A machine learning approach for quantifying age-related histological changes in the mouse kidney.

Susan Sheehan\(^1\), Seamus Mawe\(^1\), Mandy Chen\(^1\), Jenna Klug\(^1\), Warren Ladiges\(^1\), Ron Korstanje\(^1\), J. Matthew Mahoney\(^1,3\)

\(^1\)The Jackson Laboratory, Bar Harbor, ME, USA
\(^2\)Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
\(^3\)Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA

Correspondence: J. Matthew Mahoney, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA. Email: matt.mahoney@jax.org
ABSTRACT

The ability to quantify aging-related changes in histological samples is important as it allows for evaluation of interventions intended to effect health span. We used a machine learning architecture that can be trained to detect and quantify these changes in the mouse kidney. Using additional held out data, we show validation of our model, correlation with scores given by pathologists using the Geropatology Research Network aging grading scheme, and its application in providing reproducible and quantifiable age scores for histological samples. Aging quantification also provides the insights into possible changes in image appearance that are independent of specific geropathology specified lesions. Furthermore, we provide trained classifiers for H&E-stained slides, as well as tutorials on how to use these and how to create additional classifiers for other histological stains and tissues using our architecture. This architecture and combined resources allow for the high throughput quantification of mouse aging studies in general and specifically applicable to kidney tissues.

INTRODUCTION

Histological evaluation is often the first stop for diagnosis of many diseases, but pathologists rarely define age related changes in their reports; despite age being the greatest risk factor for many conditions. The field of geropathology is focused on classifying age-related changes that occur and can be visualized in histological samples. The Geropatology Research Network (GRN) recently published an aging grading scheme for multiple mouse tissues, including the kidney [1], and has shown this system to be effective for quantifying the effects of interventions [2]. The GRN scoring system has yet to be widely adopted partially due to its novelty. However, a major limitation for implementing this grading scheme at scale is low throughput caused by limited access to trained pathologists that can process the large numbers of slides that are involved in a typical study. Furthermore, pathologist judgments are a combination of objective and subjective impressions of extremely complex visual patterns, which can result in variability among pathologists and low concordance of final pathological scores. Indeed, concordance of GRN scores as low as 43% for composite lesion scores in the kidney were recently reported [1]. Moreover, while expert-derived grading systems often capture the biologically salient differences within and between samples, it remains possible that any given scoring system will not capture all the possible changes. Taken together, these limitations—low throughput, inter-pathologist variability, and potentially incomplete annotation—hinder our ability to correlate age- or intervention-induced molecular and physiological changes with structural changes in the tissues. In this study, we developed a machine learning approach to complement expert-derived grading schemes and overcome their limitations by systematically highlighting putative age-associated pathologies without requiring annotations beyond the chronological age of the sample.

It is now routine to scan histological slides and obtain Whole Slide Images (WSIs) to generate large image data sets that can be analyzed and shared with the scientific community. These WSIs enable the application of the rapidly advancing tools of machine learning and artificial intelligence on medical images [3]. Machine learning and artificial intelligence applications have proven to be extremely powerful at solving many problems, including classifying images by expert labels, object-localization, and detection (i.e., putting a box around when a specific object appears in an image), and object segmentation (i.e., outlining the boundary of an object in an image) [4]. Specifically in medical imaging, much work has been done to classify tissues as being normal or cancerous, and for specific segmentation tasks [5]. Nevertheless, the major bottleneck to applying these approaches is, not the availability of raw image data, but a dearth of meaningful annotations as prediction targets. The limitations to applying the GRN grading scheme at scale is a paradigmatic example of the difficulty in generating the required training data.

