.

Trials for cross-validation were chosen from a uniform distribution, and not in contiguous blocks. Models

were then fit again using a leave-one-out paradigm, with each set of regressor weights βd1 . . . βdB being

removed as a group and the resulting model fit and scored again on the same folds. The change between

the base model score R2
full and the omission model R2

−regressor was computed as ∆R2
regressor = R2

full −

R2
−regressor. Additionally, the sensitivity for several pairs of associated regressors, such as left/right stimulus

onset and correct/incorrect feedback, were defined as log|∆R2
A −∆R2

B|. This computation was applied to:

right/left stimulus, right/left movement onset, and correct/incorrect feedback.

Decoding

Overview We performed a decoding analysis to measure how much information the activity of populations

of neurons contained about task variables such as stimulus side and choice. To do this we used cross-

validated, maximum likelihood regression with L1 regularization. The neural regressors are defined by

binning the spike counts from each neuron in each session in a given region within a specific time window

on each trial. The duration of the time window, the number of bins in that time window (i.e. bin size),

and the trial event to which it is aligned depend on the variable that is the target of our regression (Table

2). These are discussed further below and include a variety of behavioural and task variables: stimulus

side, block side, choice, feedback, and wheel speed/velocity. Although a session may include multiple

probe insertions, we did not perform decoding on these probes separately because they are not independent.

Instead, neurons in the same session and region were combined across probes for our decoding analysis.

Decoding was cross validated (see Sec. ) and compared to a null distribution for significance (see Sec. ).

A given region may contain multiple sessions, and thus in the main figures (Fig. 5, Fig. 6, Fig. 7, Fig. 8,

and Fig. 9) the region p-value is defined by combining session p-values (see Sec. ), and the region effect

sizes are defined by subtracting the median of the null distribution from the decoding score and reporting

the median of the resulting values across sessions. The p-values for all regions are then subjected to false

discovery rate correction for multiple comparisons at level q = 0.01.
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Decoded

variable

Trial-relative

time

Window start

(ms)

Window end

(ms)

Bin size

(ms)

Regression

type

Score Null

distribution

Block Stim onset -400 -100 300 Logistic bal. acc. pseudo-session

Stim side Stim onset 0 100 100 Logistic bal. acc. pseudo-session

Wheel speed Movement onset -200 1000 20 Linear R
2 imposter

Wheel velocity Movement onset -200 1000 20 Linear R
2 imposter

Choice Movement onset -100 0 100 Logistic bal. acc. synthetic

Feedback Feedback time 0 200 200 Logistic bal. acc. synthetic

Table 2. Details of decoding analysis. Decoded variables are the targets for regression. Spike sorted

activity is summed within trial-relative bins and used as the regressors (Fig. S4d). Regression is performed

with the specified regression type using L1 regularization and the described cross-validation scheme (see

text). Performance is reported on held-out trials using the specified score, and this score is compared to a

null distribution of the form listed to evaluate statistical significance (Section ).

An example of our procedure (Fig. S4d) is as follows: to decode the mouse’s choice from neurons

within a given region from a single session, we first sum the spikes from each included trial across a single

bin spanning 100ms before movement onset to movement onset, separately for each neuron. If there are N

neurons and L trials, this binning procedure results in a matrix of size N ×L. We then construct the binary

target vector that is 1 to indicate a left choice and 0 to indicate a right choice. This results in a binary vector

of length L. Finally, we perform L1-regularized logistic regression in order to predict the choice from the

binned spike count data.

Target variables Stimulus side, choice, feedback, and block side are treated as binary target variables for

logistic regression. For stimulus side, trials which have zero-contrast are excluded. To make the bias block

compatible with binary classification, we exclude the first 90 trials of the sessions which are unbiased. We

use the LogisticRegression module from scikit-learn138 (version 1.1.2) with 0.001 tolerance, 1000

maximum iterations, “l1” penalty, “liblinear” solver, and “fit intercept” set to True. We balanced decoder

classes by weighting samples by the inverse of the class frequency, 1/(2pi,class). Decoding performance is

evaluated using the balanced accuracy of classification, which is the average of the recall probabilities for

the two classes. Fig. S19 shows histograms of the regression coefficients for all the variables.

