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Abstract

Cell-free DNA (cfDNA) is released into the bloodstream from cells in various
physiological and pathological conditions. The use of cfDNA as a non-invasive biomarker
has attracted attention, but the dynamics of cfDNA fragmentation in the bloodstream
are not well understood and have not been previously studied computationally.

To address this issue, we present a Markovian model called FRIME (Fragmentation,
Immigration, and Exit) that captures three leading mechanisms governing cfDNA
fragmentation in the bloodstream. The FRIME model enables the simulation of cfDNA
fragment profiles by sampling from the stationary distribution of FRIME processes. By
varying the parameters of our model, we generate fragment profiles similar to those
observed in liquid biopsies and provide insight into the underlying biological
mechanisms driving the fragmentation dynamics.

To validate our model, we compare simulated FRIME profiles with mitochondrial
and genomic cfDNA fragment profiles. Our simulation results are consistent with
experimental and clinical observations and highlight potential physicochemical
differences between mitochondrial and genomic cfDNA.

The FRIME simulation framework provides an initial step towards an improved
computational understanding of DNA fragmentation dynamics in the bloodstream and
may aid in the analysis of liquid biopsy data.
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Author summary

Cell-free DNA (cfDNA) released into the bloodstream from cells in different conditions
is the basis for liquid biopsies, thus being non-invasive biomarkers of potential interest.
However, the dynamics of cfDNA fragmentation in the bloodstream remain poorly
understood and are yet to be studied computationally. To address this issue, we
developed a Markovian model which captures the three leading mechanisms governing
cfDNA fragmentation in the bloodstream: FRagmentation, IMmigration, and Exit
(FRIME). The FRIME model enables the simulation of cfDNA fragment profiles by
sampling from the stationary distribution of FRIME processes. Simulation results are
compared with mitochondrial and genomic cfDNA fragment profiles, which show
consistency with experimental and clinical observations. The FRIME simulation
framework is a significant step towards understanding DNA fragmentation dynamics in
the bloodstream, uncovering potential physicochemical differences between
mitochondrial and genomic cfDNA, and aiding the analysis of liquid biopsy data.

Introduction 1

Cell-free DNA (cfDNA) is extracellular DNA present in biofluids, particularly blood, 2

that originates mainly from dying cells as part of normal cellular turnover or 3

pathological processes, including cancer [1]. Assays, such as PCR and sequencing, can 4

detect cfDNA in the bloodstream, providing clinicians with molecular information on 5

the cell-of-origin. This created a new field called “liquid biopsy”, which is more 6

accessible and less risky than traditional biopsies, which require invasive procedures that 7

may cause complications such as infection, bleeding, or pain. The decreasing cost of 8

sequencing technologies has made cfDNA a promising material for prenatal genetic 9

diagnosis, early cancer detection, and cancer treatment decision-making [2]. Currently, 10

over 1000 clinical trials are exploring the potential of cfDNA, and there are a few 11

FDA-approved tests [3]. 12

Apart from being low-risk and easier to obtain, cfDNA can provide real-time 13

monitoring of the disease status, allowing for prompt therapy adjustments. However, 14

several challenges must be addressed before cfDNA can become a standard clinical tool. 15

These include the need for further validation of the methods used for cfDNA detection, 16

identification of the most appropriate clinical applications, optimization of the 17

cost-effectiveness of cfDNA analysis and an improved understanding of the processes 18

behind cfDNA generation and dynamics [4]. 19

There are many molecular features in cfDNA data, such as DNA mutation, copy 20

number variation [5], DNA methylation [6], and histone modifications [7]. When 21

focusing on the oncological applications of cfDNA, identifying pathological signals from 22

physiological activities or technical background in cfDNA is non-trivial. This is because 23

tumor-derived cfDNA usually makes up less than 10% of plasma cfDNA even at late 24

tumor stages [8], resulting in low signal-to-noise ratio. Sometimes, tumor cfDNA cannot 25

be detected despite using highly sensitive methods such as digital PCR [9]. Strategies to 26

overcome this problem include enriching for tumor-derived DNA [10], as well as 27

combining multi-modal information to increase the number of tumor-specific features 28

that can be captured or analyzed [11,12]. 29

CfDNA fragment length profile is one of the keys in both strategies. It has been 30

demonstrated in mice xenograft models and cancer patients that tumor-derived cfDNA 31

are in general shorter and more fragmented [10,13], therefore selecting for short DNA 32

fragments between 90-150 base pairs (bp) can enrich tumor signals. The short-to-long 33

fragment ratio has also been proposed to be a diagnostic marker [14]. Yet, studies so far 34

have been focusing on fragment sizes under approximately 200bp, and fragment length 35
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profiles beyond this have not been thoroughly described. Moreover, how to best 36

integrate the fragmentation profile with other multi-modal information remains an open 37

question. 38

Currently, cfDNA data is commonly perceived by biologists as a fixed snapshot, with 39

testing for specific markers of interest, such as mutation frequency. Nevertheless, cfDNA 40

is part of a dynamic equilibrium similar to other biological processes, constantly being 41

generated, broken down, and eliminated from the body. Although the kinetics of cfDNA 42

can potentially be analyzed during tumor resection [15] or caesarean section [16], these 43

approaches are not practical for diagnostic or molecular characterization purposes. 44

Fragmentation patterns have been proposed to have a high potential of containing 45

information of clinical relevance in what it is currently being referred to as cfDNA 46

framentomics. Further insights into the fragmentomics of plasma cfDNA may shed light 47

on the origin and fragmentation mechanisms of cfDNA during pathological processes in 48

diseases and enhance our ability to take the advantage of plasma cfDNA as a molecular 49

diagnostic tool. This includes extracting information from fragment length, end motifs, 50

jagged ends, preferred end coordinates, as well as nucleosome footprints, open 51

chromatin region, and gene expression inferred by the cfDNA fragmentation pattern 52

across the genome [20–22]. 53

However, to unveil the cfDNA properties, including that of fragmentation patterns, 54

as a potential biomarker for early diagnosis, diagnosis and prognosis, it is crucial to 55

characterize the intrinsic kinetics of cfDNA within the organism. This is so especially 56

when using cfDNA analysis as longitudinal diagnostic tool for monitoring the course of 57

treatment [17]. Consequently, computational models that capture the dynamics of 58

cfDNA may serve as a valuable tool to extract biological insights from the static cfDNA 59

data. 60

Mathematicians and physical chemists have used fragmentation equations to model 61

the degradation of polymers [18, 19]. Fragmentation equations are differential equations 62

that describe how the concentration of fragments at different length scales changes over 63

time. However, these equations did not account for the biological noise that occurs 64

naturally or the advent of DNA sequencing technology. While fragmentation with 65

immigration processes have been studied [23,24], no mathematical or computational 66

model has been built including an exit mechanism to study the effect of cfDNA 67

clearance mechanisms on the fragment profile. Simple approaches have estimated basic 68

averaged kinetic parameters for different processes [17] but without incorporating the 69

complexities of fragmentation processes. Recent studies based on non-dynamical 70

approaches have correlated tumor detection size with circulating tumor DNA 71

shedding [27] and developed a mathematical equation relating the distribution profile of 72

a stochastically fragmented DNA sample to the probability that a DNA fragment within 73

that sample can be amplified by any PCR assay of arbitrary length [26]. Finally, data 74

analytic mathematical and machine learning method have been used extensively to 75

analyze cfDNA fragmentation datasets [25, 28, 29]. Nevertheless, those approaches have 76

not incorporated mechanistically the dynamical interplay of the different processes 77

playing a role in the fragmentation dynamics. 78

CfDNA samples collected before and after treatment can provide an expanded view 79

of the genetic response of a patient’s tumor, including the dynamic changes in the 80

mutational landscape as well as the heterogeneity that develops due to the selective 81

pressure of therapy. In addition, it is clear that the potential of cfDNA analyses is 82

enhanced when combined with results obtained from tissue biopsies and integrated with 83

mathematical modelling of tumor evolution. [30]. 84

Therefore, simulation-based computational frameworks are required to gain a deeper 85

understanding of the biological processes that occur during DNA fragmentation and to 86

provide a more robust clinical analysis, an thus develop biomarkers, of sequenced cfDNA 87
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fragment profiles. 88