To overcome the lack of annotated tissue images for learning age-associated kidney changes, we used a relatively new machine learning strategy called weakly supervised learning [6]. Formally, machine learning and artificial intelligence techniques are classified as either supervised, meaning that they are trained as predictive models for a specific target, or unsupervised, meaning that they are trained to learn descriptors of heterogeneity within a data set but not predict a specific target. Weakly supervised learning refers to the situation where the prediction target is extremely loosely specified and is a hybrid of supervised and unsupervised learning. The distinction between traditional supervised and weakly supervised learning is perhaps best made with an everyday example. We can imagine learning the name and shape of a stop sign by looking at close-up photographs of road signs with the labels “This image is a stop sign” and “This image is not a stop sign”. This is the typical supervised-learning setting.
for deep learning in medical imaging, where there are highly specific annotations for each training image, e.g., “This image is of a tumor”. We can also imagine learning to recognize a stop sign by studying everyday photographs of roadways—each containing a multitude of cars, buildings, and signs—with the labels “This image contains a stop sign” and “This image does not contain a stop sign”. This second case corresponds to weakly supervised learning.

Many features within the image set will be common to both classes (cars, buildings, road signs that are not stop signs) and the model must learn to recognize what a stop sign is as the common feature from one class that is absent in the other. Thus, weakly supervised learning accomplishes a distinct and harder task than traditional supervised learning. In our example, the model must both recognize stop signs on their own and localize them within images containing many other features. In this way, weakly supervised learning is especially useful for taking image-level labels and training pixel-level classifiers [7]. Thus, weakly supervised learning holds the promise to learn age-associated histopathologies de novo, starting only with the sample-level chronological age for a WSI, where higher chronological age acts, effectively, as the label, “This slide contains age-associated histopathologies.”

In this study, using kidney as a proof of concept, we sought to determine whether weakly supervised learning of age would also help us localize age-associated histopathological lesions within that image. We developed a novel machine learning algorithm to predict the age of the kidney in each tissue image and trained the model using an innovative ordinal classification scheme, where we rigorously modeled the cumulative changes in the tissue as a function of increasing age. Our weakly supervised ordinal classifier thus provides pixel-level information about age to detect spatial variation in the appearance of tissue age, which we rigorously compared to sub-anatomic site-specific annotations from the GRN grading scheme by expert pathologists. Overall, our approach allows for high-throughput and reproducible quantification for large numbers of WSIs. Moreover, because the pixel-level classifications do not target a priori known pathologies, our approach enables unbiased detection of novel age-associated histopathological lesions.

METHODS

Mice and slides

For the C57BL/6J mice from The Jackson Laboratory’s aging colony were used in this study, Mice were maintained at a 12h (6AM-6PM) light dark cycle and fed a rodent diet (5KOG LabDiet, St. Louis, MO) in a pathogen-free room (see Supplement for room health report). Kidneys were fixed in 10%NBF for 24 hours before paraffin embedding. Blocks were cut into 3 -5-micron section and stained with hematoxylin and eosin using a Leica autostainer XL ST5020. The slides where then scanned using brightfield imaging and a 40x objective with a Hamamatsu nanozoomer 2.0HT digital slide scanner.

Set 1 is a subset of H&E slides from kidneys previously described [1] and from kidneys from The Jackson Laboratory’s aging colony. Details for each of the slides in this set can be found in **Supplemental Table 1**.

Set 2 are the H&E slides from kidneys previously described [1]. Details for each of the slides for this set can be found in **Supplemental Table 2**.

Set 3 were H&E slides from C57BL/6J mice from The Jackson Laboratory’s aging colony. Details for each of the slides for this set can be found in **Supplemental Table 3**.

Set 4 were a subset of H&E slides from kidneys previously described [2] Details for each of the slides for this set can be found in **Supplemental Table 4**. We have 7 female control animals and 8 female mice with rapamycin treatment.

All animal experiments were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (National Research Council) and were approved by The Jackson Laboratory’s Animal Care and Use Committee.

Tissue Localization:

Qupath was used for flexibly of using slides that have tissue from multiple different organs on the same slide such as the slides from the geropathology research network. Qupath enables the isolation of only the kidney tissue and allows for further fine tuning of other slides, after images were loaded into Qupath. Using the wand tool tissue outlines were created and only the relevant areas of the slide were exported as tiles. The export was done using Qupath scripts.
available at https://github.com/TheJacksonLaboratory/DIY-Geropathology. Tutorials on how to do this can be found at https://www.geropathology-imaging.org/.