Wheel values (speed and velocity) change over the course of a trial, unlike the previous decoding

targets, and we must therefore treat this target variable differently. We average wheel values in non-

overlapping 20ms bins, starting 200ms before movement onset and ending at 1000ms after movement onset.

Spike counts are binned similarly. The target value for a given bin (ending at time t) is decoded from spikes

in a preceding (causal) window spanning W bins (ending at times t, . . . , t-W ). Therefore, if decoding

from N neurons, there are (W + 1)N predictors of the target variable in a given bin. In practice we use

W = 10. To decode these continuous-valued targets we perform linear regression using the Lasso module

from scikit-learn138 (version 1.1.2) with 0.001 tolerance, 1000 maximum iterations, and “fit intercept” set

to True. Decoding performance is evaluated using the R2 metric.

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547681doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547681
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cross validation We performed all decoding using nested cross-validation. Each of five “outer” folds is

based on a training/validation set comprising 80% of the trials and a test set of the remaining 20% of trials.

We selected trials at random (in an “interleaved” manner). The training/validation set of an outer fold is

itself split into five “inner” folds, again using an interleaved 80%/20% partition. When logistic regression

is performed (two classes), the folds must be selected such that the trials used to train the decoder include

at least 1 example of each class. Because both outer and inner folds are selected at random, it is possi-

ble that this requirement is not met. Therefore, when there is an insufficient number of class examples

to complete training, we re-sample the outer or inner folds. Likewise, we disallow null sessions which

have an insufficient number of class examples. We trained regression models on the 80% training set of

the inner fold using various regularization coefficients: {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101} for Logis-

tic regression (denoted as input parameter C by sklearn) and {10−5, 10−4, 10−3, 10−2, 10−1, 100, 101} for

Linear regression (denoted as input parameter α by sklearn). We then used each model to predict targets on

the remaining 20% of the trials of the inner fold, i.e. the validation set. We repeated this procedure such

that each trial in the original training/validation set of the outer fold is used once for the validation set and

4 times for the train set. We then take the regularization coefficient that performed best across all validation

folds and retrained a regression model using all trials in the training/validation set of the outer fold. This

final model is used to predict the target variable on the 20% of trials in the test set of the outer fold. We

repeated the above training/validate/test procedure 5 times, each time holding out a different 20% of test

trials such that, after the 5 repetitions, each trial has been included in the test set exactly once, and included

in the training/validation set exactly 4 times. The concatenation of all test set predictions, covering 100%

of the trials, is used to evaluate the decoding score.

We found for some regions and sessions, the resulting decoding score was sensitive to the precise

assignment of trials to different folds. Therefore, to provide additional robustness to this procedure, we

repeated the full five-fold cross-validation for multiple separate runs, each of which used a different random

seed for selecting the interleaved training/validation/test splits. We then took the average decoding score

across all runs as the final reported decoding score. When decoding block, stim side, choice, and feedback

we perform ten runs, and while decoding wheel speed and wheel velocity we used two runs due to the added

computational burden of decoding the wheel values which include multiple bins per trial.

Significance testing with null distributions We assessed the significance of the decoding score resulting

from the multi-run cross-validation procedure described above by comparing it to those of a bespoke null

distribution of decoding scores. To construct appropriate null distributions, we fixed the regressor matrices

of neural activity and generated new vectors of target values that follow similar statistics. The ways in

which these new vectors of target values were constructed depends on the target variable (see Table 2), as

described in Section . Stimulus side and block are both behaviour-independent variables controlled by the

experimenter, and thus we used the pseudo-session method. Choice and reward are behavioural variables

that are not under the control of the experimenter, and thus we used the synthetic method. Finally, wheel

speed and velocity are behavioural variables for which we lack a good generative model, and therefore we

used the imposter session method. Once the new target values were generated, we carried out the full multi-

run cross validation procedure described above to get a new decoding score. This was repeated multiple

times to produce a null distribution of decoding scores: stimulus side, choice, and feedback are repeated 200
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times; block is repeated 1000 times; and wheel speed and wheel velocity are repeated 100 times because

wheel values impose a greater computational burden.