In this study, we develop a mathematical/computational stochastic Markovian model 89

and propose that the dynamic behaviour of cfDNA can be retrieved from the fragment 90

length distribution of cfDNA, obtained from sequencing. When a long DNA molecule is 91

cleaved by DNase, the resulting shorter molecules remain in the system, which would be 92

further split into even smaller molecules. When the system reaches dynamic equilibrium, 93

the abundance of molecules of each size would be dependent on the fragmentation 94

behaviour. 95

The structure of this paper is as follows: In the Methods section, we describe the 96

biological factors that determine the dynamics of cfDNA and propose the 97

FRagmentation with IMmigration and Exit (FRIME) framework, along with an 98

algorithm to implement it. In the Results section, we use the FRIME framework to 99

simulate the distribution of cfDNA fragment lengths and test various biological 100

assumptions by adjusting the parameters of the model. We then compare our simulated 101

results with real-world cfDNA data obtained using state-of-the-art sequencing 102

techniques. In the Discussion section, we explore the biological implications of our 103

results. Our simulations elucidate the shape of the entire cfDNA fragmentation profile, 104

including the fragment counts of high molecular weight fragments. Moreover, our study 105

identifies a difference in fragmentation kinetics between genomic and mitochondrial 106

cfDNA, revealing new insights into how cfDNA is metabolized. We also provide a novel 107

framework to study the dynamic parameters of cfDNA from existing data, which may 108

improve analytic strategies. By shedding light on the underlying biological mechanisms 109

of cfDNA fragmentation, our study contributes to the development of cfDNA as a 110

noninvasive biomarker in clinical settings. 111
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Materials and methods 112

Biological determinants of cfDNA dynamics 113

Various pathways of cell death, degradation, and regulated extrusion, partial or 114

complete genomes of various origins (e.g., host cells, fetal cells, and infiltrating viruses 115

and microbes) contribute to the shedding into human body fluids, most notably blood, 116

of segmented cell-free DNA (cfDNA) molecules [32]. Active and passive release and 117

elimination mechanisms contribute to the composition of cfDNA. In this manuscript we 118

assumed these macromolecules to be continuously produced, metabolized, and removed 119

from blood through the interplay of the following processes: 120

Production. CfDNA originates mainly from dying cells, which can be part of normal 121

cellular turnover or pathological processes such as cancer [1]. When cells die, 122

mitochondrial and genomic DNAs are released into the bloodstream. There are 123

variations in blood cfDNA levels among patients with different tumor types and stages. 124

In general patients with benign lesions or with early-stage cancer have lower amounts of 125

cfDNA compared to patients with advanced or metastatic tumors of comparable size, 126

what could be a result of the increased cell turnover and metabolic properties of 127

progressing cancer [35]. It has been found that cfDNA levels were correlated with 128

metabolic disease volume, estimated with 18F-labelled fluorodeoxyglucose positron 129

emission tomography, in some cancers. In our modelling framework, cfDNA input 130

mechanisms, whatever their origin, were incorporated as an input term feeding large 131

fragments sizes into the system. 132

Fragmentation rate. CfDNA can be digested both intracellularly during cell death 133

and extracellularly through different processes. The fragmentation rate of cfDNA 134

depends on the DNase activity, which can differ across different body fluids [31], health 135

conditions [33], and individuals. In the context of plasma cfDNA, it is digested 136

extracellularly by circulating DNases that break partially digested cfDNA into even 137

smaller fragments. 138

Fragmentation pattern. Healthy and diseased cells exhibit a structured genomic 139

DNA arrangement, with nucleosomes tightly binding most of the DNA except for short 140

linker stretches [34]. DNases selectively digest the linker DNA, creating a periodic 141

pattern of fragment sizes, where each peak corresponds to DNA associated with 142

nucleosomes. This pattern is referred to as a nucleosomal pattern. In contrast, 143

mitochondrial DNA is not bound by nucleosomes and lacks a nucleosomal fragmentation 144

pattern. 145

Elimination. The elimination mechanisms of circulating cfDNA are not fully 146

understood. Nucleosome-bound cfDNA is thought to mainly be cleared by the liver, 147

whereas naked single-stranded DNA may be cleared through the kidney in a 148

size-dependent manner [35]. Since the concentration of cfDNA is more or less in a 149

dynamic equilibrium, it can also be inferred that elimination of cfDNA is 150

concentration-dependent. The reported half-life of cfDNA is between 0.25 to 2 151

hours [15,16]. 152
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Technical determinants of cfDNA fragmentation data 153

There are multiple factors that may cause a systematic bias in cfDNA fragment lengths 154

readings, including the choice of cfDNA extraction kit [36], single-stranded versus 155

double-stranded library preparation [37], and most notably, short-read versus long-read 156

sequencing platform. Short-read sequencing platforms are designed for short DNA 157

molecules, and are not ideal for our study for a few reasons. Firstly, the sequencing 158

length is not guaranteed to cover the entire DNA molecule, and fragment length is 159

inferred from the reference genome after sequence alignment. Thus, fragment length 160

inference is affected by alignment errors as well as host-specific genetic variations. 161

Secondly, there is a fragment length bias in short-read sequencing, where large DNA 162

fragments are captured very inefficiently. This may be an effect of PCR during library 163

preparation or the sequencer itself [38]. On the other hand, long-read sequencing is 164

capable of directly measuring the fragment length by reading through the whole DNA 165

molecule. It can also capture large DNA fragments efficiently with a modest size 166

bias [39]. 167
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Computational model 168

To model the dynamics of cell-free DNA fragments in the bloodstream, we proposed the 169

FRIME framework which integrated the mechanisms mentioned above into a continuous 170

time Markov process. 171

See Fig 1 for a schematic diagram of the process. 172

FRagmentation mechanisms. CfDNA fragmentation is known to occur through 173

DNase digestion, however it remains unclear how exactly these biomolecules are broken 174

down and how does the reaction rate of cfDNA digestion depend on their size. Reaction 175

rates of other polymers are known to be proportional to polymer sizes raised to some 176

power [40]. Similar results can also be deduced mathematically under the Zimm chain 177

model which considers random movement of polymers [41]. In this paper we considered 178

different types of fragmentation rates and tested their outcomes against human data to 179

see which one provided a faithful description of the observed phenomenology. Such 180

comparison with clinical data can help us find possible biological mechanisms for cfDNA 181

digestion. 182

We also assumed that a fragment of length x reacts with an enzyme at a rate 183

CFx
αF . Upon reaction, the fragment breaks into two pieces of length xr, x(1− r), 184

where r ∼ Beta(a, 1). In this paper, the parameters CF , αF , r will denote the 185

fragmentation speed, fragmentation power and fragmentation ratio, respectively. 186