Data Preparation
To enable efficient image handling for training we down sampled the data or took only a small subset of the image. To do this, we split the image into 512 x 512-pixel tiles with no overlap and kept every twenty-second image. The down sampling results in an image similar to using a 2x objective. This is used to provide an appropriate amount of context for the machine learning to decide at the pixel level. As a preprocessing step, we performed the image normalization to reduce the variance for staining batches in the images. For each of the three, color channels (red, green, and blue), the normalized pixel value is the pixel value – mean of all pixels in that channel divided by the standard deviation of the pixel values. We took into consideration tissue images contain empty area on the edges, some tiles do not have any tissue or have few pixels of tissue data. We removed those tiles as they have little effect on the training. Only tiles which are covered by at least 90% of tissue pixels were considered for training.

Next, we created a system that would classify multiple age groups using the pixel values. We constructed slide-level training labels based on an ordinal system where, for every pixel, we predict a binary output vector with components labeled by the chronological ages—8, 16, 20, and 32 months—and every component corresponding to ages less than or equal to the sample are filled with a one and the remainder are filled with zeros. For example, the slide-level training label for an 8-month-old sample is (0,0,0), while the label for a 20-month-old sample is (1,1,0). We note that these ordinal training labels are distinct from categorical training labels for predicting the exact chronological age (for example, using the target (0,1,0) for a 20-month-old sample) or numerical targets in a regression (i.e., numerically predicting “8” for 8-month-old samples and “32” for 32-month-old samples). By using ordinal labels in contrast to categorical labels, we can model cumulative changes from young through middle age to old age, without requiring the model to detect patterns that are entirely specific to, say, 20-month-old samples that are categorically distinct from 16-month-old samples. Indeed, preliminary experiments demonstrated that such an approach had systematic difficulty discriminating adjacent ages, particularly 16- and 20-month-old samples (data not shown). Similarly, using an ordinal system instead of regression for numerical age, we can model cumulative changes with the assumption that there is a uniform, quantitative change between age groups.

To predict training labels at the pixel level, we created a 3-channel binary image over the tissue mask for each input image, where at each pixel we duplicated the slide-level training label. Thus, for each input image, the pixel-level training labels are given by duplicating the tissue mask in each age channel corresponding to an age less than or equal to the sample age, and all zeros in the remaining channels. Thus, we call the training data the ordinal mask.

Machine learning network architecture
To predict the ordinal mask as a function of histological image, we adapted the LinkNet architecture [8], which was originally designed for segmentation models. LinkNet is an efficient segmentation neural network derived from the architecture of ResNet [9]. Briefly, the LinkNet architecture is a fully convolutional neural network that uses a cascade of convolutions and transposed convolutions to predict a target binary mask from an RGB input image. The output of the LinkNet is a multi-channel probability mask that scores every pixel for the probability that it has a 1 in each output channel, which is our case correspond to the ordinal training labels. The loss function for training is the standard cross-entropy loss common in binary prediction problems [10].

From the probability masks for each sample, we combined the multi-channel output into a pixel-level summary score by rank normalizing each channel to follow the standard normal distribution and averaging the normalized scores at each pixel, yielding pixel-level histological damage score. For a whole-slide image, we computed the mean histological damage score to yield a sample-level histological damage score.

Training parameters
The training dataset consisted of 16 kidneys from four age groups the images are broken into tiles of 512 X 512 pixels. There were 300 tiles in total for training. The LinkNet model was trained for 60 epochs using Adadelta optimizer [11]. The initial learning rate was loaded with batch size 20. The loss function is defined using binary cross-entropy with SoftMax activation function. The neural network model and loss functions were implemented in Julia 1.6 environment with Flux v0.11.6.

Statistical methods:
Statistical analysis was done using R-studio build 485. Using base functions Anova’s were calculated using the aov function specific group level p values were calculated using the TukeyHSD function. Partial correlations were done using the cor function on the residuals corrected for age.

Classifiers and Code:
All code to execute the classifiers on your own images can be found at https://github.com/TheJacksonLaboratory/DIY-Geropathology. Additionally, we are providing https://www.geropathology-imaging.org/ which has tutorials and step by step directions on how to implement the code provided on GitHub.