The null distribution is used to define a p-value for each region-session pair, where the p-value is

defined as 1 − ρ where ρ is the percentile relative to the null distribution. Each brain region is recorded

in ≥ 2 sessions, and we employed two different methods for summarizing the decoding scores across

sessions: a) the median corrected decoding score amongst sessions which is used as the effect size in the

main figures; the values have been corrected by subtracting the median of the decoding score of the null

distribution; b) the fraction of sessions in which decoding is significant, that is if the p-value is less than

α = 0.05, which is shown in the supplement. We combined session-wide p-values using Fisher’s method

(also known as Fisher’s combined probability test 31, 32) when computing a single statistic for a region.

Finally, the combined p-value for a region is subjected to a false discovery rate correction for multiple

comparisons at level q = 0.01. We note the combined p-value may be significant, but the computed effect

size may be negative. This is because many sessions used for decoding in that region may be insignificant

driving the effect size down, while a small number of sessions may be significant causing Fisher’s method

to produce a significant combined p-value.

Population manifold analysis methods We examine how responsive different brain regions are to a task

variable v of interest. To do so, we construct a pair of variable-specific “supersessions” (sv, s
′

v): We par-

tition all the IBL data into two, corresponding to the opposing pair of conditions for the variable (e.g. for

stimulus discrimination, we split the trials into the L and R stimulus conditions) and replace the trial-by-

trial responses of each cell within the condition and within each session with one trial-averaged response

(Fig. 4e). These trials are aligned to a variable-specific reference time (e.g., stimulus onset time for stimulus

discrimination). We used the canonical time windows shown in Fig. 4a around the alignment time for the

main figures unless stated otherwise (e.g. for feedback we use a longer time window in the temporal evolu-

tion plot to illustrate licking), time bins of length 12.5ms, and stride 2ms. The supersessions Sv, S
′

v have

a number of rows equalling the number of IBL sessions passing quality control for that variable condition

times the number of cells per session; columns correspond to time-bins.

We then subdivide the supersessions by brain region r (Sv,r, S
′

v,r). These define a pair of across-IBL

response trajectories (temporal evolution of the response) to the pair of variable v conditions for each brain

region.

We next compute the time-resolved difference in response of brain region r to the opposing conditions

of task variable v. We restrict our analyses to regions with ≥ 20 rows in (Sv,r, S
′

v,r) for all analyses if not

stated to use the canonical set of cells, same across all analyses. Our primary distance metric, which we

call dv,r(t), is computed as a simple Euclidean distance in neural space.

Given a time-resolved distance curve, we compute the maximum and minimum distances along the

curve to define a variable- and region-specific modulation amplitude:

Av,r = max
t

[dv,r(t)]−min
t
[dv,r(t)]. (6)
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We obtain a variable- and region-specific response latency by defining it as the first time t at which dv,r(t) =

mint[dv,r(t)] + 0.7(maxt[dv,r(t)]−mint[dv,r(t)]). Using modulation amplitude as a measure of effect size,

we then quantified the combined modulation amplitude and latency of regions as a function of task variable.

To generate a significance measure for the variable- and region-specific distance measures, we used a

pseudo-trial method for generating null distance distributions, as described below. Distances were signifi-

cant if they were greater in size than the corresponding null distance distribution with p < 0.01. Although

the statistical significance of regions is therefore controlled for the effects of other task variables, note that

the distance amplitudes and latencies are not.

Below we list the 4 task variables examined and the associated null distributions:

• “Stimulus” supersession: Sv, S
′

v correspond to trials with the stimulus on the left or right, respectively,

aligned by stimulus onset time and including 0 ms before to 150 ms after onset. To generate pseudo-

trials, we permuted the stimulus side labels among trials that share the same block and choice side.