The case of αF < 0 corresponds to an increase of fragmentation rate with shorter 187

fragment lengths. This corresponds to the hypothesis that the reaction rate of cfDNA 188

polymers are limited by diffusion, and longer cfDNA polymers diffuse slower than 189

shorter polymers due to its size and possible secondary structures. 190

The case αF > 0 conversely assumes that fragmentation rate increases with longer 191

fragment length. This scenario corresponds to cfDNA digestion by surface exposure, 192

where the rate would be proportional to the number of available reaction sites. 193

The parameter a determines the distribution of the fragmentation ratio r. When 194

a = 1, the fragmentation ratio r is given by Beta(1,1), and is thus uniformly distributed 195

in [0, 1]. Biologically, this would correspond to the situation where cfDNA is digested by 196

endonucleases, i.e. fragments are cut in the middle. When a ≫ 1, the fragmentation 197

ratio r is much biased to values close to 1. This last situation would be where the 198

dominant fragmentation mechanism is digestion by exonucleases, i.e. fragments are cut 199

near the edges. It is known that the major intracellular and extracellular DNases 200

responsible for cutting cfDNA are not exonucleases [1, 42], thus in we chose a = 1. As 201

described in the paragraph Fragmentation pattern, genomic DNA is 202

nucleosome-protected, and fragmentation is not uniform. However, we still assumed 203

uniform cutting on a nucleosomal scale. 204

IMmigration mechanisms. We assumed that the maximum possible length of an 205

immigrated fragment is L, that would be equal to or smaller than the size of a full DNA 206

molecule. Fragments of all sizes between [0, L] immigrate into the system with rate CI . 207

As there was no prior knowledge on the length distribution of freshly released cell-free 208

DNA, the length of new fragments were assumed to be uniformly distributed in the 209

interval [0, L]. The parameter CI was chosen to denote the Immigration speed. 210

An alternative is to assume uniform cutting by intracellular DNases of DNA before 211

entering the bloodstream. This scenario would result in more short fragments than long 212

fragments, and could be modelled using a Beta(1, n) distribution for the immigrating 213

fragment size distribution. The stationary fragment distribution profiles under such an 214

assumption were also studied in this manuscript and described in detail in Section 1 of 215

the supplementary material S1 Appendix. 216
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Fig 1. Schematic diagram of the FRIME process of the distribution of
cfDNA fragments with length x. The FRagmentation mechanisms included the
effect of: 1) fragmentation speed CF and fragmentation power αF (negativity and
positivity related to shorter and longer fragment lengths, respectively); 2) the cut
location, with a = 1 as uniform cuts, and a ≫ 1 as cuts near the edges; 3) the
fragmentation ratio r, which followed a distribution Beta(a, 1) for any possible fragment
of length L. The IMmigration processes were modelled by an immigration speed CI .
For the Exit mechanisms we considered three different possibilities. First a constant exit
rate (CON, with CE as the constant), next a Power decay with No Boundary (PNB,
with αE as the exit rate), and finally a Power decay exit with Fixed Boundary (PFB,
with αE as the exit rate and BE as the boundary). Icons used are originally from
https://bioicons.com, with license
https://creativecommons.org/licenses/by/3.0/.
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Exit mechanisms. We considered three different classes of exit mechanisms: a 217

constant exit rate (CON), Power decay with No Boundary (PNB), and a Power decay 218

exit model with a Fixed Boundary (PFB). 219

For the CON model, we assumed that fragments of all sizes exit at the same rate CE . 220

This implies that cfDNA clearance mechanism is agnostic to cfDNA size. The PNB 221

model corresponds to the assumption that fragments of length x exit the system at a 222

rate proportional to xαE with αE < 0. That functional dependence describes situations 223

where all fragments leave the system but smaller fragments are easier to release from 224

circulation. Finally, the PFB model is based on the assumption that only fragments 225

smaller than BE exit the system and do so at a rate proportional to xαE −BαE

E . This 226

modelling scenario is in-line with the the renal clearance hypothesis, where only short 227

cell-free DNA fragments can pass through the glomerular capsules and be cleared. 228

In the following sections of this paper, the parameter αE is referred as the exit power 229

and the parameter BE as the exit boundary. A summary of all three exit mechanisms to 230

be studied in this paper can be found in Table 1. One of our goals in this paper was to 231

study which mechanism is more likely to be the one responsible for cfDNA clearance.

Exit Mechanism E(x)
CON CE

PNB L−αExαE , αE < 0
PFB L−αE max{xαE −BαE

E , 0}
Table 1. Functional dependencies of the exit rates E(x) on the fragment sizes
x for the different exit mechanisms considered in this paper.

232

FRIME Process and equilibrium measure. To model cfDNA fragmentation 233

profile, a Markov model with the above fragmentation, immigration, and exit 234

mechanisms was studied. Fragment profiles were sampled from the equilibrium measure 235

of the model. More specifically, Monte Carlo simulations were run for a continuous-time 236

Markov Chain (FRIME process) satisfying the following properties: 237

• The process starts off with a fragment with length xi(0) ∼ U(0, L). 238

• Fragments of length x at rate CFx
αF fragment into two pieces of length xr and 239

x(1− r), where r ∼ Beta(a, b). 240

• Fragments of length x < BE leave the system at rate E(x). 241

• New fragments immigrate into the system as a Poisson process with intensity CI . 242

The length z of a new fragment is given by the uniform distribution between [0, L]. 243
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Algorithm 244

The following algorithm was used to generate one simulation of a stationary profile of 245

the FRIME process. 246

1. Generate x0 ∼ U(0, L). Assign L = [x0]. Assign Lhist = L. Assign d = 1, T = 0. 247

2. While d < κ : 248

(a) Generate timm ∼ Exp(CIL), tfrag ∼ Exp(
∑

x∈L CFx
αF ) and 249

tE ∼ Exp(
∑

x∈L E(x)) 250

(b) Assign tmin = min(timm, tfrag, texit). Assign T = T + tmin. 251

• If tmin = tfrag, sample xfrag ∈ L, such that the probability of sampling 252

xi is proportional to xαF
i . 253

Generate r ∼ Beta(a, 1). 254

Assign L = L − [xfrag] + [rxfrag, (1− r)xfrag] 255

• If tmin = timm, generate xnew ∼ U(0, L). Assign L = L+ [xnew]. 256

• If tmin = tE , sample xE ∈ L, such that the probability of sampling xi is 257

proportional to E(xi). 258

Assign L = L − [xE ]. 259

(c) Assign Lhist = Lhist + L. Assign d = KSDist(L,Lhist/T ). 260

In step 1, the initial conditions of the FRIME process are set up. The list L is the 261

current fragment length distribution and the list Lhist is the list of fragment lengths 262

throughout the history of the simulation. 263

In the while loop, κ is the threshold of tolerance for the metric d, which is the 264

Kolmogorov-Smirnov distace between the current fragment list L and the historical 265

average Lhist/T , where T corresponds to the current time step. 266

In step 2(a), the next immigration, fragmentation and exit times timm, tfrag, tE are 267

generated and in step 2(b) the present time T is updated to T +min{timm, tfrag, tE} 268

by the theory of competing exponential. The fragment list L is also updated by 269

different mechanisms according to which simulated event comes first. 270

In step 2(c), the present fragment profile is loaded into the historical fragment list, 271

and the metric d is calculated as the Kolmogorov-Smirnov distance between the current 272

fragment list L and the historical average Lhist/T . The process terminates when d is 273

smaller than some preset tolerance threshold κ > 0. 274

Note that T is an auxiliary variable and does not reflect biological time, and is 275

independent of the stationary profile of a FRIME process. 276
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Computing machines and software 277