RESULTS

Training and validation of the classifier on aged kidneys
We trained a weakly supervised ordinal classifier to detect aging at the pixel level using 16 H&E-stained kidney slides, including 8 kidneys processed and assessed by the GRN, supplemented with 8 kidneys from The Jackson Laboratory (Supplemental Table 1). By monitoring the value of the loss function, i.e., the penalty for a bad prediction, on a held-out set of images (annotated in Supplemental table, we can determine how well the model has learned the task over time and whether it continues to improve. If this stabilizes and stops changing at a low value, we infer that the predictive ability of our model has learned all the relevant information contained in the training data. Indeed, as training progressed, the loss function decreased systematically over time, as assessed using a held-out test set of images (Supplemental Figure 1), implying that the output histological damage score is capturing differences in the appearance of the training samples by age.

After training the classifier, we validated the model on H&E-stained kidneys from 78 male mice of different ages (Supplemental Table 2). The sample-level histological damage scores (see Materials and Methods) were significantly different across chronological age groups, with a monotonic increase in value as a function of chronological age (p = 3.63x10^-15 - Figure 1). In multi-way comparisons, only the 8- and 16-month age groups were not statistically different from each other. Notably, in the original GRN paper, no significant difference between 8- and 16-month samples was not observed. All other pairwise age-group comparisons were statistically significant at the 95% level using the Tukey multiple comparison of means analysis.

The histological damage score also correlated with the average score using the GRN grading scheme given by three independent pathologists for the same samples (R =0.57, p=2.37x10^-15; Figure 2). While this correlation is strong, it is driven by the fact that both scores are correlated with age. After regressing our calendar age from both scores, the residual correlation, i.e., partial correlation, was not significant (R_partial = 0.12, p = 0.2811). We are unable to apply the same statistics presented in the paper [1] to our data because we have a slightly different score. Using linear correlation our histological damage score we correlate with each pathologist 0.5 and with the mean of the pathologist 0.55. By this same measure the pathologists agree with each other more (between 0.75 and 0.83) than we agree with their mean. This is the first piece of evidence that we see something a little different than the GRN score. The GRN score correlates with age and the histological damage score correlates with age when we adjust the correlations for age, we do see a non-significant correlation between the GRN scores and the histological damage scores. This indicates that we detect the GRN changes plus something else.

Visualization and correlation with aging lesions
We sought to determine whether the image features detected by our model overlapped with those used by the GRN. In other words, does our model “see” the same age-related changes that are scored by the GRN scheme. Using GRN-based annotation by a board-certified veterinary pathologist (JK), we compared the spatial variation in pixel-level histological damage scores with presence or absence of specific lesions in an 8-month and a 32-month-old sample. Overall, the pixel-level histological damage scores are systematically higher in the 32-month-old samples in regions annotated by the pathologist compared to unannotated 32-month-old pixels and an 8-month-old image (Fig. 3). In regions annotated as having lesions as part of the GRN score, not only do we detect elevated age scores in all lesion types, but we also detect pixels with low histological damage scores in these lesions. Interestingly, we also observed unannotated pixels in the 32-month-old sample with high histological damage scores, indicating that our model is sensitive to a broader set of features than the GRN grading scheme, potentially accounting for the lack of partial correlation between the histological damage score and the GRN score (Fig. 3). We also note that the unannotated
pixels that where not in lesions annotated by the pathologist have higher variance in histological damage score than those within any particular lesion type.

To further visualizing our scores and enable hypothesis generation, we plotted histological damage scores as a heat map that can be compared to the raw image. By looking at these “paintings”, we observe overt differences in overall pixel value by age, as expected, but also our model detects aging as a process that happens first in the cortex (Figure 1; Figure 4, and Supplemental Figure 2). These visualizations allow researchers to explore the tissues scores systematically and begin to open the machine learning “black box”.