• “Choice” supersession: Sv, S
′

v′ correspond to trials with the animal’s response (wheel movement) to

the left or right, respectively, aligning by wheel movement onset and including 0 ms before to 150

ms after onset. To generate pseudo-trials, we permuted the choice labels among trials with the same

block and stimulus side.

• “Feedback” supersession: Sv, S
′

v correspond to trials where the animal’s response was correct (recall

that the feedback was water delivery) or incorrect (recall that the feedback was tone and timeout

delivery), respectively, aligning by feedback onset including 0 ms before to 150 ms after onset. To

generate pseudo-trials, we permuted the choice labels among trials with the same block and stimulus

side and then compared these pseudo-choices with the true stimulus sides to obtain pseudo-feedback

types.

• “Block supersession”: Sv, S
′

v correspond to trials in left or right blocks, respectively, aligning by

stimulus onset from 400 ms to 100 ms before stimulus onset. To generate pseudo-trials, we permuted

the block side labels using the pseudo-session method, i.e. the same random function that was initially

used to create block structure.

For each Sv,r, S
′

v,r pair we repeated the pseudo-trial process M (=1000) times, then followed the same

distance computation procedures described above to obtain a null distribution of M modulation amplitude

scores. We obtain a p-value by counting n (as the number of pseudo-scores that are greater than the true

score for this region) like this: p = n+1
M+1

.

For regions with significant and large effect sizes to a given variable, we generated visualizations of

the population dynamics by projecting the trajectories in Sv,r, S
′

v,r into a low-dimensional subspace defined

by the first three principal components of the pair Sv,r, S
′

v,r. In addition to the main figure results, manifold

results on the maximal dataset are shown in Fig. S12.
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Visualization and comparison of results across neural analyses. To facilitate the comparison of neural

analyses across brain regions, for each task variable we visualised effect sizes in a table (e.g. Fig. 5f)

specifying the effect size for each analysis and brain region. Cells of the table were coloured according to

effect size using the same colour map as in the corresponding flatmap. We then sorted brain regions within

each Cosmos region according to the sum of (significant) effects across analyses. Before summing, the

effect sizes for each analysis were normalised to lie in the interval [0, 1]. This method highlights regions

with large effects across all analyses, and indicates the extent to which the analyses agree.
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Variable Region Analysis Session eid Neuron ID Number of neurons

Stimulus VISp Encoding e0928e11-2b86-4387-a203-80c77fab5d52 209 -

Stimulus VISp Decoding 5d01d14e-aced-4465-8f8e-9a1c674f62ec - 18

Choice GRN Encoding 671c7ea7-6726-4fbe-adeb-f89c2c8e489b 123 -

Choice GRN Decoding 671c7ea7-6726-4fbe-adeb-f89c2c8e489b - 23

Feedback IRN Encoding a7763417-e0d6-4f2a-aa55-e382fd9b5fb8 98 -

Feedback IRN Decoding e012d3e3-fdbc-4661-9ffa-5fa284e4e706 - 11

Block MOp Encoding 7bee9f09-a238-42cf-b499-f51f765c6ded 207 -

Block MOp Decoding 9e9c6fc0-4769-4d83-9ea4-b59a1230510e - 30

Wheel speed/velocity GRN Decoding 671c7ea7-6726-4fbe-adeb-f89c2c8e489b - 23

Wheel speed/velocity All Encoding - - 32,304

Table 3. Session and neurons used for example encoding and decoding analysis. For the stimulus