All simulations and clinical data analysis were run on Python 3.9.12 on a MacBook Air 278

M2 2022 with 8GB Memory and the Apple M2 Chip with operating system macOS 279

Ventura 13.3.1. Python packages required for the simulations are Numpy version 1.23.4, 280

Scipy version 1.7.3, Matplotlib version 3.5.1, Sklearn version 1.1.3, Seaborn version 281

0.11.2 and Pandas version 1.4.2. Simulations of FRIME processes were computationally 282

light; all simulations were run within 3 hours. Clinical data analysis took fewer than 2 283

hours. All codes for this manuscript are accessible on 284

https://github.com/thltsui/cfDNA-FRIME. 285

Data availability and preprocessing 286

Published cfNano data from Katsman et. al. [44] were used in this study, comprising of 287

cfDNA Nanopore long-read sequencing data from 7 healthy control subjects and 6 lung 288

adenocarcinoma patients. Shallow sequencing was done at about 0.2× genome coverage 289

and varies across samples. Anonymised sequence alignment files in BAM format were 290

downloaded from [43]. 291

Alignment and data pre-processing have been previously described in the original 292

publication [44]. Fragment lengths in base pairs were extracted from properly mapped 293

reads using samtools version 1.8 by excluding unmapped reads, non-primary alignment 294

reads, and supplementary alignment reads. Fragment length information was then 295

aggregated to obtain the number of fragments for each unique length in genomic DNA 296

(gDNA) and mitochondrial DNA (mtDNA). We considered gDNA and mtDNA 297

separately because they exhibit very different fragmentation profiles, as the former is 298

nucleosome-bound and has a multi-peak nucleosomal pattern, while the latter is not 299

nucleosome-bound and only has one peak. 300

Model fitting and comparison 301

Numerical experiment. To study the effect of each parameter of the FRIME model 302

on its stationary profile, numerical experiments were run where one parameter of 303

interest was assigned multiple values with all other parameters fixed. 304

For each parameter regime, a stationary profile was generated by running 50 305

simulations with different seeds. For all experiments, we set L = 1, κ = 0.05. The 306

sample average, lower quartile and upper quartile of fragment count across samples at 307

each length scale were plotted. The simulated data were also compared to several 308

model-specific best fitting curves for which analytic expressions were available from the 309

theoretical analysis (Table 2). In Section 4 of S1 Appendix, we showed that the 310

evolution of the fragment size distribution of a FRIME process could be described as a 311

solution to a class of partial differential equation. Furthermore, the mean of the 312

stationary distribution of FRIME processes could also be approximated by the 313

stationary solution to the class of partial differential equations. As a result, we could 314

justify that FRIME processes converge to a stationary fragment profile with mean 315

fragment size given by the expression set out in Table 2. For a detailed construction of 316

these stationary best fit curves, we refer to Section 4.2 of the supplementary material. 317

FRIME simulation fitting. To test how well FRIME model fits clinical data, 318

stationary profiles from simulated FRIME processes were compared against clinical 319

mitochondrial DNA (mtDNA) fragment profiles from [43]. 320

As fragments longer than 104bp are scarce, and sequencing accuracy for very long 321

fragments is low, all fragments longer than 104 in clinical data were discarded. FRIME 322
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Model Extra Assumptions Stationary solutions (’Best Fit’ Curves)

CON r ∼ U(0, 1) C1(CFx
αF + CE)

−αF +2

αF

PNB αF = 1 C3z
−αE (CF z

1−αE + 1)
3−αE
αE−1

PFB r ∼ U(0, 1), x > BE C2x
−(αF+2)

Table 2. Stationary distributions of fragment profiles under different exit
mechanisms. For each model, the functions presented describe the expected fragment
count per unit length for the stationary distribution of the FRIME process given the
extra assumptions on the basic FRIME model. For the CON model, we assumed that
the fragmentation ratio was uniformly distributed. For the PFB model, the best fit
curve only applies on the region x > BE and only if the fragmentaiton ratio is uniform.
For the PNB model, the stationary distribution curve is applicable if the fragmentation
power is αF = 1. The details of the derivations can be found at Supplementary Section
S4.2.

processes were simulated with maximum length L = 104. Furthermore, since cfDNAs 323

are digested through endonuclease, we took r ∼ Beta(1, 1) for our simulations. 324

Four clinical mitochondrial cell-free DNA fragment profiles sequenced by nanopore 325

technology with more than 500 fragment counts were analyzed in detail. These 326

fragment profiles were compared against simulated fragment profiles from FRIME 327

model under the Kolmogorov-Smirnov test. The simulated fragment profiles were 328

sampled after running a FRIME process under specific parameter regimes after 106 329

fragmentation / exit/ immigration events. 330

The genomic cell-free DNA fragment profile for sample ISPRO.bc05 was analyzed, 331

which has the highest sequencing depth among healthy control samples. To adjust for 332

the cyclical fragmentation pattern of genomic DNA (gDNA) data, fragment counts were 333

aggregated according to nucleosomal bins (see S3 Fig for details). The similarity 334

between simulated FRIME profiles and the genomic cfDNA fragment profile was 335

evaluated through a χ2 goodness of fit test. 336

PFB model fitting. Note that in Table 2, the best-fit curve for PFB model is the 337

simplest among the three options. Furthermore, the PFB model is useful for a broad 338

range of αF values, while the PNB model is only applicable for αF = 1. Therefore, a 339

total number of 13 mitochondrial and genomic cell-free DNA fragment profiles in [43] 340

were fitted with the PFB model. Specifically, the tail distributions of these fragment 341

profiles were fitted to a curve of the form Cxβ (Table 2). 342
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Results 343

CfDNA fragment profile data exhibits a peak and a linear decay 344

trend under log-log scale 345

During initial data exploration, we observed that cell-free mtDNA fragment profile 346

generated from Nanopore long-read sequencing exhibits a linear decay trend under 347

log-log scale. While gDNA fragment profile has a cyclical, nucleosomal pattern, the 348

linear trend remains true for gDNA if fragment counts are averaged over nucleosomal 349

bins. The findings were illustrated using a selected sample in Fig 2. Furthermore, a 350

clear peak in fragment count was observed for all mitochondrial and genomic cfDNA 351

fragment profiles around 100-200bp. Plots for the full set of data can be found in 352

supplementary material S5 Fig S6 Fig S7 Fig. 353
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Fig 2. Fragment size profiles of a selected sample ISPRO.bc01 in linear and
log-log scale. (A) Count per 10bp plotted against mtDNA fragment size shown in
linear (top) and log-log scale (bottom). A linear line is fitted against interpolated
counts in log-log scale, and is then plotted as a black dashed line in both linear and
log-log scale. (B) Count per 1000 fragment plotted against gDNA fragment size, shown
in linear (top) and log-log scale (bottom). The actual count is shown in blue, whereas
the average count for each nucleosomal bin is shown in pink. A best-fit linear line for
the average count is plotted in red for log-log scale.
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Exit mechanism determines existence and position of 354

fragmentation profile peak 355

To study the stationary fragment distribution as a function of fragment size, numerical 356

experiments were run for different parameter values for each of the three classes of exit 357

mechanisms described in Computational model. Some results for specific parameter 358

values are shown in Fig 3. 359

The results in Fig 3 showed relevant trends and features of the different models/exit 360

mechanisms considered. Firstly, the CON model led to a monotonic decrease of the 361

fragment count with the fragment size and did not exhibit a peak in fragment count 362

ubiquitous in clinical cfDNA profiles. 363

The PFB model showed a peak in the dependence of the fragment count with size. 364