Quantification of intervention
Given that one of the primary goals for any aging metric is to detect the efficacy of potential therapies to limit age-associated pathologies, we tested our model on kidney samples from a published intervention study by Jiang et al. showing that the GRN score detected a significant decrease in histopathology after rapamycin treatment [2]. Using slides from 7 female C57BL/6J mice fed control diet and 8 female C57BL/6J mice fed a diet with rapamycin, we also found a statistically significant decrease in histological damage score in the females that were given rapamycin (Figure 4). This is a strong validation result, as all these mice were the same chronological age, which shows that our model is sensitive to the effect of anti-aging interventions.

Throughput, portability, and further validation of the model
The above analyses were run on a high-performance computing cluster, which involves significant overhead and is not available to all investigators. To test the throughput and portability of our classifier, we ran a second dataset containing 29 slides from C57BL/6J male mice aged 13 months and 20 months that were raised in the Nathan Shock center and processed at the Jackson Laboratory (see Materials and Methods). These mice were housed and prepared completely separately from the training and validation data above. Using an Apple MacBook Pro with a 2.6GHz 6 core intel Core i7 processor, processing took an average of 1min 37 seconds per slide to run through the classifier, and we can detect significant difference by age (p=0.0001; Supplemental figure 3). We have also further tested on six H&E-stained slides from frozen sections, rather than FFPE sections, and again obtained a significant difference with age (p= 4.963e-05; Supplemental Figure 2). Thus, while our model runs quickly on a large computer cluster with parallel processing, it is feasible to run our model on individual computers.

DISCUSSION
There are many metrics that can be used to measure aging, but automated digital pathology is attractive for multiple reasons. First, generating histological images is highly optimized and routine, while also yielding a wealth of structural information. Second, with modern automated staining systems and slide scanners, histological imaging is now a high-throughput data modality. The rate-limiting step to applying modern computer vision workflows had seemed to be a lack of annotated images, which rely on expert human scoring. In this study, we sought to determine whether we could measure aging using computer vision of WSIs in a manner consistent with the GRN grading scheme, but without ground-truth lesion labels a priori. With our approach, we directly learned age-associated histopathologies by only predicting sample age at the whole-slide level (Figure 1). Our approach predicted a histological damage score, pixel by pixel, using information from the surrounding tissue using a convolutional neural network (CNN) architecture. The output of the model is a pixel-level damage score that we can further mine for important age-associated patterns. In post hoc analyses, we show that regions with ground-truth pathologist annotations have elevated score histological damage scores relative to young tissue, but also that unannotated regions had higher damage scores, implicated further age-associated features beyond the lesions scored in the GRN grading scheme (Figure 4).

The correlation between the predicted histological damage score and the GRN-pathologist age score (figure 3) was comparable to the level of agreement among pathologists [1]. The inter-rater reliability of pathologist assessments has been the subject of ongoing debate as a reliable outcome measure [12], so the prospect of completely reproducible machine scoring that gets within the bounds of inter-pathologist reliability may soon yield robust histology scores for intervention studies. There are several alternative grading schemes built to measure chronic changes in kidney pathology. For example, Sethi et al. proposed a grading scheme for age-related changes in human tissue that does not completely overlap the GRN system [13]. Some age-related changes are species specific and have no known negative
effects on health, so not all grading schemes will overlap entirely. Even within the field of age-associated pathology, there is no consensus yet on which features are most the relevant or robust markers of aging. In this light, it is not surprising that our histological damage score does not simply surrogate the GRN scores. Indeed, we think it is likely that the histological damage score is sensitive to changes that are not captured in the GRN score. These changes could be larger, lesion-level differences such as the alternative grading scheme proposed by Sethi et al., but they could also be smaller, non-lesional changes in the appearance of the tissue is detectable but not yet included in any visual assessment because of the need to isolate and name features. There is precedent for this type of non-lesional difference being detected with machine learning, where computer vision can help direct pathologists to smaller yet quantifiable and verifiable changes that are not overtly visible as lesions [14]. Another possible explanation for the lack of partial correlations might be the magnifications explored. Original GRN scores were made at 20x while the histological damage score was calculated on a down sampled 20x image which equated to approximately a 2x magnification. It has been shown that making annotations at different levels than machine learning algorithms function at can have variable effects on false positives and false negatives [15].