(Fig. 5), choice (Fig. 6), feedback (Fig. 7), block (Fig. 8), and wheel speed/velocity (Fig. 9) we included

figure panels showing example encoding and decoding analyses. Here, we list the variable name, region,

and analysis type along with the session eid, encoding neuron ID number, and decoding number of neurons.
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Figure S1. 2d-brain slices maps annotated with region acronyms. a) Region acronyms for sagittal

slices with coordinates: ML=-1.8mm, b) ML=-0.8mm, c) ML=-0.2mm. d) Region acronyms for the top

view of the dorsal cortex.
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Figure S2. PSTH of average neural activity across the brain. a) PSTH of average neural activity aligned

to stimulus onset, b) Movement onset, and c) Feedback onset.
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Figure S3. Motor correlates of block. a) Example frame of ‘left’ video with DLC-tracked left paw

position in the pre-stimulus interval for all trials of this session, coloured by block identity of the trial. r(t)

indicates the distance of the left paw to the upper left corner of the frame, here averaged across [−400, 0]ms

pre-stimulus interval. b) For each trial, the average pre-stimulus position of the left paw is shown, displaying

some tendency to be higher in right block trials (p(right) = 0.8, red dots), along with a trend to be lower

later in the session. c) Trial averaged r(t), splitting trials by block type (blue/red) or into a pseudo-block

(null-distribution, in grey). The left paw is on average closer to the upper left corner of the frame for trials

with p(left) = 0.8 (blue line). d) The prevalence of block-modulated behaviours across all sessions is shown

for paw position and other similar behaviours in the pre-stimulus interval, such as licking, whisking or the

nose position. For both pre-stimulus windows shown, approximately 20% of sessions has at least one of

these behaviours being block-modulated, see bar “at least one”. To test for the statistical significance of this

correlation, we used a “pseudo-session method”, comparing the difference in mean paw position between

left and right blocks to a null ensemble generated by re-randomizing the trial’s block structure using the

same distribution that it was generated from (panel c). e) Contingency table showing counts of sessions

with at least one brain region from which the block prior could be decoded, respectively where there was

at least one block-modulated behaviour. A Barnard exact test applied to this table results in p = 0.06 and

statistic s = 1.9, i.e. no strong evidence for a connection between motor correlates of block and decoding

of block from neural activity.
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Figure S4. Detail of spatiotemporal structure of neural analyses. a) Task structures. In each session,

consecutive trials form a block structure with the probability of a right-side stimulus being 0.8 and 0.2. In

each block, there are trials with stimulus and choice side that are left or right. By regrouping trials, we can

obtain 8 categories of trials with different combinations of stimulus side, block identify, and choice side.

b) Single-cell analysis studies the modulation of single-neuron activity by individual task variables within

a short time window. c) The encoding model uses temporal kernel functions to describe single-neuron

activity during the entire trial at high temporal resolution. d) The decoding model studies the modulation

of population neural activity by individual task variables (without marginalizing other variables) within a

short time window. e) Manifold analysis combines neural responses across multiple sessions (each neuron

averaged across trials within a session) and analyses the trajectory of population neural activity.
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Figure S5. Regressor windows and variance explained in linear encoding model. a) Schematic of

within-trial windows in which different regressors in the encoding model apply to firing predictions. b)

Additional variance explained in a leave-one-out paradigm by each regressor for the full distribution (left)

and zoomed-in to the medians of the distributions (right). Note that the range on the right panel is depicted

on the left via dotted lines.
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Figure S6. Decoding performance per region with per session results. Decoding analysis as done for

a) stimulus in Fig. 5, b) choice in Fig. 6, c) feedback in Fig. 7, d) block in Fig. 8, and e,f) wheel-speed

and wheel-velocity in Fig. 9. No FDR correction has been applied in the bar plots; but the bold labels

indicate those regions that survive FDR0.01 (and are shown in the figures in the main paper). Black dots

and x’s indicate decoding perform on individual sessions where dots are significant at α = 0.05 and x’s

are insignificant. The bar height is the median of all sessions within that region, and the white dot is the

across-session median of the null distribution medians.66
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Figure S7. Fraction of significant cells per region in single-cell analysis. Summary of single-cell analysis

for stimulus in Fig. 5, b) choice in Fig. 6, c) feedback in Fig. 7, d) block in Fig. 8. No FDR correction has

been applied in the bar plots; but the red colour labels indicate those regions that survive FDR0.01 (and are

shown in the figures in the main paper). Black dots and x’s indicate single-cell analysis is done on individual

sessions where dots are significant at α = 0.05 and x’s are insignificant. The bar height is the mean of all

sessions within that region.
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Figure S8. The stimulus variable. a) Fraction of sessions with significant decoding performance for

the stimulus variable relative to the null. b) 2d-brain slices of analysis results for the stimulus variable in