When the boundary played a substantial role, in this case αE ≤ −1, the peak was 365

obtained on the boundary BE , and within the interval [0, BE ] for larger αE values. For 366

a theoretical justification of the result, refer to Section 4 of S1 Appendix. 367

Finally, the PNB model displayed a peak number of counts within the interval. The 368

peak moved to smaller fragment counts and was more pronounced as the parameter αE 369

grew. We note that the log-log plots showed that the tail-distributions for PFB profiles 370

were linearly decreasing in a broad range of small to medium fragment sizes. However, 371

profiles obtained using the CON and PNB models did not exhibit linearity in the log-log 372

plots. 373

The presence of peaks and the shape of the tail distribution in the log-log plots for 374

the PFB model simulations are consistent with the previous data exploration. Thus, in 375

the following, we perform the subsequent analyses focusing only on the PFB model. 376
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Fig 3. Simulated distribution of fragment sizes for different exit mechanisms.
Stationary distributions of fragment sizes obtained from simulations of the FRIME
process for parameter values CI = 500, CF = 2, αF = 1, a = 1, κ = 0.05. 50 points
were plotted for each configuration. Each point corresponds to the fragment count per
unit length over an interval of length 0.02. Different choices of the exit function were
taken and 50 simulations run for each choice of exit function. The plots on the left
column are in normal scale, while the plots on the right column are in log-log scale. (A)
CON model with exit functions E(x) = 1 (blue circles), 2 (orange crosses), 3 (red stars).
(B) PFB model, E(x) = xαE −BαE

E , with αE = -2 (blue circles), -1 (orange crosses),
-0.25 (red stars). Parameter BE was taken to be equal to 0.4. The vertical line was
plotted at the exit boundary BE = 0.4. (C) PNB model, E(x) = x−2, (blue circles),
x−1 (orange crosses), x−0.25 (red stars). Shaded regions were plotted using upper and
lower quartile fragment count across all simulations. Best fit lines were also plotted for
comparison for the CON and PNB model.
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Fragmentation mechanism determines tail distribution of 377

fragment profile for PFB model 378

Fragmentation ratio and fragmentation power. To study the effect of 379

fragmentation mechanism on stationary fragment profile, numerical experiments were 380

simulated for three different fragmentation ratios and three different fragmentation 381

power rates, as seen in Fig 4. 382
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Fig 4. Simulated fragment profiles with different fragmentation ratios and
fragmentation power rates. 50 simulations were run for each fragmentation
mechanism. 50 points were plotted for each configuration corresponding to average
fragment density at intervals sampled in range [0, 1] of length 0.02. Shaded regions were
plotted using upper and lower quartile fragment count across all simulations. PFB best
fit lines were also plotted for comparison in panel (B) with blue-dashed, orange
point-dashed and red-solid lines respectively for αF ∈ {−1, 0, 1}. All plots were in
log-log scale. (A) The fragmentation ratios were r ∼ Beta(1, 1), Beta(20, 1),
Beta(50, 1) respectively for blue-circled, orange-crossed and red-starred dots. Fixed
parameters were (CI = 20, CF = 1, αF = 1, E(x) = x−2 − 0.2−2, κ = 0.05). (B)
Fragmentation power were αF ∈ {−1, 0, 1} respectively for blue-circled, orange-crossed
and red-starred dots. Fixed parameters were (CI = 20, CF = 1, r ∼ Beta(1, 1),
E(x) = x−2 − 0.2−2, κ = 0.05).

In Fig 4(A), several fragmentation profiles with different fragmentation ratio were 383

explored. A larger value in the first coefficient a of the Beta(a, b) distribution 384

(corresponding to exonuclease hypothesis, see Fragmentation mechanisms in 385

Computational model) leads to a steeper decay in the fragment profile tail distribution. 386

In particular when a = 1, the fragment profile under the log-log scale is linear. 387

For fragmentation profile when r ∼ Beta(1, 1), the PFB best fit expression of form 388

Cx−αF−2 lies within the shaded region, (see Fig 4(B)). This corresponds to a linear 389

decrease under the log-log scale. Mathematically, if we denote βPFB to be the slope of 390

the best-fit line in log-log scale, then 391

βPFB = −αF − 2. (1)

For fragmentation profiles where r ∼ Beta(n, n) for large n, refer to S2 Fig. 392
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Fragmentation speed and immigration speed. To study the effect of 393

fragmentation speed on stationary fragment profile, numerical experiments were 394

simulated for three different fragmentation and three different immigration speeds, 395

namely CF and CI . The fragmentation speeds were chosen as CF ∈ {1, 2, 4} with fixed 396

CI = 400. Similarly, the immigration rates were chosen as CI = 100, 200, 400 with fixed 397

CF = 1. 398
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Fig 5. Simulated fragment profiles with different fragmentation and
immigration speeds. 50 simulations were run for each fragmentation mechanism. 50
points were plotted for each configuration corresponding to average fragment density at
[0,0.02], ...[0.98,1]. Shaded regions were plotted using upper and lower quartile fragment
count across all simulations. The small plots were the tail distribution but in log-log
scale. (A) The immigration rates were CI = 100, 200, 400 for blue circles, orange
crosses, and red stars respectively. Fixed parameters were CF = 1, αF = 1,
r ∼ Beta(1, 1), E(x) = x−2 − 0.4−2, κ = 0.05. (B) The fragmentation speed were Cf =
1, 2, 4 for blue circles, orange crosses, and red stars respectively. Fixed parameters were
CI = 400, αF = 1, r ∼ Beta(1, 1), E(x) = x−2 − 0.4−2, κ = 0.05.

The fragment profiles under the log-log scale are parallel to each other. The 399

fragment profiles are scaled at ratio proportional to the immigration rate and inversely 400

proportional to the fragmentation speed. 401

For fragment profiles with non-uniform immigration distribution (e.g. Exponential, 402

Normal distributions), refer to S1 Fig. 403
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Simulated FRIME profiles fit clinical data 404

Next we wanted to study if the FRIME model was able to describe correctly the 405

different features observed in clinical data. To do so, FRIME processes with different 406

parameters were simulated and compared against the mtDNA fragment profile of the 4 407

samples ISPRO.S1, ISPRO.bc01, ISPRO.bc03 and ISPRO.bc05 from the nanopore 408

study found in [43]. The 4 samples were chosen according to the criteria described in 409

Model fitting and comparison. 410

For each of the 4 mtDNA fragment profiles, there are parameter regimes which 411

produce simulated fragment profiles with p-values larger than 0.1 under the 412

Kolmogorov-Smirnov test, see Table 3. As the p-values are larger than 0.1, the simulated 413

fragment profiles cannot be considered statistically different from clinical data. See Fig 414

6(A-B) for an example of a simulated FRIME process that fits well with clinical data. 415

id CF αF CI αE Model BE dKS p
ISPRO.S1 106 -1.0 11.0 2.05 PNB N/A 0.022 0.287
ISPRO.bc01 103 0.36 10.0 2.5 PFB 115 0.049 0.345
ISPRO.bc03 105 -0.5 10.0 2.10 PNB N/A 0.046 0.261
ISPRO.bc05 7.5× 105 -0.78 8.0 2.10 PNB N/A 0.048 0.216

Table 3. Parameters of mtDNA best fit of the clinical datasets with FRIME
processes. Simulated FRIME processes were run for 106 number of events with a fixed
initial seed for generating FRIME events. The fragmentation ratio was fixed to be
uniform, i.e. r ∼ Beta(1, 1), and new fragment lengths were distributed as U(0, L), with
L = 104. The column id corresponds to the id of the patient whose mtDNA fragment
profile was studied. The constant CF is the fragmentation speed of the FRIME process
and αF is the fragmentation power. The constant CI measures the immigration speed.
The constant BE is the exit boundary and αE the exit power. For PNB model, the exit
function is of the form L−αExαE ; for the PFB model, the exit function is of the form
L−αE (xαE −BαE

E ). The value dKS is the Kolmogorov-Smirnov distance between the
simulated fragment distribution selected (best fit) and the clinical mtDNA data. The
value p refers to the p-value in the Kolmogorov-Smirnov test.