We note an interesting interpretation regarding the difference between histological damage score and pathologist scores. The histological damage scores were more often lower than the pathologist scores in the young time points, while the pathologists’ scores trended higher than the histological damage score for older tissues. We infer that if tissue is largely healthy with a few isolated age-associated lesions, then a pathologist searching for lesions might focus on these, producing comparatively higher scores relative to the amount of healthy tissue. Likewise, in older tissue, it can be harder to gauge the amount of normal tissue, instead focusing on the age-associated lesions, leading again to higher scores despite the present of relatively healthy tissue. In contrast, using computer scoring allows all pixels to be examined in their context to generate an unbiased score that accounts for all tissue.

The reproducibility and unbiased nature of computational scoring cannot be underestimated when discussing the applications of quantitative histology as outcome measures. For example, the generalization of our model to samples examining the lifespan-extending effects of rapamycin shows that even within the same age group the variation in histological damage score corresponds to measurable histological effects. The fact that these scores are, in principle, scalable to thousands of images may enable large intervention studies with valid, high-throughput histological endpoints.

Our tools are intended to help researchers and pathologists by robustly and reproducibly automating the tedious tasks and freeing time for more insightful links to be made. Visual inspection of all results is possible, while the model output itself can highlight extremes that might warrant further investigation. However, tools are only useful if there is knowledge of how to implement them, including training. In addition to providing code and trained classifiers in this paper, we also provide a website with tutorials and information on how to utilize these tools on your own data. (https://www.geropathology-imaging.org/). We note, in particular, that our general approach to aging classifiers (i.e., weakly supervised ordinal regression) is generalizable to any tissue or imaging modality. Beyond the use case presented here, we expect this approach to be valuable in many geropathology contexts in the future.

DISCLOSURE
All the authors declared no competing interests.

DATA STATEMENT
All data are available in either the main text or supplemental tables and figures. Code is available on https://github.com/TheJacksonLaboratory/DIY-Geropathology. Trained classifiers are available on https://www.geropathology-imaging.org/.

ACKNOWLEDGEMENTS
SS and RK are supported by grants from the National Institutes of Health (AG022308, AG038070, DK131019, and DK131061), WL is supported by AG047115, AG058543 and AG057381.

AUTHOR CONTRIBUTIONS

FIGURE LEGENDS
Figure 1: Mean computer age scores for Kidney: Kidneys from 78 animals were run through the Renal aging classifier. Their mean computer age score is shown on the y axis, and they are grouped by calendar age on the x axis. Also shown along the x-axis is a representative painting or visualization of the computer age scores. Dark blue is 8 months, royal blue 16 months, yellow, 20 months, orange 32 months.

Figure 2: Histological Damage Scores Correlation with GRN: This shows the average of three pathologists scores on the y axis and the computer-generated score on the x-axis. There is a significant (p=2.37x10^-7) positive (R=0.57) Correlation between the two scores.

Figure 3: Computer age score separated by regions of pathologist annotation. Kidney Tissue from 6 animals (Three 32 month and three 8-month tissues were annotated by a pathologist for locations of lesions meeting the GRN score. We then plotted the pixel level histological damage score on the y-axis and the lesion category plus unannotated categories on the x axis. Colors indicate age 8M samples in blue and 32M samples in orange.

Figure 4: SLAM Data Histological damage scores from female kidneys from 7 mice on control and 8 mice treated with rapamycin from [2] are shown along with the paintings of their histological damage scores.

Supplemental Information

Supplemental Figure 1: This is a plot that shows the loss function on the y-axis and epoch of training on the x-axis. The dashed red line indicates the average Loss value of the converged value after epoch 35.

Supplemental Figure 2: This shows the computer-generated histological Damage score for 6 C57Bl/6J male animals that were fresh frozen in CMC buffer 3 males were 4 months old and 3 males were 24 months old.

Supplemental Figure 3: This is a plot showing histological damage on the y axis the x axis shows Different ages of mice (A) or different sexes of 12-month-old mice (B). Colors in panel A are for reference and match the colors in figure 1.

REFERENCES

Figure 1
Figure 2
Figure 3
Figure 4

![Box plot showing Damage Score for control and rapamycin groups.](image-url)