Fig. 5a-e. Instead of Swanson flat map, here we use 3 sagittal slices with coordinates ML=-1.8mm, -0.8mm,

-0.2mm, and the top view of the dorsal cortex to visualise the representation of task variables across the

brain. The locations of sagittal brain slices are optimised to display 252 brain regions. The region acronyms

for these slices are listed in Fig. S1.
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Figure S9. The choice variable. Analysis of the choice variable, with conventions as in Fig. S8.
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Figure S10. The modulation of neural activity by feedback signal across the brain. a) Fraction of

significant neurons per region identified by the condition combined Mann-Whitney test. We compared

neural activity after correct feedback ([0, 200] ms) with baseline inter-trial neural activity ([-200, 0] ms

aligned to stimulus onset). We deemed a region significant if the number of significant neurons there

exceeded the (1 − α)th percentile of a binomial (N, α) distribution (α=0.001), using FDR0.01 to correct

for multiple comparisons. (Methods). b) Comparison between neural activity after incorrect feedback ([0,

200]ms) with baseline inter-trial neural activity ([-200, 0 ]ms aligned to stimulus onset).
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d

Figure S11. Neural correlates of licking. a) Example lick activity for a single session, top trial-averaged,

bottom per trial. Animals lick more for correct trials (blue) with a clear rhythm around 10Hz. Licks

were detected using tongue tracking via DLC from side videos. b) Neural manifold distance (see manifold

analysis) between correct and incorrect trials for example regions selected manually for visible oscillations,

with the number of cells (pooled across sessions) next to the region acronym in the title, aligned to feedback.

The inset of each panel shows the power spectral density of the distance curve, several having a peak around

10Hz, correlating with licking. c) One example neuron’s activity to show activity is physiological and not

an artefact. Top panel, raster per trial with rhythmic 10Hz activity, also shown in the middle panel by

the power spectral density of the raster, averaged across trials. Bottom panel, waveforms of this neuron

across adjacent traces, illustrating that the spikes we counted are physiological rather than being caused

by an electrical artefact. Artefacts could arise, for example, from current flowing through the drinking

spout into the Neuropixels probe, which would result in all traces having a strong waveform. We found

no evidence for such artefacts when sampling various neurons and inspecting the waveforms. d) Single-

session manifold distance for select regions with trial-averaged lick activity in blue on top. E.g. in MRN a

clear correlation with licking was found when restricting the analysis to a single session, while much less

so when considering the session-averaged results, shown in b).
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Figure S12. Population dynamics across the brain on the full dataset. Using all good units and con-

sidering regions with at least 20 neurons after pooling across sessions, results in about 25% more neurons

than in the canonical set of cells that are used across analyses and shown in the main figures. a-c) Vi-

sualizations (through low-dimensional PCA-embedding) of whole-brain population dynamics (combined

across all cells, all sessions, all regions) for three task variables (left versus right stimulus, left versus right

choice, correct versus wrong feedback. Blue/red dots represent one time-bin of the population response

for left/right (or correct/wrong) trials; colour gradient indicates temporal evolution (darker is later). Grey

dots: pseudo-trials. d-f) Quantification of the time-resolved distance between opposite trajectories for each

variable, based on Euclidean distance (in Hz/cell) in the full-dimensional space (dimension = number of

cells) for example brain regions, selected based on response magnitude and to illustrate different response

profiles. Curves are annotated by region name and number of cells. Scalebars in all panels represent

spikes/s/cell. g-i) Summary of variable discriminability for stimulus side, choice side, and feedback type,

respectively, by magnitude and latency of response across all recorded brain regions. Diamonds indicate all