Similarly, simulated FRIME profiles were found to be statistically close to genomic 416

cfDNA fragment profiles when adjusted for nucleosomal cycles. Under the binning 417

outlined in S3 Fig, simulated FRIME profiles and gDNA profiles were statistically 418

similar for the datasets available. An example is shown in Fig 6(C-E). 419
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Fig 6. Fitting clinical data for sample ISPRO.bc05 with the FRIME model.
mtDNA - The mtDNA fragment profile for sample ISPRO.bc05 in nanopore study was
compared against a simulated FRIME profile. The simulated profile was generated by
running a FRIME model with parameters CF = 106, CI = 11, E(x) = L2.05x−2.05,
αF = −1, L = 104, r ∼ Beta(1, 1), with seed = 42 until 106 events occurred. Fragment
lengths were rounded to the nearest integer and plotted against clinical data. (A) The
cumulative fragment count for the mtDNA profile of sample ISPRO.bc05 was plotted as
the blue line. The mean cumulative fragment count for the simulated FRIME profile
was plotted as the red line, and the shaded region was plotted using 10th and 90th
percentile fragment count across all simulations. The difference between the two
cumulative count was plotted as the orange line. (B) The fragment count (per 1000
fragments) for the mtDNA profile of sample ISPRO.bc05 was plotted as a histogram in
blue colour. The fragment count (per 1000 fragments) for the simulated FRIME profile
was plotted as a histogram in red colour. Fragment length was measured in base pairs.
gDNA - The gDNA fragment profile for sample ISPRO.bc05 was compared against a
simulated FRIME profile. The simulated profile was generated by running a FRIME
model with parameters CF = 2.5, CI = 10, E(x) = L2(x−2 − 167−2), αF = 1.2, L = 104,
r ∼ Beta(1, 1) until 106 events occurred. Fragment lengths were rounded to the nearest
integer and plotted against clinical data. (C) The cumulative fragment count for the
gDNA profile of sample ISPRO.bc05 was plotted with the blue area. The cumulative
fragment count for the simulated FRIME profile was plotted as a black line. The x-axis
is under the log scale. (D) The fragment count for the gDNA profile of sample
ISPRO.bc05 was plotted as a histogram in blue colour. The fragment count for the
simulated FRIME profile was plotted as a histogram in red colour. Fragment length is
measured in base pairs and the x-axis is under the log scale. (E) The number of
fragments in the region [0, 250], [250, 420], [420, 620], [620, 820], ..., [1220, 1420] for both
profiles were plotted as histograms. The simulated profile was plotted in red and the
fragment profile for the gDNA profile of sample ISPRO.bc05 was plotted in blue.
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Differences in PFB best-fit lines for gDNA and mtDNA profiles 420

The tail distribution of gDNA fragmentation profiles for all 13 samples in [43] were 421

fitted with the PFB best-fitting expression of the form Cxβ . Similarly, the mtDNA 422

fragment profiles for 9 samples in [43] were fitted. The PFB best fit lines align with the 423

overall pattern for all of the 9 mtDNA and 13 gDNA fragment profiles as discussed in 424

detail below. 425

Best-fit statistics for mtDNA data. For mtDNA data, the parameter βmtDNA 426

(slope of the best-fitting line under log-log scale) has an average value of −1.56 with 427

range between [−2.5,−0.69]. According to Equation (1), this corresponds to a negative 428

fragmentation power αF of around -0.5. See Fig 7 for the best fit expressions of 6 429

mtDNA profiles. See S5 Fig, S6 Fig for the best-fit curves for all profiles.
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Fig 7. Cell-free mtDNA fragments profiles and PFB best fit lines.
Mitochondrial DNA fragment profiles for samples ISPRO.S1, ISPRO.bc01, ISPRO.bc02,
ISPRO.bc03, ISPRO.bc04, ISPRO.bc05 from nanopore studies are plotted out as bar
charts in blue on the top panels after linear interpolation at intervals of 10bp. Best fit
curves of the expression Cxβ are plotted as black dot-dashed lines. The coefficients of
the best fit curve are given by a linear fit under the log-log scale on the counts of
fragments longer than 140bp. A black vertical line at 140bp indicating the fixed
boundary is also plotted on each profile. Both x and y axes are in linear scale.

430
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Best-fit statistics for gDNA data. For gDNA data, the parameter βgDNA has an 431

average value of −3.32 with range between [−4,−2.5]. According to Equation (1), this 432

corresponds to a positive fragmentation power αF of around 1. See Fig 8 for the best fit 433

expressions of 6 gDNA profiles. See S7 Fig for the best-fit curves for all profiles. 434
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Fig 8. Cell-free gDNA fragment profile with PFB best fit line. Genomic DNA
fragment profiles for samples ISPRO.S1, ISPRO.bc01, ISPRO.bc02, ISPRO.bc03,
ISPRO.bc04, ISPRO.bc05 from nanopore studies are plotted out as bar charts in pink.
Best fit curves of the expression Cxβ are also plotted out. The coefficients of the best
fit curve are given by a linear fit under the log-log scale after binning the data. The
y-axis is in log-scale.
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Discussion 435

In this paper, we proposed a Markov process (FRIME process) that can model cfDNA 436

production, digestion and clearance in the bloodstream. Our FRIME model is robust 437

and allows us to simulate cfDNA fragment profiles as the equilibrium measure of a 438

FRIME process. Using the FRIME model, we can examine how different assumptions 439

on fragmentation, immigration and exit mechanism produce stationary fragment profiles 440

and compare them against real clinical data. As a result, we can deduce possible cfDNA 441

digestion and clearance mechanisms that are impossible to study under an experimental 442

setting. We can draw the following biological insights from our results. 443

Removal mechanism of mitochondrial cell-free DNA is size-dependent and 444

explains the existence of fragment peak. When determining the removal 445

mechanism of cell-free DNA, we considered the cases of size-independent exit (CON), 446

size-dependent exit with no boundary (PNB), and with fixed boundary (PFB) and 447

showed that size-dependent exit mechanism alone is sufficient to result in a peak. On 448

the other hand, size-independent exit results in no peak in the absence of other factors 449

such as protein protection. 450

Circulating mtDNA, unlike gDNA, is not nucleosome-bound, but demonstrate a 451

single peak at around 100-150bp in the fragment profile, which is variable across 452

individuals. We therefore propose that the existence of a modal fragment size in 453

mitochondrial cfDNA can be explained by its removal mechanism, where shorter 454

fragments are removed faster than longer fragments. Alternatively, the peak can be due 455

to failure to capture ultra-short fragments during sequencing, or protection by protein. 456