regions that have statistically significant discrimination (p < 0.01 relative to pseudo-trial controls), and line

plot examples are labelled by region name. Dots indicate responses of non-significant regions.
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Figure S13. The feedback variable. Analysis of the feedback variable, with conventions as in Fig. S8.
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Figure S14. The block variable. Analysis of the block variable, with conventions as in Fig. S8.
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Figure S15. Decoding wheel-velocity versus wheel-speed. Scatter plots comparing per-region wheel-

velocity decoding results against wheel-speed for all canonical regions. Decoding is performed for all

session-region pairs in the canonical set and the median metric of all such pairs in a given region is plotted.

Three such metrics are shown: (a) R2 scores corrected by the median of the null distribution, (b) R2 scores,

and (c) median of the null distribution. Note the difference in scales for the axes in c. (d) The median wheel-

speed and wheel-velocity trajectories across all trials are shown and the 5th to 95th percentiles are lightly

shaded. The stereotyped shape of wheel-speed produces higher R2 scores for sessions and null sessions. For

example, computing R
2 between 400 randomly chosen trials and 400 repetitions of the median wheel-speed

trajectory gives an R
2 of 0.245 (averaged across 1000 repeats). The same computation for wheel-velocity

yields R2
= 0.000.
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Figure S16. The behavioural correlates of single-neuron activity across the brain. a) Statistical tests to

measure the behavioural correlates of single neurons across all sessions. We compute the Pearson correla-

tion coefficient between the time series neural activity and five behavioural variables (nose position, pupil

diameter, paw position, and licks, extracted from behaviour video by using DLC; see Sec. S3). The signif-

icance of correlation is estimated by a time-shift test135 (Methods), using FDR0.01 to correct for multiple

comparisons. b) The flat brain map of the fraction of neurons that significantly correlates with at least one

of the movement variables.
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Figure S17. Comparison of effect sizes across task variables. Each column corresponds to a particular

neural analysis and each row a task variable. For each analysis, the colour scale is fixed across all variables

to enable comparison of effects between variables. For most analyses, the feedback variable has the largest

effect amongst all task variables.
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Figure S18. The neural correlates of task across the brain. a) Statistical tests to measure responsiveness

in different task windows. The schematics show the summary of all tests, superimposed on the task timeline.

Each row represents a separate Wilcoxon rank-sum test comparing firing rates in two different periods over

which firing rates were estimated. b) The flat brain map of the fraction of neurons that show significant

task response during at least one of the task epochs (test of responsiveness: a), using FDR0.01 to correct for

multiple comparisons.
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Figure S19. Histogram of regressor weights in decoding analysis. The distributions include decoding

weights across all region-session pairs in the canonical set. The distribution combines all weights used on

held-out test folds (typically 5 folds) including all temporal bins (for wheel-speed and wheel-velocity) and

all repeated decoding runs, but excludes regression intercepts. The legend indicates the decoded variable

with, in parentheses, the fraction of weights equal to zero (due to L-1 regularization).

80

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2023. ; https://doi.org/10.1101/2023.07.04.547681doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.04.547681
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	 Behavioural task and recording.
	 Behavioural performance.
	 Neural analyses.
	Representation of Visual Stimulus.
	Representation of Choice.
	Representation of Feedback.
	Representation of Block Prior.
	Representation of Wheel Movement.

	 Discussion
	Resources
	Data access
	Data quality
	Code repository
	Protocols and pipelines

	Methods
	Animals
	Headbar implant surgery
	Materials and apparatus
	Habituation, training, and experimental protocol
	Electrophysiological recording using Neuropixels probes
	Serial section two-photon imaging
	Probe track tracing and alignment
	Spike sorting
	Inclusion criteria
	Video analysis
	Assessing statistical significance
	Motor correlates of block
	Single-cell correlates of sensory, cognitive, and motor variables
	Multiple linear regression model of single neuron activity
	Decoding
	Population manifold analysis methods
	Visualization and comparison of results across neural analyses.

	Acknowledgements
	Competing interests