However, both cases should result in a uniform peak across individuals, which is not the 457

case. 458

Tail distribution of cfDNA fragment profile provides rich information when 459

examined on a log-log scale. In the initial data exploration, we observed that 460

cfDNA fragment profiles exhibit a linear decay trend under log-log scale. In the 461

subsequent modeling of exit mechanism, we showed that only the PFB model has a 462

log-log linear tail distribution, i.e. to the right of the exit boundary. Furthermore, we 463

examined the effect of endonuclease and exonuclease activity on the fragment profile. 464

Log-log linearity is preserved only when all positions have the same chance of being cut 465

(i.e. endonuclease model). In addition, we showed that the slope of the tail distribution 466

is determined by the fragmentation power, which reflects the effect of DNA length on 467

reaction kinetics. Therefore, log-log linearity is a very unique property that can only be 468

met by a few mechanisms, allowing us infer the underlying biological processes. 469

Fully nucleosome-bound cell-free DNA is rarely removed from circulation. 470

While there are periodic peaks in genomic cfDNA data, we observed that the fragment 471

distribution binned in nucleosomal units is linear on a log-log scale, until the first 472

nucleosome. From our simulations, this suggests that genomic cfDNA has an exit 473

boundary at around the size of 1 or few nucleosome(s), above which the clearance rate 474

is 0 (corresponding to the PFB model), or very small compared to the fragmentation 475

rate (corresponding to the PNB model with small αE). We hypothesize that short 476

gDNA, especially those shorter than 167bp, may no longer maintain a stable complex 477

with histone proteins, which leads to a change in physical properties and clearance rate. 478

Our result seems to contradict with previous mice experiments, which have shown that 479

the liver is capable of clearing, or at least trapping, circulating mononucleosomes and 480

chromatin with radiolabelled histones [45, 46]. However, we argue that previous studies 481
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only radiolabelled the histone component, and it is unknown whether the nucleosomes 482

are cleared from the circulation as an intact unit with the DNA. 483

mtDNA and gDNA undergo different size-biased fragmentation mechanisms. 484

Parameter inference of the tail distribution from clinical data using PFB model showed 485

that mtDNA and gDNA have systematically different slopes, as shown in S8 Fig The 486

fragmentation power αF can be derived from the slope, and is negative for mtDNA and 487

positive for gDNA. Hence for each molecule, smaller mtDNA fragments react faster 488

than longer mtDNA fragments. Meanwhile, gDNA exhibits the opposite reaction 489

kinetics, and longer fragments react faster than smaller fragments. This suggests that 490

the degradation rate of mtDNA may be diffusion-limited. Smaller fragments react faster 491

because they have a higher diffusion rate than longer ones, which increases the chance 492

of colliding with a DNase. On the other hand, although mtDNA and gDNA are 493

chemically identical, gDNA forms stable complex with histone proteins. This provides 494

an explanation for the positive αF , which suggests that gDNA fragmentation is limited 495

by surface area instead of diffusion. The longer the DNA molecule, the higher 496

availability of fragmentation sites, hence higher chance of reacting with a DNase. Taken 497

together with the discussion on the clearance mechanism of nucleosome-bound cfDNA, 498

we propose a unifying model where nucleosome-bound cfDNA are not free-floating in 499

circulation, but may have low solubility and form aggregates or phase-separated 500

droplets. This mesoscale organization may sequester the nucleosomes, making them 501

difficult for the body to remove, and cfDNA fragmentation only happens at the contact 502

surface with plasma. This is supported by the existing literature on cell-surface bound 503

DNA, where high molecular weight DNA is found on surfaces of blood cells [50], 504

although the authors did not find low molecular weight DNA by gel electrophoresis, 505

which contradicted with our hypothesis. 506

FRIME model allows the interpretation of cfDNA concentration as 507

biomarker of tumor. Plasma cfDNA concentration alone is able to predict patient 508

prognosis in multiple cancer types [47–49] and correlates well with overall tumor 509

burden [47]. Therefore, one hypothesis is that the increased plasma cfDNA comes from 510

increased production. However, literature also claimed that the DNase activity in cancer 511

patients may be reduced, contributing to higher cfDNA concentration [33]. The 512

contributing factors of cfDNA concentration has not been quantitatively studied 513

holistically. From Fig 5, we showed that when the cfDNA fragmentation kinetics remain 514

unchanged, the rate of production of cfDNA is directly proportional to the total amount 515

of fragments in a patient’s bloodstream. This explains the linear correlation between 516

cfDNA concentration and tumor burden. On the other hand, when cfDNA production 517

rate is unchanged, the fragmentation speed is inversely proportional to cfDNA fragment 518

counts. The FRIME model, therefore, provides a numerical framework for 519

understanding the concentration of plasma cfDNA. 520

Best fit coefficients in log-log scale can serve as potential biomarkers. We 521

showed in S5 Fig, S6 Fig that all fragment profiles in our study have an excellent fit 522

under the PFB model visually. However, there are variations among individuals on the 523

slope of linearity for such trends. We believe it is possible for this to be a potential 524

biomarker for diseases. Although we do not have enough data to fully examine this 525

hypothesis, preliminary analysis suggests that best-fit gDNA coefficients of patients 526

with lung adenocarcinoma have higher variance than healthy patients. For further 527

detail, refer to S8 Fig. 528
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Limitation and Future Work 529

We generated several testable hypotheses from our FRIME model, including the exit 530

mechanisms, physical and chemical kinetic properties for nucleosome-bound and 531

free-floating cfDNA. We hope these ideas can be tested with in vitro and in vivo 532

experiments in future. 533

Apart from drawing biological insights, we were also able to infer different model 534

parameters for individual patients, which are related to their cfDNA fragmentation and 535

production rates, which may be more meaningful parameters than cfDNA concentration 536

alone. However, one of the biggest limitations here is the lack of high depth long read 537

cfDNA sequencing data. Most of the published cfDNA sequencing data were done using 538

short-read sequencing platforms, which are very inefficient in capturing DNA molecules 539

beyond 1 kb, thus not suitable for comparing with our model. At the time of our study, 540

only one long read cfDNA sequencing dataset was available without restrictions [43]. 541

Unfortunately, shallow sequencing was done for this dataset. We set an arbitrary cutoff 542

of at least 5000 mtDNA molecules being sequenced in order to statistically compare 543

with our simulation, and only 4 samples passed this cutoff. With more clinical long read 544

sequencing data we will be able to evaluate whether the fitted model parameters from 545

the fragmentation profile are good biomarkers. 546

Another limitation is that we were not able to reach a definite conclusion about the 547

mode of cfDNA exit mechanism. Although we obtained a good fit using PNB model 548

statistically under the FRIME framework, it cannot be guaranteed that the solution is 549

the best fit. 550

Finally, our model inferred parameters based on an auxiliary time variable t. For 551

example, we may infer x fragmentation events per unit time, but further work needs to 552

be done to translate this into the commonly used units for DNase activity. Common 553

used assays of DNase activity involve comparing samples to a reference with known 554

activity [31, 51], which is often specified by the manufacturers as the amount of enzyme 555

required to completely degrade 1 µg of plasmid DNA in the 10 minutes at optimal 556

working conditions. We propose that a simulation can be performed to convert our 557

auxiliary time unit to the degradation assay units. As such, in future studies where the 558

plasma DNase activity is measured alongside with cfDNA sequencing, reasonable 559

fragmentation parameters can be specified prior to fitting our FRIME model, thus 560

allowing a more accurate estimation of the cfDNA production rate. 561

562

Conclusion 563

We have shown in our clinical data analysis that FRIME model highly recapitulates real 564

life data with a few simple hypotheses, and can be used to draw inferences from mtDNA 565

fragment profile. Although gDNA fragment profile has an inherent cyclical nature, once 566

we adjust our fragment profile by binning data, i.e. by effectively measuring fragment 567

lengths in units of nucleosomes, the gDNA fragment profile also fits into the FRIME 568

model and the log-log linearity model. 569

We believe that our model reveals insights about cfDNA kinetics that would 570

otherwise be unethical to measure in patients. We look forward to the general 571

application of the FRIME model in other means of liquid biopsy as well, such as 572

circulating RNA and proteins. 573
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Supporting information 574

S1 Appendix Supplementary text for the manuscript. This supplementary test 575

includes further FRIME simulations, a detailed explanation of the statistical test used 576

for clinical data analysis, as well as a mathematical derivation of the best fit curve for 577

CON, PFB, PNB model. 578

S1 Fig. FRIME profile with exponential and normal distributed 579

immigration mechanism. Stationary distributions of fragment sizes obtained from 580

simulations of the FRIME process with immigration and fragmentation parameter 581

values CI = 500, CF = 1, αF = 1, a = 1, PFB exit mechanism with parameters 582

αE = −2, BE = 0.4, and simulation threshold κ = 0.05. 50 points were plotted for each 583

configuration. Each point corresponds to the fragment count per unit length over an 584

interval of length 0.02. Different choices of the immigration function were taken and 50 585

simulations run for each choice of immigration function. Shaded regions were plotted 586

using upper and lower quartile fragment count across all simulations. (A) EXP model 587

with immigrating length z ∼ Exp(λ) where λ = 0.1 (dots), 0.5 (×), 0.7 (stars). (B) The 588

simulated fragment profiles look sufficiently linear under the log-log scale. (C) NORM 589

model with immigrating length z ∼ N(µ, 0.1µ) with µ = 0.5 (dots), 0.7 (×) ,0.9 (stars). 590

The simulated fragment profiles clearly exhibit a peak at the mean fragment length size. 591

S2 Fig. FRIME profile with strong fragmentation around midpoint. 592

Stationary distributions of fragment sizes obtained from simulations of the FRIME 593

process with uniform immigration and fragmentation parameter values 594

CI = 100, CF = 1, αF = 1, PFB exit mechanism with parameters αE = −2, BE = 0.2, 595

and simulation threshold κ = 0.05. 50 points were plotted for each configuration. Each 596

point corresponds to the fragment count per unit length over an interval of length 0.02. 597

Three different choices of the fragmentation ratios were taken and 50 simulations run for 598

each choice of fragmentation ratio. Shaded regions were plotted using upper and lower 599

quartile fragment count across all simulations. Right panel is normal scale, left panel is 600

log-log scale. (A) Fragmentation ratio r ∼ Beta(a, a) with a = 1 (blue circles), 100 601

(orange crosses), 1000 (red stars). For large a, fragments tend to be split into two 602

roughly equal proportions. The simulated fragment profiles exhibit big drops and flat 603

decays. (B) In log-log scale, the fragment profiles for large values of a look like steps. 604

S3 Fig. Genomic DNA data on log-log scale, showing the first 9 partitions. 605

S4 Fig. Evolution of p-value under KS test on FRIME simulations. We ran 606

two FRIME simulations and compared them against the mtDNA fragment profile and 607

gDNA fragment profile for sample ISPRO.bc05 under the two-sample 608

Kolmogorov-Smirnov test. (A) A FRIME process with parameters 609

CF = 7.5 ∗ 105, αF = −0.78, L = 104, CI = 8, E(x) = L2.10x−2.10, r ∼ Beta(1, 1) is run 610

for 105 events. After every 104 events, the fragment profile of the process is compared 611

against the mtDNA fragment profile under the Kolmogorov-Smirnov test. The p-value 612

of the result is plotted in the graph. (B) A FRIME process with parameters 613

CF = 2.5, αF = 1.2, L = 104, CI = 10, E(x) = L2x−2, r ∼ Beta(1, 1) is run for 105 614

events. After every 104 events, the fragment profile of the process is compared against 615

the gDNA fragment profile under the χ2 two-sample test. The p-value of the result is 616

plotted in the graph. 617

S5 Fig. Mitochondrial cfDNA fragment profiles with best fit curve. 618

Mitochondrial DNA fragment profiles for all samples from nanopore studies are plotted 619
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out as bar charts in blue on the top panels. Best fit curves of the expression Cxβ are 620

plotted as black dot-dashed lines (-.). The coefficients of the best fit curve are given by 621

a linear fit under the log-log scale on the counts of fragments longer than 140bp. A black 622

vertical line at 140bp is also plotted on each profile. The cumulative fragment count for 623

all fragment profiles were plotted out as bar charts in blue. Black lines plotted on top of 624

the bars were linear interpolation of the cumulative fragment count at intervals of 10bp. 625

S6 Fig. Mitochondrial cfDNA fragment profiles with best fit curve, log-log 626

scale. Mitochondrial DNA fragment profiles for all samples from nanopore studies are 627

plotted out. Best fit curve of the expression Cxβ is also plotted out. The coefficients of 628

the best fit curve are given by a linear fit under the log-log scale on the counts of 629

fragments longer than 140bp. A black vertical line at 140bp is also plotted on each 630

profile. Both axes are in log scale. 631

S7 Fig. Genomic cfDNA fragment profiles with best fit curve. Genomic DNA 632

fragment profiles for all samples from nanopore studies are plotted out as bar charts in 633

pink. Best fit curves of the expression Cxβ are also plotted out. The coefficients of the 634

best fit curve are given by a linear fit under the log-log scale after binning the data. 635

The x-axis is in log-scale. 636

S8 Fig. gDNA best fit coefficients distribution plot. The best-fit coefficients 637

for linearity in log-log scale were plotted as a scatter plot. The x-axis is the gDNA 638

slope, and the y-axis is the gDNA intercept. Healthy patients are in blue and patients 639

with lung adenocarcinoma is in pink. The scatter plot suggests that the data for 640

patients with lung adenocarcinoma has higher variability. 641

S9 Fig. FRIME profile with different linear exit mechanism. Stationary 642

distributions of fragment sizes obtained from simulations of the FRIME process with 643

uniform immigration and fragmentation parameter values 644

CI = 500, CF = 1, αF = 1, a = 1, b = 1 and simulation threshold κ = 0.05. 50 points 645

were plotted for each configuration. Each point corresponds to the fragment count per 646

unit length over an interval of length 0.02. Different choices of the immigration function 647

were taken and 50 simulations were run for each choice of immigration function. Shaded 648

regions were plotted using upper and lower quartile fragment count across all 649

simulations. The simulations were run with linear exit mechanism 650

E(x) = BEmE −mEx, where BE = 0.4 and mE = 2 (blue), 3 (orange), 4 (green). A 651

vertical line at BE = 0.4 was plotted in black. A best-fit line of 100x3 was plotted in 652

red in the region x > 0.4. Note that when mE = 4 > 3CF , the peak coincides with 0.4 653

and when mE = 2 < 3CF , the peak is to the left of 0.4. 654
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11. Siejka-Zielińska P, Cheng J, Jackson F, Liu Y, Soonawalla Z, Reddy S, et al.
Cell-free DNA TAPS provides multimodal information for early cancer detection.
Science Advances. 2021;7(36):eabh0534. doi:10.1126/sciadv.abh0534.
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